Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1447-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-1447-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantification of ecohydrological sensitivities and their influencing factors at the seasonal scale
Yiping Hou
School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
Department of Earth, Environmental and Geographic Sciences, University of British Columbia (Okanagan campus), 1177 Research Road, Kelowna, British Columbia V1V 1V7, Canada
Mingfang Zhang
CORRESPONDING AUTHOR
School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
Center for Information Geoscience, University of Electronic Science
and Technology of China, Chengdu 611731, China
Xiaohua Wei
Department of Earth, Environmental and Geographic Sciences, University of British Columbia (Okanagan campus), 1177 Research Road, Kelowna, British Columbia V1V 1V7, Canada
Shirong Liu
Research Institute of Forest Ecology, Environment and Protection,
Chinese Academy of Forestry, Beijing 100091, China
Center for Ecological Forecasting and Global Change, College of
Forestry, Northwest A&F University, Yangling 712100, China
Tijiu Cai
Department of Forestry, School of Forestry, Northeast Forestry
University, Harbin 150040, China
Wenfei Liu
Jiangxi Provincial Key Laboratory for Restoration of Degraded
Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
Runqi Zhao
School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
Division of Ocean Science and Technology, Tsinghua Shenzhen
International Graduate School, Tsinghua University, Shenzhen 518055, China
Xiangzhuo Liu
School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
INRA, Centre INRA Bordeaux Aquitaine, URM 1391 ISPA, 33140 Villenave d'Ornon, France
Related authors
No articles found.
Emory C. Ellis, Robert D. Guy, and Xiaohua A. Wei
Hydrol. Earth Syst. Sci., 28, 4667–4684, https://doi.org/10.5194/hess-28-4667-2024, https://doi.org/10.5194/hess-28-4667-2024, 2024
Short summary
Short summary
This study analyzes water-stable isotope composition by analyzing the impact of forest thinning on lodgepole pine depth-to-water uptake and water-use strategies. Lodgepole pine's primary source is spring snowmelt and shifts to rely on deeper soil water to maintain water uptake. There was no effect of decreased stand density on depth-to-water uptake. It will become more critical that we know how much water forests are using and which strategies trees use to sustain their water supply.
Shengli Tao, Zurui Ao, Jean-Pierre Wigneron, Sassan Saatchi, Philippe Ciais, Jérôme Chave, Thuy Le Toan, Pierre-Louis Frison, Xiaomei Hu, Chi Chen, Lei Fan, Mengjia Wang, Jiangling Zhu, Xia Zhao, Xiaojun Li, Xiangzhuo Liu, Yanjun Su, Tianyu Hu, Qinghua Guo, Zhiheng Wang, Zhiyao Tang, Yi Y. Liu, and Jingyun Fang
Earth Syst. Sci. Data, 15, 1577–1596, https://doi.org/10.5194/essd-15-1577-2023, https://doi.org/10.5194/essd-15-1577-2023, 2023
Short summary
Short summary
We provide the first long-term (since 1992), high-resolution (8.9 km) satellite radar backscatter data set (LHScat) with a C-band (5.3 GHz) signal dynamic for global lands. LHScat was created by fusing signals from ERS (1992–2001; C-band), QSCAT (1999–2009; Ku-band), and ASCAT (since 2007; C-band). LHScat has been validated against independent ERS-2 signals. It could be used in a variety of studies, such as vegetation monitoring and hydrological modelling.
Cited articles
Ambroise, B., Beven, K., and Freer, J.: Toward a generalization of the TOPMODEL
concepts: Topographic indices of hydrological similarity, Water Resour.
Res., 32, 2135–2145, 1996.
Arias, M. E., Cochrane, T. A., Piman, T., Kummu, M., Caruso, B. S., and
Killeen, T. J.: Quantifying changes in flooding and habitats in the Tonle
Sap Lake (Cambodia) caused by water infrastructure development and climate
change in the Mekong Basin, J. Environ. Manag., 112, 53–66,
https://doi.org/10.1016/j.jenvman.2012.07.003, 2012.
Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., Van
Osch, F. P., Rietkerk, M., Chen, J., Gotsch, S., Tobón, C., Geissert, D.
R., Gómez-Tagle, A., Vache, K., and Dawson, T. E.: Ecohydrological
advances and applications in plant-water relations research: a review, J.
Plant Ecol., 4, 3–22, https://doi.org/10.1093/jpe/rtr005, 2011.
Baker, M. E. and Wiley, M. J.: Multiscale control of flooding and
riparian-forest composition in Lower Michigan, USA, Ecology, 90, 145–159,
https://doi.org/10.1890/07-1242.1, 2009.
Beck, H. E., Bruijnzeel, L. A., van Dijk, A. I. J. M., McVicar, T. R., Scatena, F. N., and Schellekens, J.: The impact of forest regeneration on streamflow in 12 mesoscale humid tropical catchments, Hydrol. Earth Syst. Sci., 17, 2613–2635, https://doi.org/10.5194/hess-17-2613-2013, 2013.
Birnbaum, Z. W.: On a use of the Mann-Whitney statistic. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 3.1: Contributions to the Theory of Statistics. The Regents of the University of California, Berkeley, USA, 13–17, 1956.
Bisantino, T., Bingner, R., Chouaib, W., Gentile, F., and Liuzzi, G. T.:
Estimation of runoff, peak discharge and sediment load at the event scale in
a medium-size Mediterranean watershed using the Annagnps model, Land Degrad.
Dev., 26, 340–355, https://doi.org/10.1002/ldr.2213, 2015.
Bockheim, J. G. and Gennadiyev, A. N.: Soil-factorial models and
earth-system science: A review, Geoderma, 159, 243–251,
https://doi.org/10.1016/j.geoderma.2010.09.005, 2010.
Boongaling, C. G. K., Faustino-Eslava, D. V., and Lansigan, F. P.: Modeling
land use change impacts on hydrology and the use of landscape metrics as
tools for watershed management: The case of an ungauged catchment in the
Philippines, Land Use Policy, 72, 116–128, https://doi.org/10.1016/j.landusepol.2017.12.042,
2008.
Borselli, L., Cassi, P., and Torri, D.: Prolegomena to sediment and flow
connectivity in the landscape: A GIS and field numerical assessment, CATENA,
75, 268–277, https://doi.org/10.1016/j.catena.2008.07.006, 2008.
Brooks, K. N., Ffolliott, P. F., and Magner, J. A.: Integrated Watershed
Management, Hydrology and the Management of Watersheds, John Wiley & Sons., Oxford, UK, https://doi.org/10.1002/9781118459751.part3, 2012.
Bruijnzeel, L. A., Mulligan, M., and Scatena, F. N.: Hydrometeorology of
tropical montane cloud forests: emerging patterns, Hydrol. Process., 25,
465–498, https://doi.org/10.1002/hyp.7974, 2011.
Buma, B. and Livneh, B.: Key landscape and biotic indicators of watersheds
sensitivity to forest disturbance identified using remote sensing and
historical hydrography data, Environ. Res. Lett., 12, 074028,
https://doi.org/10.1088/1748-9326/aa7091, 2017.
Bunn, S. E., Thoms, M. C., Hamilton, S. K., and Capon, S. J.: Flow
variability in dryland rivers: boom, bust and the bits in between, River
Res. Appl., 22, 179–186, https://doi.org/10.1002/rra.904, 2006.
Calder, I. R.: Blue revolution: Integrated land and water resource management, Routledge, Oxford, UK, 2005.
Chadli, K.: Estimation of soil loss using RUSLE model for Sebou watershed
(Morocco), Model. Earth Syst. Environ., 2, 51, https://doi.org/10.1007/s40808-016-0105-y,
2016.
Chang, M.: Forest hydrology: An introduction to water and forests, CRC
Press, Boca Raton, USA, 2012.
CMA: Dataset of daily climate data from Chinese surface stations for global exchange, China Meteorological Data Service Centre, Beijing, China, available at: http://data.cma.cn/ (last access: 20 June 2020), 2008.
Creed, I. F., Spargo, A. T., Jones, J. A., Buttle, J. M., Adams, M. B.,
Beall, F. D., Booth, E. G., Campbell, J. L., Clow, D., Elder, K., Green, M.
B., Grimm, N. B., Miniat, C., Ramlal, P., Saha, A., Sebestyen, S.,
Spittlehouse, D., Sterling, S., Williams, M. W., Winkler, R., and Yao, H.:
Changing forest water yields in response to climate warming: results from
long-term experimental watershed sites across North America, Glob. Change
Biol., 20, 3191–3208, https://doi.org/10.1111/gcb.12615, 2014.
Dai, A.: Characteristics and trends in various forms of the Palmer Drought
Severity Index during 1900–2008, J. Geophys. Res-Atmos., 116, D12115, https://doi.org/10.1029/2010JD015541, 2011.
de Paula, F. R., Ferraz, S. F. D. B., Gerhard, P., Vettorazzi, C. A., and
Ferreira, A.: Large woody debris input and its influence on channel
structure in agricultural lands of Southeast Brazil, Environ. Manage., 48,
750–763, https://doi.org/10.1007/s00267-011-9730-4, 2011.
de Sarrau, B., Clavel, T., Clerté, C., Carlin, F., Giniès, C., and
Nguyen-The, C.: Influence of anaerobiosis and low temperature on Bacillus
cereus growth, metabolism, and membrane properties, Appl. Environ. Microb.,
78, 1715, https://doi.org/10.1128/AEM.06410-11, 2012.
Desmet, P. J. J. and Govers, G.: A GIS procedure for automatically
calculating the USLE LS factor on topographically complex landscape units,
J. Soil Water Conserv., 51, 427–433, 1996.
Donohue, R. J., Roderick, M. L., and McVicar, T. R.: Can dynamic vegetation
information improve the accuracy of Budyko's hydrological model?, J.
Hydrol., 390, 23–34, https://doi.org/10.1016/j.jhydrol.2010.06.025, 2010.
Farley, K. A., Jobbagy, E. G., and Jackson, R. B.: Effects of afforestation
on water yield: a global synthesis with implications for policy, Glob.
Change Biol., 11, 1565–1576, https://doi.org/10.1111/j.1365-2486.2005.01011.x, 2005.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng,
Y., Li, Y., and Jiang, X.: Revegetation in China's Loess Plateau is
approaching sustainable water resource limits, Nat. Clim. Change, 6, 1019, https://doi.org/10.1038/NCLIMATE3092, 2016.
Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle,
G., Treydte, K., Zimmermann, N. E., Schleser, G. H., Ahlström, A.,
Ciais, P., Friedlingstein, P., Levis, S., Lomas, M., Sitch, S., Viovy, N.,
Andreu-Hayles, L., Bednarz, Z., Berninger, F., Boettger, T., D`Alessandro,
C. M., Daux, V., Filot, M., Grabner, M., Gutierrez, E., Haupt, M.,
Hilasvuori, E., Jungner, H., Kalela-Brundin, M., Krapiec, M., Leuenberger,
M., Loader, N. J., Marah, H., Masson-Delmotte, V., Pazdur, A., Pawelczyk,
S., Pierre, M., Planells, O., Pukiene, R., Reynolds-Henne, C. E., Rinne, K.
T., Saracino, A., Sonninen, E., Stievenard, M., Switsur, V. R., Szczepanek,
M., Szychowska-Krapiec, E., Todaro, L., Waterhouse, J. S., and Weigl, M.:
Water-use efficiency and transpiration across European forests during the
Anthropocene, Nat. Clim. Change, 5, 579–583, https://doi.org/10.1038/nclimate2614, 2015.
Geospatial Data Cloud: Digital elevation models, Computer Network Information Centre, Chinese Academy of Sciences, Beijing, China, available at: http://www.gscloud.cn/ (last access: 20 June 2020), 2010.
GLASS: Global LAnd Surface Satellite products, Beijing Normal University Data Center, Beijing, China, available at: http://glass-product.bnu.edu.cn/ (last access: 20 June 2020), 2014.
González-Sanpedro, M. C., Le Toan, T., Moreno, J., Kergoat, L., and
Rubio, E.: Seasonal variations of leaf area index of agricultural fields
retrieved from Landsat data, Remote Sens. Environ., 112, 810–824,
https://doi.org/10.1016/j.rse.2007.06.018, 2008.
Guswa, A. J., Tetzlaff, D., Selker, J. S., Carlyle-Moses, D. E., Boyer, E.
W., Bruen, M., Cayuela, C., Creed, I. F., van de Giesen, N., Grasso, D.,
Hannah, D. M., Hudson, J. E., Hudson, S. A., Iida, S., Jackson, R. B.,
Katul, G. G., Kumagai, T., Llorens, P., Lopes Ribeiro, F., Michalzik, B.,
Nanko, K., Oster, C., Pataki, D. E., Peters, C. A., Rinaldo, A., Sanchez
Carretero, D., Trifunovic, B., Zalewski, M., Haagsma, M., and Levia, D. F.:
Advancing ecohydrology in the 21st century: A convergence of opportunities,
Ecohydrology, 13, e2208, https://doi.org/10.1002/eco.2208, 2020.
Hardy, M. A.: Regression with dummy variables, Sage Publications,
Thousand Oaks, USA, 1993.
Hargreaves, G. and Samani, Z.: Reference crop evapotranspiration from
temperature, Appl. Eng. Agric., 1, 96–99,
https://doi.org/10.13031/2013.26773, 1985.
Hillel, D.: Soil and water: Physical principles and processes, Academic Press, Cambridge, Massachusetts, United States, 1974.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate
change, Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013.
Hou, Y., Zhang, M., Liu, S., Sun, P., Yin, L., Yang, T., Li, Y., Li, Q., and
Wei, X.: The hydrological impact of extreme weather-induced forest
disturbances in a tropical experimental watershed in South China, Forests,
9, 734, https://doi.org/10.3390/f9120734, 2018a.
Hou, Y., Zhang, M., Meng, Z., Liu, S., Sun, P., and Yang, T.: Assessing the
impact of forest change and climate variability on dry season runoff by an
improved single watershed approach: A comparative study in two large
watersheds, China, Forests, 9, 46, https://doi.org/10.3390/f9010046, 2018b.
Jackson, R. B., Jobbágy, E. G., Avissar, R., Roy, S. B., Barrett, D. J.,
Cook, C. W., Farley, K. A., le Maitre, D. C., McCarl, B. A., and Murray, B.
C.: Trading Water for Carbon with Biological Carbon Sequestration, Science,
310, 1944, https://doi.org/10.1126/science.1119282, 2005.
Jansen, J. D. and Nanson, G. C.: Functional relationships between
vegetation, channel morphology, and flow efficiency in an alluvial
(anabranching) river, J. Geophys. Res., 115, F04030, https://doi.org/10.1029/2010JF001657, 2010.
Jencso, K. G. and McGlynn, B. L.: Hierarchical controls on runoff
generation: Topographically driven hydrologic connectivity, geology, and
vegetation, Water Resour. Res., 47, W11527, https://doi.org/10.1029/2011WR010666, 2011.
Jenness, J. S.: Calculating landscape surface area from digital elevation
models, Wildlife Soc. B., 32, 829–839, https://doi.org/10.2193/0091-7648(2004)032[0829:Clsafd]2.0.Co;2, 2004.
Jones, J. A., Creed, I. F., Hatcher, K. L., Warren, R. J., Adams, M. B.,
Benson, M. H., Boose, E., Brown, W. A., Campbell, J. L., Covich, A., Clow,
D. W., Dahm, C. N., Elder, K., Ford, C. R., Grimm, N. B., Henshaw, D. L.,
Larson, K. L., Miles, E. S., Miles, K. M., Sebestyen, S. D., Spargo, A. T.,
Stone, A. B., Vose, J. M., and Williams, M. W.: Ecosystem processes and
human influences regulate streamflow response to climate change at long-term
ecological research sites, BioScience, 62, 390–404,
https://doi.org/10.1525/bio.2012.62.4.10, 2012.
Karlsen, R. H., Grabs, T., Bishop, K., Buffam, I., Laudon, H., and Seibert,
J.: Landscape controls on spatiotemporal discharge variability in a boreal
catchment, Water Resour. Res., 52, 6541–6556, https://doi.org/10.1002/2016WR019186, 2016.
Launiainen, S., Katul, G. G., Kolari, P., Lindroth, A., Lohila, A., Aurela,
M., Varlagin, A., Grelle, A., and Vesala, T.: Do the energy fluxes and
surface conductance of boreal coniferous forests in Europe scale with leaf
area?, Glob. Change Biol., 22, 4096–4113, https://doi.org/10.1111/gcb.13497, 2016.
Leu, J., Traore, S., Wang, Y., and Kan, C. E.: The effect of organic matter
amendment on soil water holding capacity change for irrigation water saving:
case study in Sahelian environment of Africa, Sci. Res. Essays, 5,
3564–3571, 2010.
Li, Q., Wei, X., Zhang, M., Liu, W., Fan, H., Zhou, G., Giles-Hansen, K.,
Liu, S., and Wang, Y.: Forest cover change and water yield in large forested
watersheds: A global synthetic assessment, Ecohydrology, 10, e1838, https://doi.org/10.1002/eco.1838, 2017.
Li, Q., Wei, X., Yang, X., Giles-Hansen, K., Zhang, M., and Liu, W.: Topography significantly influencing low flows in snow-dominated watersheds, Hydrol. Earth Syst. Sci., 22, 1947–1956, https://doi.org/10.5194/hess-22-1947-2018, 2018.
Li, Y., Piao, S., Li, L., Chen, A., Wang, X., Ciais, P., Huang, L., Lian,
X., Peng, S., Zeng, Z., Wang, K., and Zhou, L.: Divergent hydrological
response to large-scale afforestation and vegetation greening in China, Sci.
Adv., 4, eaar4182, https://doi.org/10.1126/sciadv.aar4182, 2018.
Liang, S., Zhao, X., Liu, S., Yuan, W., Cheng, X., Xiao, Z., Zhang, X., Liu,
Q., Cheng, J., Tang, H., Qu, Y., Bo, Y., Qu, Y., Ren, H., Yu, K., and
Townshend, J.: A long-term Global LAnd Surface Satellite (GLASS) data-set
for environmental studies, Int. J. Digit. Earth, 6, 5–33,
https://doi.org/10.1080/17538947.2013.805262, 2013.
Lin, Y. and Wei, X.: The impact of large-scale forest harvesting on
hydrology in the Willow watershed of Central British Columbia, J. Hydrol.,
359, 141–149, 2008.
LP DAAC: MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes DAAC, available at: https://lpdaac.usgs.gov/products/mcd12q1v006/ (last access: 20 June 2020), 2015.
Lyon, S. W., Nathanson, M., Spans, A., Grabs, T., Laudon, H., Temnerud, J.,
Bishop, K. H., and Seibert, J.: Specific discharge variability in a boreal
landscape, Water Resour. Res., 48, W08506, https://doi.org/10.1029/2011wr011073, 2012.
Maeda, E. E., Kim, H., Aragão, L. E. O. C., Famiglietti, J. S., and Oki,
T.: Disruption of hydroecological equilibrium in southwest Amazon mediated
by drought, Geophys. Res. Lett., 42, 7546–7553, https://doi.org/10.1002/2015GL065252, 2015.
McDonnell, J. J., Evaristo, J., Bladon, K. D., Buttle, J., Creed, I. F.,
Dymond, S. F., Grant, G., Iroume, A., Jackson, C. R., Jones, J. A., Maness,
T., McGuire, K. J., Scott, D. F., Segura, C., Sidle, R. C., and Tague, C.:
Water sustainability and watershed storage, Nat. Sustain., 1, 378–379,
https://doi.org/10.1038/s41893-018-0099-8, 2018.
McVicar, T. R., Roderick, M. L., Donohue, R. J., and Van Niel, T. G.: Less
bluster ahead? Ecohydrological implications of global trends of terrestrial
near-surface wind speeds, Ecohydrology, 5, 381–388, https://doi.org/10.1002/eco.1298, 2012.
Miara, A., Macknick, J. E., Vörösmarty, C. J., Tidwell, V. C.,
Newmark, R., and Fekete, B.: Climate and water resource change impacts and
adaptation potential for US power supply, Nat. Clim. Change, 7, 793–798,
https://doi.org/10.1038/nclimate3417, 2017.
Moore, I. D., Grayson, R. B., and Ladson, A. R.: Digital Terrain Modeling –
A Review of Hydrological, Geomorphological, and Biological Applications,
Hydrol. Process., 5, 3–30, https://doi.org/10.1002/hyp.3360050103, 1991.
Moore, R. D. and Wondzell, S. M.: Physical hydrology and the effects of
forest harvesting in the Pacific Northwest: A review, J. Am. Water Resour.
As., 41, 763–784, 2005.
Mukundan, R., Radcliffe, D. E., and Risse, L. M.: Spatial resolution of soil
data and channel erosion effects on SWAT model predictions of flow and
sediment, J. Soil Water Conserv., 65, 92–104, 2010.
Newman, B. D., Wilcox, B. P., Archer, S. R., Breshears, D. D., Dahm, C. N.,
Duffy, C. J., McDowell, N. G., Phillips, F. M., Scanlon, B. R., and Vivoni,
E. R.: Ecohydrology of water-limited environments: A scientific vision,
Water Resour. Res., 42, W06302, https://doi.org/10.1029/2005WR004141, 2006.
Nippgen, F., McGlynn, B. L., Marshall, L. A., and Emanuel, R. E.: Landscape
structure and climate influences on hydrologic response, Water Resour. Res.,
47, W12528, https://doi.org/10.1029/2011WR011161, 2011.
Oppel, H. and Schumann, A. H.: Machine learning based identification of dominant
controls on runoff dynamics, Hydrol. Process. 34, 2450–2465,
https://doi.org/10.1002/hyp.13740, 2020
Palmer, M. and Ruhi, A.: Linkages between flow regime, biota, and ecosystem
processes: Implications for river restoration, Science, 365, eaaw2087,
https://doi.org/10.1126/science.aaw2087, 2019.
Park, S. J., McSweeney, K., and Lowery, B.: Identification of the spatial
distribution of soils using a process-based terrain characterization,
Geoderma, 103, 249–272, https://doi.org/10.1016/S0016-7061(01)00042-8, 2001.
Price, K.: Effects of watershed topography, soils, land use, and climate on
baseflow hydrology in humid regions: A review, Prog. Phys. Geog., 35,
465–492, https://doi.org/10.1177/0309133311402714, 2011.
Rieu, M. and Sposito, G.: Fractal fragmentation, soil porosity, and soil
water properties: I. Theory, Soil Sci. Soc. Am. J., 55, 1231–1238,
https://doi.org/10.2136/sssaj1991.03615995005500050006x, 1991.
Salve, R., Sudderth, E. A., St. Clair, S. B., and Torn, M. S.: Effect of
grassland vegetation type on the responses of hydrological processes to
seasonal precipitation patterns, J. Hydrol., 410, 51–61,
https://doi.org/10.1016/j.jhydrol.2011.09.003, 2011.
Schoonover, J. E. and Crim, J. F.: An Introduction to Soil Concepts and the
Role of Soils in Watershed Management, J. Contemp. Water Res. Educ, 154,
21–47, https://doi.org/10.1111/j.1936-704X.2015.03186.x, 2015.
Scown, M. W., Thoms, M. C., and De Jager, N. R.: Measuring floodplain
spatial patterns using continuous surface metrics at multiple scales,
Geomorphology, 245, 87–101, https://doi.org/10.1016/j.geomorph.2015.05.026, 2015.
Simonit, S. and Perrings, C.: Reply to Ogden and Stallard: Phenomenological
runoff models in the Panama Canal watershed, P. Natl. Acad. Sci. USA, 110,
E5038, https://doi.org/10.1073/pnas.1318590111, 2013.
Singh, R., Wagener, T., Crane, R., Mann, M. E., and Ning, L.: A
vulnerability driven approach to identify adverse climate and land use
change combinations for critical hydrologic indicator thresholds:
Application to a watershed in Pennsylvania, USA, Water Resour. Res., 50,
3409–3427, https://doi.org/10.1002/2013WR014988, 2014.
Smakhtin, V. U.: Low flow hydrology: a review, J. Hydrol., 240, 147–186,
https://doi.org/10.1016/S0022-1694(00)00340-1, 2001.
Srivastava, A., Babu, G. L. S., and Haldar, S.: Influence of spatial
variability of permeability property on steady state seepage flow and slope
stability analysis, Eng. Geol., 110, 93–101,
https://doi.org/10.1016/j.enggeo.2009.11.006, 2010.
Sulis, M., Meyerhoff, S. B., Paniconi, C., Maxwell, R. M., Putti, M., and
Kollet, S. J.: A comparison of two physics-based numerical models for
simulating surface water-groundwater interactions, Adv. Water Resour., 33,
456–467, https://doi.org/10.1016/j.advwatres.2010.01.010, 2010.
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.:
Hierarchical mapping of annual global land cover 2001 to present: The MODIS
Collection 6 Land Cover product, Remote Sens. Environ., 222, 183–194,
https://doi.org/10.1016/j.rse.2018.12.013, 2019.
Sun, G., Zhou, G. Y., Zhang, Z. Q., Wei, X. H., McNulty, S. G., and Vose, J.
M.: Potential water yield reduction due to forestation across China, J.
Hydrol., 328, 548–558, https://doi.org/10.1016/j.jhydrol.2005.12.013, 2006.
Sun, G., Amatya, D. M., and McNulty, S. G.: Forest hydrology, in Chapter 85: Part 7 Systems Hydrology, Handbook of Applied Hydrology, edited by: Sing, V. V., 85-1, 85-8, 2016.
Teutschbein, C., Grabs, T., Laudon, H., Karlsen, R. H., and Bishop, K.:
Simulating streamflow in ungauged basins under a changing climate: The
importance of landscape characteristics, J. Hydrol., 561, 160–178,
https://doi.org/10.1016/j.jhydrol.2018.03.060, 2018.
Toledo-Aceves, T., Meave, J. A., González-Espinosa, M., and
Ramírez-Marcial, N.: Tropical montane cloud forests: Current threats
and opportunities for their conservation and sustainable management in
Mexico, J. Environ. Manage., 92, 974–981,
https://doi.org/10.1016/j.jenvman.2010.11.007, 2011.
van Dijk, A. I. J. M., Peña-Arancibia, J. L., and (Sampurno) Bruijnzeel, L. A.: Land cover and water yield: inference problems when comparing catchments with mixed land cover, Hydrol. Earth Syst. Sci., 16, 3461–3473, https://doi.org/10.5194/hess-16-3461-2012, 2012.
Van Dover, C. L. and Lutz, R. A.: Experimental ecology at deep-sea
hydrothermal vents: a perspective, J. Exp. Mar. Biol. Ecol., 300, 273–307,
https://doi.org/10.1016/j.jembe.2003.12.024, 2004.
Verrelst, J., van der Tol, C., Magnani, F., Sabater, N., Rivera, J. P.,
Mohammed, G., and Moreno, J.: Evaluating the predictive power of sun-induced
chlorophyll fluorescence to estimate net photosynthesis of vegetation
canopies: A SCOPE modeling study, Remote Sens. Environ., 176, 139–151,
https://doi.org/10.1016/j.rse.2016.01.018, 2016.
Vose, J. M., Sun, G., Ford, C. R., Bredemeier, M., Otsuki, K., Wei, X.,
Zhang, Z., and Zhang, L.: Forest ecohydrological research in the 21st
century: what are the critical needs?, Ecohydrology, 4, 146–158, 2011.
Warfe, D. M., Pettit, N. E., Davies, P. M., Pusey, B. J., Hamilton, S. K.,
Kennard, M. J., Townsend, S. A., Bayliss, P., Ward, D. P., Douglas, M. M.,
Burford, M. A., Finn, M., Bunn, S. E., and Halliday, I. A.: The “wet–dry”
in the wet-dry tropics drives river ecosystem structure and processes in
northern Australia, Freshwater Biol., 56, 2169–2195,
https://doi.org/10.1111/j.1365-2427.2011.02660.x, 2011.
Wei, X., Sun, G., Liu, S., Jiang, H., Zhou, G., and Dai, L.: The
forest-streamflow relationship in China: A 40-year retrospect, J. Am. Water
Resour. As., 44, 1076–1085, https://doi.org/10.1111/j.1752-1688.2008.00237.x, 2008.
Wei, X., Li, Q., Zhang, M., Giles-Hansen, K., Liu, W., Fan, H., Wang, Y.,
Zhou, G., Piao, S., and Liu, S.: Vegetation cover-another dominant factor in
determining global water resources in forested regions, Glob. Change Biol.,
24, 786–795, https://doi.org/10.1111/gcb.13983, 2018.
Wieder, W.: Regridded Harmonized World Soil Database v1.2, ORNL Distributed
Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1247, 2014.
Winkler, R., Boon, S., Zimonick, B., and Baleshta, K.: Assessing the effects
of post-pine beetle forest litter on snow albedo, Hydrol. Process., 24,
803–812, https://doi.org/10.1002/hyp.7648, 2010.
Woods, R.: The relative roles of climate, soil, vegetation and topography in
determining seasonal and long-term catchment dynamics, Adv. Water Resour.,
30, 1061–1061, https://doi.org/10.1016/j.advwatres.2006.10.010, 2007.
Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., and Song, J.:
Use of General Regression Neural Networks for Generating the GLASS Leaf Area
Index Product From Time-Series MODIS Surface Reflectance, IEEE T. Geosci.
Remote Sens., 52, 209–223, https://doi.org/10.1109/TGRS.2013.2237780, 2014.
Yang, D., Sun, F., Liu, Z., Cong, Z., Ni, G., and Lei, Z.: Analyzing spatial
and temporal variability of annual water-energy balance in nonhumid regions
of China using the Budyko hypothesis, Water Resour. Res., 43, W04426,
https://doi.org/10.1029/2006WR005224, 2007.
Yokoyama, R., Shirasawa, M., and Pike, R. J.: Visualizing topography by
openness: a new application of image processing to digital elevation models,
Photogramm. Eng. Rem. S., 68, 257–266, 2002.
Zeng, C., Yang, L., Zhu, A., Rossiter, D., Liu, J., Liu, J., Qin, C., and
Wang, D.: Mapping soil organic matter concentration at different scales
using a mixed geographically weighted regression method, Geoderma, 281,
69–82, https://doi.org/10.1016/j.geoderma.2016.06.033, 2016.
Zhang, L., Dawes, W. R., and Walker, G. R.: Response of mean annual
evapotranspiration to vegetation changes at catchment scale, Water Resour.
Res., 37, 701–708, https://doi.org/10.1029/2000wr900325, 2001.
Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and
Briggs, P. R.: A rational function approach for estimating mean annual
evapotranspiration, Water Resour. Res., 40, W02502, https://doi.org/10.1029/2003WR002710, 2004.
Zhang, M. and Wei, X.: The effects of cumulative forest disturbance on streamflow in a large watershed in the central interior of British Columbia, Canada, Hydrol. Earth Syst. Sci., 16, 2021–2034, https://doi.org/10.5194/hess-16-2021-2012, 2012.
Zhang, M., Ren, Q., Wei, X., Wang, J., Yang, X., and Jiang, Z.: Climate
change, glacier melting and streamflow in the Niyang River Basin, Southeast
Tibet, China, Ecohydrology, 4, 288–298, https://doi.org/10.1002/eco.206, 2011.
Zhang, M., Wei, X., Sun, P., and Liu, S.: The effect of forest harvesting
and climatic variability on runoff in a large watershed: The case study in
the Upper Minjiang River of Yangtze River basin, J. Hydrol., 464, 1–11,
https://doi.org/10.1016/j.jhydrol.2012.05.050, 2012.
Zhang, M., Liu, N., Harper, R., Li, Q., Liu, K., Wei, X., Ning, D., Hou,
Y., and Liu, S.: A global review on hydrological responses to forest change
across multiple spatial scales: Importance of scale, climate, forest type
and hydrological regime, J. Hydrol., 546, 44–59,
https://doi.org/10.1016/j.jhydrol.2016.12.040, 2017.
Zhao, Y., Peth, S., Wang, X., Lin, H., and Horn, R.: Controls of surface
soil moisture spatial patterns and their temporal stability in a semi-arid
steppe, Hydrol. Process., 24, 2507–2519, https://doi.org/10.1002/hyp.7665, 2010.
Zhou, G., Wei, X., Chen, X., Zhou, P., Liu, X., Xiao, Y., Sun, G., Scott, D.
F., Zhou, S., Han, L., and Su, Y.: Global pattern for the effect of climate
and land cover on water yield, Nat. Commun., 6, 5918, https://doi.org/10.1038/Ncomms6918, 2015.
Zhou, Z. and Li, J.: The correlation analysis on the landscape pattern
index and hydrological processes in the Yanhe watershed, China, J. Hydrol.,
524, 417–426, https://doi.org/10.1016/j.jhydrol.2015.02.028, 2015.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(4846 KB) - Full-text XML
- Corrigendum
-
Supplement
(3178 KB) - BibTeX
- EndNote
Short summary
Ecohydrological sensitivity, defined as the response intensity of streamflow to vegetation change, indicates the hydrological sensitivity to vegetation change. The study revealed seasonal ecohydrological sensitivities were highly variable, depending on climate condition and watershed attributes. Dry season ecohydrological sensitivity was mostly determined by topography, soil and vegetation, while wet season ecohydrological sensitivity was mainly controlled by soil, landscape and vegetation.
Ecohydrological sensitivity, defined as the response intensity of streamflow to vegetation...