Articles | Volume 25, issue 3
Hydrol. Earth Syst. Sci., 25, 1411–1423, 2021
https://doi.org/10.5194/hess-25-1411-2021

Special issue: Understanding compound weather and climate events and related...

Hydrol. Earth Syst. Sci., 25, 1411–1423, 2021
https://doi.org/10.5194/hess-25-1411-2021
Research article
24 Mar 2021
Research article | 24 Mar 2021

Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis

Xiangyu Luan and Giulia Vico

Related authors

Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models
Stefano Manzoni, Simone Fatichi, Xue Feng, Gabriel G. Katul, Danielle Way, and Giulia Vico
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-36,https://doi.org/10.5194/bg-2022-36, 2022
Revised manuscript under review for BG
Short summary
Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration
Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Joshua P. Schimel, Amilcare Porporato, and Giulia Vico
Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020,https://doi.org/10.5194/bg-17-4007-2020, 2020
Short summary
Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – definitions, theories, and empirical evidence
Stefano Manzoni, Petr Čapek, Philipp Porada, Martin Thurner, Mattias Winterdahl, Christian Beer, Volker Brüchert, Jan Frouz, Anke M. Herrmann, Björn D. Lindahl, Steve W. Lyon, Hana Šantrůčková, Giulia Vico, and Danielle Way
Biogeosciences, 15, 5929–5949, https://doi.org/10.5194/bg-15-5929-2018,https://doi.org/10.5194/bg-15-5929-2018, 2018
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Coupled modelling of hydrological processes and grassland production in two contrasting climates
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022,https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022,https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China
Hongyu Li, Yi Luo, Lin Sun, Xiangdong Li, Changkun Ma, Xiaolei Wang, Ting Jiang, and Haoyang Zhu
Hydrol. Earth Syst. Sci., 26, 17–34, https://doi.org/10.5194/hess-26-17-2022,https://doi.org/10.5194/hess-26-17-2022, 2022
Short summary
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021,https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021,https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary

Cited articles

Ali, M., Jensen, C., Mogensen, V., and Bahrun, A.: Drought adaptation of field grown wheat in relation to soil physical conditions, Plant Soil, 208, 149–159, https://doi.org/10.1023/A:1004535819197, 1999. 
Alizadeh, M. R., Adamowski, J., Nikoo, M. R., AghaKouchak, A., Dennison, P., and Sadegh, M.: A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes, Sci. Adv., 6, eaaz4571, https://doi.org/10.1126/sciadv.aaz4571, 2020. 
Amthor, J. S.: Scaling CO2-photosynthesis relationships from the leaf to the canopy, Photosynth. Res., 39, 321–350, https://doi.org/10.1007/bf00014590, 1994. 
Balota, M., Payne, W. A., Evett, S. R., and Peters, T. R.: Morphological and physiological traits associated with canopy temperature depression in three closely related wheat lines, Crop Sci., 48, 1897–1910, https://doi.org/10.2135/cropsci2007.06.0317, 2008. 
Download
Short summary
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the joint effects of (unpredictable) air temperature and soil water availability on crop heat stress via a mechanistic model. Larger but more infrequent precipitation increased crop canopy temperatures. Keeping crops well watered via irrigation could reduce canopy temperature but not enough to always exclude heat damage. Thus, irrigation is only a partial solution to adapt to warmer and drier climates.