Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1447-2021
https://doi.org/10.5194/hess-25-1447-2021
Research article
 | 
25 Mar 2021
Research article |  | 25 Mar 2021

Quantification of ecohydrological sensitivities and their influencing factors at the seasonal scale

Yiping Hou, Mingfang Zhang, Xiaohua Wei, Shirong Liu, Qiang Li, Tijiu Cai, Wenfei Liu, Runqi Zhao, and Xiangzhuo Liu

Related authors

Seasonal shifts in depth-to-water uptake by young thinned and overstocked lodgepole pine (Pinus contorta) forests under drought conditions in the Okanagan Valley, British Columbia, Canada
Emory C. Ellis, Robert D. Guy, and Xiaohua A. Wei
Hydrol. Earth Syst. Sci., 28, 4667–4684, https://doi.org/10.5194/hess-28-4667-2024,https://doi.org/10.5194/hess-28-4667-2024, 2024
Short summary
A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT
Shengli Tao, Zurui Ao, Jean-Pierre Wigneron, Sassan Saatchi, Philippe Ciais, Jérôme Chave, Thuy Le Toan, Pierre-Louis Frison, Xiaomei Hu, Chi Chen, Lei Fan, Mengjia Wang, Jiangling Zhu, Xia Zhao, Xiaojun Li, Xiangzhuo Liu, Yanjun Su, Tianyu Hu, Qinghua Guo, Zhiheng Wang, Zhiyao Tang, Yi Y. Liu, and Jingyun Fang
Earth Syst. Sci. Data, 15, 1577–1596, https://doi.org/10.5194/essd-15-1577-2023,https://doi.org/10.5194/essd-15-1577-2023, 2023
Short summary

Cited articles

Ambroise, B., Beven, K., and Freer, J.: Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrological similarity, Water Resour. Res., 32, 2135–2145, 1996. 
Arias, M. E., Cochrane, T. A., Piman, T., Kummu, M., Caruso, B. S., and Killeen, T. J.: Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin, J. Environ. Manag., 112, 53–66, https://doi.org/10.1016/j.jenvman.2012.07.003, 2012. 
Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., Van Osch, F. P., Rietkerk, M., Chen, J., Gotsch, S., Tobón, C., Geissert, D. R., Gómez-Tagle, A., Vache, K., and Dawson, T. E.: Ecohydrological advances and applications in plant-water relations research: a review, J. Plant Ecol., 4, 3–22, https://doi.org/10.1093/jpe/rtr005, 2011. 
Baker, M. E. and Wiley, M. J.: Multiscale control of flooding and riparian-forest composition in Lower Michigan, USA, Ecology, 90, 145–159, https://doi.org/10.1890/07-1242.1, 2009. 
Beck, H. E., Bruijnzeel, L. A., van Dijk, A. I. J. M., McVicar, T. R., Scatena, F. N., and Schellekens, J.: The impact of forest regeneration on streamflow in 12 mesoscale humid tropical catchments, Hydrol. Earth Syst. Sci., 17, 2613–2635, https://doi.org/10.5194/hess-17-2613-2013, 2013. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Ecohydrological sensitivity, defined as the response intensity of streamflow to vegetation change, indicates the hydrological sensitivity to vegetation change. The study revealed seasonal ecohydrological sensitivities were highly variable, depending on climate condition and watershed attributes. Dry season ecohydrological sensitivity was mostly determined by topography, soil and vegetation, while wet season ecohydrological sensitivity was mainly controlled by soil, landscape and vegetation.
Share