Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1411-2021
https://doi.org/10.5194/hess-25-1411-2021
Research article
 | 
24 Mar 2021
Research article |  | 24 Mar 2021

Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis

Xiangyu Luan and Giulia Vico

Related authors

Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models
Stefano Manzoni, Simone Fatichi, Xue Feng, Gabriel G. Katul, Danielle Way, and Giulia Vico
Biogeosciences, 19, 4387–4414, https://doi.org/10.5194/bg-19-4387-2022,https://doi.org/10.5194/bg-19-4387-2022, 2022
Short summary
Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration
Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Joshua P. Schimel, Amilcare Porporato, and Giulia Vico
Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020,https://doi.org/10.5194/bg-17-4007-2020, 2020
Short summary
Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – definitions, theories, and empirical evidence
Stefano Manzoni, Petr Čapek, Philipp Porada, Martin Thurner, Mattias Winterdahl, Christian Beer, Volker Brüchert, Jan Frouz, Anke M. Herrmann, Björn D. Lindahl, Steve W. Lyon, Hana Šantrůčková, Giulia Vico, and Danielle Way
Biogeosciences, 15, 5929–5949, https://doi.org/10.5194/bg-15-5929-2018,https://doi.org/10.5194/bg-15-5929-2018, 2018
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California
Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein
Hydrol. Earth Syst. Sci., 27, 3021–3039, https://doi.org/10.5194/hess-27-3021-2023,https://doi.org/10.5194/hess-27-3021-2023, 2023
Short summary
Technical note: Seamless Extraction and Analysis of River Networks in R
Luca Carraro
EGUsphere, https://doi.org/10.5194/egusphere-2023-939,https://doi.org/10.5194/egusphere-2023-939, 2023
Short summary
Improving regional climate simulations based on a hybrid data assimilation and machine learning method
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023,https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023,https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022,https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary

Cited articles

Ali, M., Jensen, C., Mogensen, V., and Bahrun, A.: Drought adaptation of field grown wheat in relation to soil physical conditions, Plant Soil, 208, 149–159, https://doi.org/10.1023/A:1004535819197, 1999. 
Alizadeh, M. R., Adamowski, J., Nikoo, M. R., AghaKouchak, A., Dennison, P., and Sadegh, M.: A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes, Sci. Adv., 6, eaaz4571, https://doi.org/10.1126/sciadv.aaz4571, 2020. 
Amthor, J. S.: Scaling CO2-photosynthesis relationships from the leaf to the canopy, Photosynth. Res., 39, 321–350, https://doi.org/10.1007/bf00014590, 1994. 
Balota, M., Payne, W. A., Evett, S. R., and Peters, T. R.: Morphological and physiological traits associated with canopy temperature depression in three closely related wheat lines, Crop Sci., 48, 1897–1910, https://doi.org/10.2135/cropsci2007.06.0317, 2008. 
Download
Short summary
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the joint effects of (unpredictable) air temperature and soil water availability on crop heat stress via a mechanistic model. Larger but more infrequent precipitation increased crop canopy temperatures. Keeping crops well watered via irrigation could reduce canopy temperature but not enough to always exclude heat damage. Thus, irrigation is only a partial solution to adapt to warmer and drier climates.