Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1411-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-1411-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis
Xiangyu Luan
Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
Related authors
No articles found.
Faranak Tootoonchi, Göran Bergkvist, and Giulia Vico
EGUsphere, https://doi.org/10.5194/egusphere-2025-1982, https://doi.org/10.5194/egusphere-2025-1982, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In Northern Europe, current temperatures limit the time available for soil preparation and crop growth. Warming may extend the growing season and improve growing conditions, but higher temperatures also increase evapotranspiration and raises the risk of water stress. We evaluated the role of various climatic conditions on crop yield fluctuations in Sweden over 1965–2020 and found that unless Sweden receives more rain in the growing season, crop yields will likely decrease with warming climates.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Stefano Manzoni, Simone Fatichi, Xue Feng, Gabriel G. Katul, Danielle Way, and Giulia Vico
Biogeosciences, 19, 4387–4414, https://doi.org/10.5194/bg-19-4387-2022, https://doi.org/10.5194/bg-19-4387-2022, 2022
Short summary
Short summary
Increasing atmospheric carbon dioxide (CO2) causes leaves to close their stomata (through which water evaporates) but also promotes leaf growth. Even if individual leaves save water, how much will be consumed by a whole plant with possibly more leaves? Using different mathematical models, we show that plant stands that are not very dense and can grow more leaves will benefit from higher CO2 by photosynthesizing more while adjusting their stomata to consume similar amounts of water.
Cited articles
Ali, M., Jensen, C., Mogensen, V., and Bahrun, A.: Drought adaptation of field grown
wheat in relation to soil physical conditions, Plant Soil, 208, 149–159,
https://doi.org/10.1023/A:1004535819197, 1999.
Alizadeh, M. R., Adamowski, J., Nikoo, M. R., AghaKouchak, A., Dennison, P., and Sadegh,
M.: A century of observations reveals increasing likelihood of continental-scale compound dry-hot
extremes, Sci. Adv., 6, eaaz4571,
https://doi.org/10.1126/sciadv.aaz4571, 2020.
Amthor, J. S.: Scaling CO2-photosynthesis relationships from the leaf to the
canopy, Photosynth. Res., 39, 321–350, https://doi.org/10.1007/bf00014590, 1994.
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D.,
Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D.,
Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De
Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A.,
Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A. K., Müller, C.,
Naresh Kumar, S., Nendel, C., O'Leary, G., Olesen, J. E., Palosuo, T., Priesack, E., Eyshi Rezaei,
E., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stöckle, C., Stratonovitch, P., Streck, T.,
Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., and Zhu,
Y.: Rising temperatures reduce global wheat production, Nat. Clim. Change, 5, 143–147,
https://doi.org/10.1038/nclimate2470, 2015.
Balota, M., Payne, W. A., Evett, S. R., and Peters, T. R.: Morphological and
physiological traits associated with canopy temperature depression in three closely related wheat
lines, Crop Sci., 48, 1897–1910, https://doi.org/10.2135/cropsci2007.06.0317, 2008.
Benth, F. E. and Benth, J. Š.: The volatility of temperature and pricing of weather
derivatives, Quant. Financ., 7, 553–561, https://doi.org/10.1080/14697680601155334, 2007.
Blum, A.: Crop responses to drought and the interpretation of adaptation, in: Drought
tolerance in higher plants: Genetical, physiological and molecular biological analysis, Springer,
New York City, USA, 57–70, 1996.
Bogard, M., Jourdan, M., Allard, V., Martre, P., Perretant, M. R., Ravel, C., Heumez,
E., Orford, S., Snape, J., and Griffiths, S.: Anthesis date mainly explained correlations between
post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat
population segregating for flowering time QTLs, J. Exp. Bot., 62, 3621–3636,
https://doi.org/10.1093/jxb/err061, 2011.
Bonan, G.: Climate change and terrestrial ecosystem modeling, Cambridge University
Press, Cambridge, UK, xx+438 pp., 2019.
Buckley, T. N., Sack, L., and Farquhar, G. D.: Optimal plant water economy, Plant Cell
Environ., 40, 881–896, https://doi.org/10.1111/pce.12823, 2017.
Campbell, G. S. and Norman, J. M.: An introduction to environmental biophysics,
Springer, New York City, USA, xv+286 pp., 1998.
Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., and Chhetri,
N.: A meta-analysis of crop yield under climate change and adaptation, Nat. Clim. Change, 4,
287–291, https://doi.org/10.1038/Nclimate2153, 2014.
Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B., and Mittler, R.: Meta-analysis
of drought and heat stress combination impact on crop yield and yield components,
Physiol. Plantarum, 171, 66–76, https://doi.org/10.1111/ppl.13203, 2021.
Daliakopoulos, I., Tsanis, I., Koutroulis, A., Kourgialas, N., Varouchakis, A.,
Karatzas, G., and Ritsema, C.: The threat of soil salinity: A European scale review, Sci. Total
Environ., 573, 727–739, https://doi.org/10.1016/j.scitotenv.2016.08.177, 2016.
Daryanto, S., Wang, L., and Jacinthe, P.-A.: Global synthesis of drought effects on
cereal, legume, tuber and root crops production: A review, Agr. Water Manage., 179, 18–33,
https://doi.org/10.1016/j.agwat.2016.04.022, 2017.
Deryng, D., Sacks, W. J., Barford, C. C., and Ramankutty, N.: Simulating the effects of
climate and agricultural management practices on global crop yield, Global Biogeochem. Cy.,
25, GB2006, https://doi.org/10.1029/2009GB003765, 2011.
Ehrler, W., Idso, S., Jackson, R. D., and Reginato, R.: Wheat canopy temperature:
Relation to plant water potential, Agron. J., 70, 251–256,
https://doi.org/10.2134/agronj1978.00021962007000020010x, 1978.
Eller, C. B., Rowland, L., Mencuccini, M., Rosas, T., Williams, K., Harper, A., Medlyn,
B. E., Wagner, Y., Klein, T., Teodoro, G. S., Oliveira, R. S., Matos, I. S., Rosado, B. H. P.,
Fuchs, K., Wohlfahrt, G., Montagnani, L., Meir, P., Sitch, S., and Cox, P. M.: Stomatal
optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation
responses to climate, New Phytol., 226, 1622–1637, https://doi.org/10.1111/nph.16419, 2020.
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S.,
Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., and Huang, J.: Crop
production under drought and heat stress: Plant responses and management options, Front. Plant
Sci., 8, 1147, https://doi.org/10.3389/fpls.2017.01147, 2017.
Fang, Q. X., Ma, L., Flerchinger, G. N., Qi, Z., Ahuja, L. R., Xing, H. T., Li, J., and
Yu, Q.: Modeling evapotranspiration and energy balance in a wheat–maize cropping system using the
revised RZ-SHAW model, Agr. Forest Meteorol., 194, 218–229,
https://doi.org/10.1016/j.agrformet.2014.04.009, 2014.
Farquhar, G., von Caemmerer, S., and Berry, J.: A biochemical model of photosynthetic
CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, https://doi.org/10.1007/BF00386231,
1980.
Gabaldón-Leal, C., Webber, H., Otegui, M., Slafer, G., Ordóñez, R., Gaiser,
T., Lorite, I., Ruiz-Ramos, M., and Ewert, F.: Modelling the impact of heat stress on maize yield
formation, Field Crop Res., 198, 226–237, https://doi.org/10.1016/j.fcr.2016.08.013, 2016.
Graß, R., Böttcher, U., Lilienthal, H., Wilde, P., and Kage, H.: Is canopy
temperature suitable for high throughput field phenotyping of drought resistance of winter rye in
temperate climate?, Eur. J. Agron., 120, 126104, https://doi.org/10.1016/j.eja.2020.126104, 2020.
Hatfield, J. L. and Prueger, J. H.: Temperature extremes: Effect on plant growth and
development, Weather Clim. Extremes, 10, 4–10, https://doi.org/10.1016/j.wace.2015.08.001, 2015.
Howell, T., Musick, J., and Tolk, J.: Canopy temperature of irrigated winter wheat,
T. ASAE, 29, 1692–1698, https://doi.org/10.13031/2013.30375, 1986.
Hsiao, T. C.: Plant responses to water stress, Ann. Rev. Plant Physio., 24, 519–570,
https://doi.org/10.1146/annurev.pp.24.060173.002511, 1973.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, UK, and New York, NY, USA, 1535, 2013.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and
Schulze, E. D.: A global analysis of root distributions for terrestrial biomes, Oecologia, 108,
389–411, https://doi.org/10.1007/BF00333714, 1996.
Jarvis, P. G. and McNaughton, K. G.: Stomatal control of transpiration: Scaling up from
leaf to region, in: Advances in Ecological Research, edited by: MacFadyen, A. and Ford, E. D.,
Academic Press, Cambridge, USA, 1–49, 1986.
Jensen, H., Svendsen, H., Jensen, S., and Mogensen, V.: Canopy-air temperature of crops
grown under different irrigation regimes in a temperate humid climate, Irrigation Sci., 11,
181–188, https://doi.org/10.1007/BF00189456, 1990.
Kalapos, T., van den Boogaard, R., and Lambers, H.: Effect of soil drying on growth,
biomass allocation and leaf gas exchange of two annual grass species, Plant Soil, 185, 137–149,
https://doi.org/10.1007/BF02257570, 1996.
Kimball, B. A., White, J. W., Wall, G., and Ottman, M. J.: Wheat responses to a wide range of temperatures: The hot serial cereal experiment, in: Improving Modeling Tools to Assess Climate Change Effects on Crop Response, edited by: Hatfield, J. and Fleisher, D., ASA, CSSA, SSSA, 33–44, https://doi.org/10.2134/advagricsystmodel2137.2014.0014, 2016.
Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants in
water-controlled ecosystems: active role in hydrologic processes and response to water stress –
II. Probabilistic soil moisture dynamics, Adv. Water Resour., 24, 707–723,
https://doi.org/10.1016/s0309-1708(01)00005-7, 2001.
Lawlor, D. W. and Tezara, W.: Causes of decreased photosynthetic rate and metabolic
capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of
processes, Ann. Bot.-London, 103, 561–579, https://doi.org/10.1093/aob/mcn244, 2009.
Li, X. and Troy, T. J.: Changes in rainfed and irrigated crop yield response to climate
in the western US, Environ. Res. Lett., 13, 064031, https://doi.org/10.1088/1748-9326/aac4b1, 2018.
Lobell, D. B., Bonfils, C. J., Kueppers, L. M., and Snyder, M. A.: Irrigation cooling
effect on temperature and heat index extremes, Geophys. Res. Lett., 35, L09705, https://doi.org/10.1029/2008GL034145, 2008a.
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., and
Naylor, R. L.: Prioritizing Climate Change Adaptation Needs for Food Security in 2030, Science,
319, 607–610, https://doi.org/10.1126/science.1152339, 2008b.
Lobell, D. B., Sibley, A., and Ortiz-Monasterio, J. I.: Extreme heat effects on wheat
senescence in India, Nat. Clim. Change, 2, 186–189, https://doi.org/10.1038/nclimate1356, 2012.
Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M.,
and Hammer, G. L.: Greater Sensitivity to Drought Accompanies Maize Yield Increase in the
U.S. Midwest, Science, 344, 516–519, https://doi.org/10.1126/science.1251423, 2014.
Mahrookashani, A., Siebert, S., Huging, H., and Ewert, F.: Independent and combined
effects of high temperature and drought stress around anthesis on wheat, J. Agron. Crop Sci., 203,
453–463, https://doi.org/10.1111/jac.12218, 2017.
Mäkelä, A., Berninger, F., and Hari, P.: Optimal control of gas exchange during
drought: Theoretical analysis, Ann. Bot.-London, 77, 461–467, https://doi.org/10.1006/anbo.1996.0056, 1996.
Mäkinen, H., Kaseva, J., Trnka, M., Balek, J., Kersebaum, K. C., Nendel, C., Gobin, A., Olesen, J. E., Bindi, M., Ferrise, R., Moriondo, M., Rodríguez, A., Ruiz-Ramos, M., Takáč, J., Bezák, P., Ventrella, D., Ruget, F., Capellades, G., and Kahiluoto, H.: Sensitivity of European wheat to extreme weather, Field Crop. Res., 222, 209–217, https://doi.org/10.1016/j.fcr.2017.11.008, 2018.
Manzoni, S., Vico, G., Katul, G., Fay, P. A., Polley, W., Palmroth, S., and Porporato,
A.: Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis
across plant functional types and climates, Funct. Ecol., 25, 456–467,
https://doi.org/10.1111/j.1365-2435.2010.01822.x, 2011.
Manzoni, S., Vico, G., Porporato, A., and Katul, G.: Biological constraints on water
transport in the soil–plant–atmosphere system, Adv. Water Resour., 51, 292–304,
https://doi.org/10.1016/j.advwatres.2012.03.016, 2013.
Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.,
Pirani, A., Moufouma-Okia, W., Péan, C., and Pidcock, R.: Global warming of 1.5 ∘C:
An IPCC special report on the impacts of global warming of 1.5 ∘C above pre-industrial
levels and related global greenhouse gas emission pathways, in the context of strengthening the
global response to the threat of climate change, sustainable development, and efforts to eradicate
poverty, World Meteorological Organization Geneva, Switzerland, 2018.
Michaletz, S. T., Weiser, M. D., McDowell, N. G., Zhou, J., Kaspari, M., Helliker,
B. R., and Enquist, B. J.: The energetic and carbon economic origins of leaf thermoregulation,
Nat. Plants, 2, 16129, https://doi.org/10.1038/nplants.2016.129, 2016.
Milly, P.: Climate, soil water storage, and the average annual water balance, Water
Resour. Res., 30, 2143–2156, https://doi.org/10.1029/94WR00586, 1994.
Mon, J., Bronson, K. F., Hunsaker, D. J., Thorp, K. R., White, J. W., and French,
A. N.: Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy
temperature, and nitrogen use efficiency in overhead sprinkler-irrigated durum wheat, Field Crop
Res., 191, 54–65, https://doi.org/10.1016/j.fcr.2016.02.011, 2016.
Moore, F. C. and Lobell, D. B.: The fingerprint of climate trends on European crop
yields, P. Natl. Acad. Sci. USA, 112, 2670–2675, https://doi.org/10.1073/pnas.1409606112, 2015.
Mourtzinis, S., Specht, J. E., and Conley, S. P.: Defining optimal soybean sowing dates
across the US, Sci. Rep.-UK, 9, 2800, https://doi.org/10.1038/s41598-019-38971-3, 2019.
Munns, R., James, R. A., Sirault, X. R. R., Furbank, R. T., and Jones, H. G.: New
phenotyping methods for screening wheat and barley for beneficial responses to water deficit,
J. Exp. Bot., 61, 3499–3507, https://doi.org/10.1093/jxb/erq199, 2010.
Neukam, D., Ahrends, H., Luig, A., Manderscheid, R., and Kage, H.: Integrating wheat
canopy temperatures in crop system models, Agronomy, 6, https://doi.org/10.3390/agronomy6010007, 2016.
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C.,
Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., and Phillips,
R. P.: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes,
Nat. Clim. Change, 6, 1023, https://doi.org/10.1038/nclimate3114, 2016.
Pinter, P. J., Zipoli, G., Reginato, R. J., Jackson, R. D., Idso, S. B., and Hohman,
J. P.: Canopy temperature as an indicator of differential water use and yield performance among
wheat cultivars, Agr. Water Manage., 18, 35–48, https://doi.org/10.1016/0378-3774(90)90034-V, 1990.
Porter, J. R. and Gawith, M.: Temperatures and the growth and development of wheat: a
review, Eur. J. Agron., 10, 23–36, https://doi.org/10.1016/s1161-0301(98)00047-1, 1999.
Prasad, P. V. V., Pisipati, S. R., Momcilovic, I., and Ristic, Z.: Independent and
combined effects of high temperature and drought stress during grain filling on plant yield and
chloroplast EF-Tu expression in spring wheat, J. Agron. Crop Sci., 197, 430–441,
https://doi.org/10.1111/j.1439-037X.2011.00477.x, 2011.
Ram, F.: More uneven distributions overturn benefits of higher precipitation for crop
yields, Environ. Res. Lett., 11, 024004, https://doi.org/10.1088/1748-9326/11/2/024004, 2016.
Rashid, A., Stark, J. C., Tanveer, A., and Mustafa, T.: Use of canopy temperature
measurements as a screening tool for drought tolerance in spring wheat, J. Agron. Crop Sci., 182,
231–238, https://doi.org/10.1046/j.1439-037x.1999.00335.x, 1999.
Ray, D. K., Gerber, J. S., MacDonald, G. K., and West, P. C.: Climate variation
explains a third of global crop yield variability, Nat. Commun., 6, 5989,
https://doi.org/10.1038/ncomms6989, 2015.
Reynolds, M., Balota, M., Delgado, M., Amani, I., and Fischer, R.: Physiological and
morphological traits associated with spring wheat yield under hot, irrigated conditions,
Funct. Plant Biol., 21, 717–730, https://doi.org/10.1071/PP9940717, 1994.
Rezaei, E. E., Webber, H., Gaiser, T., Naab, J., and Ewert, F.: Heat stress in cereals:
mechanisms and modelling, Eur. J. Agron., 64, 98–113, https://doi.org/10.1016/j.eja.2014.10.003, 2015.
Rodriguez-Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., and Cox, D.: Probabilistic
modelling of water balance at a point: the role of climate, soil and vegetation,
P. Roy. Soc. Lond. A Mat., 455, 3789–3805, https://doi.org/10.1098/rspa.1999.0477, 1999.
Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell'Angelo, J., and D'Odorico, P.: Global
agricultural economic water scarcity, Sci. Adv., 6, eaaz6031, https://doi.org/10.1126/sciadv.aaz6031, 2020.
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Muller, C., Arneth, A., Boote,
K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid,
E., Stehfest, E., Yang, H., and Jones, J. W.: Assessing agricultural risks of climate change in
the 21st century in a global gridded crop model intercomparison, P. Natl. Acad. Sci. USA, 111,
3268–3273, https://doi.org/10.1073/pnas.1222463110, 2014.
Rötter, R. P., Appiah, M., Fichtler, E., Kersebaum, K. C., Trnka, M., and Hoffmann,
M. P.: Linking modelling and experimentation to better capture crop impacts of agroclimatic
extremes–A review, Field Crop Res., 221, 142–156, https://doi.org/10.1016/j.fcr.2018.02.023, 2018.
Sacks, W. J., Cook, B. I., Buenning, N., Levis, S., and Helkowski, J. H.: Effects of
global irrigation on the near-surface climate, Clim. Dynam., 33, 159–175,
https://doi.org/10.1007/s00382-008-0445-z, 2009.
Sadras, V. O. and Milroy, S. P.: Soil-water thresholds for the responses of leaf
expansion and gas exchange: A review, Field Crop Res., 47, 253–266,
https://doi.org/10.1016/0378-4290(96)00014-7, 1996.
Saini, H. S. and Aspinall, D.: Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature, Ann. Bot.-London, 49, 835–846,
https://doi.org/10.1093/oxfordjournals.aob.a086310, 1982.
Sanchez, B., Rasmussen, A., and Porter, J. R.: Temperatures and the growth and
development of maize and rice: a review, Global Change Biol., 20, 408–417,
https://doi.org/10.1111/gcb.12389, 2014.
Scanlon, B. R., Jolly, I., Sophocleous, M., and Zhang, L.: Global impacts of
conversions from natural to agricultural ecosystems on water resources: Quantity versus quality,
Water Resour. Res., 43, W03437,
https://doi.org/10.1029/2006wr005486, 2007.
Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D.,
Elliott, J., Folberth, C., Khabarov, N., Muller, C., Pugh, T. A. M., Rolinski, S., Schaphoff, S.,
Schmid, E., Wang, X. H., Schlenker, W., and Frieler, K.: Consistent negative response of US crops
to high temperatures in observations and crop models, Nat. Commun., 8, 9,
https://doi.org/10.1038/ncomms13931, 2017.
Schittenhelm, S., Kraft, M., and Wittich, K.-P.: Performance of winter cereals grown on
field-stored soil moisture only, Eur. J. Agron., 52, 247–258, https://doi.org/10.1016/j.eja.2013.08.010,
2014.
Schlenker, W. and Roberts, M. J.: Nonlinear temperature effects indicate severe damages
to US crop yields under climate change, P. Natl. Acad. Sci. USA, 106, 15594–15598,
https://doi.org/10.1073/pnas.0906865106, 2009.
Schymanski, S. J., Or, D., and Zwieniecki, M.: Stomatal control and leaf thermal and
hydraulic capacitances under rapid environmental fluctuations, Plos One, 8, e54231,
https://doi.org/10.1371/journal.pone.0054231, 2013.
Semenov, M. A., Stratonovitch, P., Alghabari, F., and Gooding, M. J.: Adapting wheat in
Europe for climate change, J. Cereal Sci., 59, 245–256, https://doi.org/10.1016/j.jcs.2014.01.006, 2014.
Shao, Q., Bange, M., Mahan, J., Jin, H., Jamali, H., Zheng, B., and Chapman, S. C.: A
new probabilistic forecasting model for canopy temperature with consideration of periodicity and
parameter variation, Agr. Forest Meteorol., 265, 88–98, https://doi.org/10.1016/j.agrformet.2018.11.013,
2019.
Shen, Y., Kondoh, A., Tang, C., Zhang, Y., Chen, J., Li, W., Sakura, Y., Liu, C.,
Tanaka, T., and Shimada, J.: Measurement and analysis of evapotranspiration and surface
conductance of a wheat canopy, Hydrol. Process., 16, 2173–2187, https://doi.org/10.1002/hyp.1149, 2002.
Siebert, S., Ewert, F., Rezaei, E. E., Kage, H., and Grass, R.: Impact of heat stress
on crop yield-on the importance of considering canopy temperature, Environ. Res. Lett.,
9, 044012, https://doi.org/10.1088/1748-9326/9/4/044012,
2014.
Siebert, S., Webber, H., Zhao, G., and Ewert, F.: Heat stress is overestimated in
climate impact studies for irrigated agriculture, Environ. Res. Lett., 12, 054023, https://doi.org/10.1088/1748-9326/aa702f, 2017.
Sloat, L. L., Davis, S. J., Gerber, J. S., Moore, F. C., Ray, D. K., West, P. C., and
Mueller, N. D.: Climate adaptation by crop migration, Nat. Commun., 11, 1243,
https://doi.org/10.1038/s41467-020-15076-4, 2020.
Still, C., Powell, R., Aubrecht, D., Kim, Y., Helliker, B., Roberts, D., Richardson,
A. D., and Goulden, M.: Thermal imaging in plant and ecosystem ecology: applications and
challenges, Ecosphere, 10, https://doi.org/10.1002/ecs2.2768, 2019.
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., and Mittler, R.: Abiotic and
biotic stress combinations, New Phytol., 203, 32–43, https://doi.org/10.1111/nph.12797, 2014.
Tack, J., Barkley, A., Rife, T. W., Poland, J. A., and Nalley, L. L.: Quantifying
variety-specific heat resistance and the potential for adaptation to climate change, Global Change
Biol., 22, 2904–2912, https://doi.org/10.1111/gcb.13163, 2016.
Tack, J., Barkley, A., and Hendricks, N.: Irrigation offsets wheat yield reductions
from warming temperatures, Environ. Res. Lett., 12, 114027, https://doi.org/10.1088/1748-9326/aa8d27, 2017.
Thapa, S., Jessup, K. E., Pradhan, G. P., Rudd, J. C., Liu, S., Mahan, J. R., Devkota,
R. N., Baker, J. A., and Xue, Q.: Canopy temperature depression at grain filling correlates to
winter wheat yield in the U.S. Southern High Plains, Field Crop Res., 217, 11–19,
https://doi.org/10.1016/j.fcr.2017.12.005, 2018.
van der Velde, M., Wriedt, G., and Bouraoui, F.: Estimating irrigation use and effects
on maize yield during the 2003 heatwave in France, Agr. Ecosyst. Environ., 135, 90–97,
https://doi.org/10.1016/j.agee.2009.08.017, 2010.
Vico, G. and Porporato, A.: Modelling C3 and C4 photosynthesis under water-stressed
conditions, Plant Soil, 313, 187–203, https://doi.org/10.1007/s11104-008-9691-4, 2008.
Vico, G. and Porporato, A.: Traditional and microirrigation with stochastic soil
moisture, Water Resour. Res., 46, W03509,
https://doi.org/10.1029/2009WR008130, 2010.
Vico, G. and Porporato, A.: From rainfed agriculture to stress-avoidance irrigation:
I. A generalized irrigation scheme with stochastic soil moisture, Adv. Water Resour., 34,
263–271, https://doi.org/10.1016/j.advwatres.2010.11.010, 2011.
Vico, G. and Luan, X.: Canopy_Temp_HESS2021: v1.0, Zenodo, https://doi.org/10.5281/zenodo.4540738, 2021.
Vico, G., Manzoni, S., Palmroth, S., Weih, M., and Katul, G.: A perspective on optimal
leaf stomatal conductance under CO2 and light co-limitations, Agr. Forest Meteorol.,
182, 191–199, https://doi.org/10.1016/j.agrformet.2013.07.005, 2013.
Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D.,
Meinshausen, N., and Frieler, K.: The effects of climate extremes on global agricultural yields,
Environ. Res. Lett., 14, 054010, https://doi.org/10.1088/1748-9326/ab154b, 2019.
Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., and Bierkens,
M. F.: Global depletion of groundwater resources, Geophys. Res. Lett., 37, L20402, https://doi.org/10.1029/2010GL044571, 2010.
Wang, Z.-Y., Li, F.-M., Xiong, Y.-C., and Xu, B.-C.: Soil-water threshold range of
chemical signals and drought tolerance was mediated by ROS homeostasis in winter wheat during
progressive soil drying, J. Plant Growth Regul., 27, 309, https://doi.org/10.1007/s00344-008-9057-4, 2008.
Wanjura, D., Upchurch, D., and Mahan, J.: Automated irrigation based on threshold
canopy temperature, T. ASAE, 35, 153–159, https://doi.org/10.13031/2013.28748, 1992.
Way, D. A. and Yamori, W.: Thermal acclimation of photosynthesis: on the importance of
adjusting our definitions and accounting for thermal acclimation of respiration, Photosynth. Res.,
119, 89–100, https://doi.org/10.1007/s11120-013-9873-7, 2014.
Webber, H., Ewert, F., Kimball, B. A., Siebert, S., White, J. W., Wall, G. W., Ottman,
M. J., Trawally, D. N. A., and Gaiser, T.: Simulating canopy temperature for modelling heat stress
in cereals, Environ. Modell. Softw., 77, 143–155, https://doi.org/10.1016/j.envsoft.2015.12.003, 2016.
Webber, H., Martre, P., Asseng, S., Kimball, B., White, J., Ottman, M., Wall, G. W., De
Sanctis, G., Doltra, J., Grant, R., Kassie, B., Maiorano, A., Olesen, J. E., Ripoche, D., Rezaei,
E. E., Semenov, M. A., Stratonovitch, P., and Ewert, F.: Canopy temperature for simulation of heat
stress in irrigated wheat in a semi-arid environment: A multi-model comparison, Field Crop Res.,
202, 21–35, https://doi.org/10.1016/j.fcr.2015.10.009, 2017.
Webber, H., White, J. W., Kimball, B. A., Ewert, F., Asseng, S., Rezaei, E. E., Pinter,
P. J., Hatfield, J. L., Reynolds, M. P., Ababaei, B., Bindi, M., Doltra, J., Ferrise, R., Kage,
H., Kassie, B. T., Kersebaum, K. C., Luig, A., Olesen, J. E., Semenov, M. A., Stratonovitch, P.,
Ratjen, A. M., LaMorte, R. L., Leavitt, S. W., Hunsaker, D. J., Wall, G. W., and Martre, P.:
Physical robustness of canopy temperature models for crop heat stress simulation across
environments and production conditions, Field Crop Res., 216, 75–88,
https://doi.org/10.1016/j.fcr.2017.11.005, 2018.
Wu, Y., Huang, M., and Warrington, D. N.: Growth and transpiration of maize and winter
wheat in response to water deficits in pots and plots, Environ. Exp. Bot., 71, 65–71,
https://doi.org/10.1016/j.envexpbot.2010.10.015, 2011.
Zampieri, M., Ceglar, A., Dentener, F., and Toreti, A.: Wheat yield loss attributable
to heat waves, drought and water excess at the global, national and subnational scales,
Environ. Res. Lett., 12, 064008,
https://doi.org/10.1088/1748-9326/aa723b, 2017.
Zhang, T., Lin, X., and Sassenrath, G. F.: Current irrigation practices in the central
United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat,
Sci. Total Environ., 508, 331–342, https://doi.org/10.1016/j.scitotenv.2014.12.004, 2015.
Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W., and Prentice, I. C.: How should
we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water
stress, Agr. Forest Meteorol., 182, 204–214, https://doi.org/10.1016/j.agrformet.2013.05.009, 2013.
Zscheischler, J. and Seneviratne, S.: Dependence of drivers affects risks associated
with compound events, Sci. Adv., 3, e1700263,
https://doi.org/10.1126/sciadv.1700263, 2017.
Short summary
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the joint effects of (unpredictable) air temperature and soil water availability on crop heat stress via a mechanistic model. Larger but more infrequent precipitation increased crop canopy temperatures. Keeping crops well watered via irrigation could reduce canopy temperature but not enough to always exclude heat damage. Thus, irrigation is only a partial solution to adapt to warmer and drier climates.
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the...