Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5203-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5203-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites
Department of Geography, Indiana University, Bloomington, IN 47405, USA
Russell L. Scott
Southwest Watershed Research Center, United States Agricultural Department, Agricultural Research Service, Tucson, AZ 85719, USA
Joel A. Biederman
Southwest Watershed Research Center, United States Agricultural Department, Agricultural Research Service, Tucson, AZ 85719, USA
Catherine Ottlé
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Universiteì Paris-Saclay, Gif-sur-Yvette, 91191, France
Nicolas Vuichard
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Universiteì Paris-Saclay, Gif-sur-Yvette, 91191, France
Agnès Ducharne
UMR METIS, Sorbonne Université, CNRS, EPHE, Paris, 75005, France
Thomas Kolb
School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
Sabina Dore
Hydrofocus, Inc., Davis, CA 95618, USA
Marcy Litvak
Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
David J. P. Moore
School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
Related authors
Cédric Bacour, Natasha MacBean, Frédéric Chevallier, Sébastien Léonard, Ernest N. Koffi, and Philippe Peylin
Biogeosciences, 20, 1089–1111, https://doi.org/10.5194/bg-20-1089-2023, https://doi.org/10.5194/bg-20-1089-2023, 2023
Short summary
Short summary
The impact of assimilating different dataset combinations on regional to global-scale C budgets is explored with the ORCHIDEE model. Assimilating simultaneously multiple datasets is preferable to optimize the values of the model parameters and avoid model overfitting. The challenges in constraining soil C disequilibrium using atmospheric CO2 data are highlighted for an accurate prediction of the land sink distribution.
Vladislav Bastrikov, Natasha MacBean, Cédric Bacour, Diego Santaren, Sylvain Kuppel, and Philippe Peylin
Geosci. Model Dev., 11, 4739–4754, https://doi.org/10.5194/gmd-11-4739-2018, https://doi.org/10.5194/gmd-11-4739-2018, 2018
Short summary
Short summary
In this study, we compare different methods for optimising parameters of the ORCHIDEE land surface model (LSM) using in situ observations. We use two minimisation methods - local gradient-based and global random search - applied either at each individual site or a group of sites characterised by one plant functional type. We demonstrate the advantages and challenges of different techniques and provide some advice on using it for the LSM parameters optimisation.
Wei Li, Natasha MacBean, Philippe Ciais, Pierre Defourny, Céline Lamarche, Sophie Bontemps, Richard A. Houghton, and Shushi Peng
Earth Syst. Sci. Data, 10, 219–234, https://doi.org/10.5194/essd-10-219-2018, https://doi.org/10.5194/essd-10-219-2018, 2018
Short summary
Short summary
We evaluated the land cover changes based on plant functional types (PFTs) derived from the newly released annual ESA land cover maps. We addressed the geographical distributions and temporal trends of the translated PFT maps and compared with other datasets commonly used by the land surface model community. Different choices of these datasets for the applications in land surface models are proposed depending on the research purposes.
Francesc Montané, Andrew M. Fox, Avelino F. Arellano, Natasha MacBean, M. Ross Alexander, Alex Dye, Daniel A. Bishop, Valerie Trouet, Flurin Babst, Amy E. Hessl, Neil Pederson, Peter D. Blanken, Gil Bohrer, Christopher M. Gough, Marcy E. Litvak, Kimberly A. Novick, Richard P. Phillips, Jeffrey D. Wood, and David J. P. Moore
Geosci. Model Dev., 10, 3499–3517, https://doi.org/10.5194/gmd-10-3499-2017, https://doi.org/10.5194/gmd-10-3499-2017, 2017
Short summary
Short summary
How carbon is allocated to different plant tissues (leaves, stem, and roots) determines carbon residence time and thus remains a central challenge for understanding the global carbon cycle. In this paper, we compared standard and novel carbon allocation schemes in CLM4.5 and evaluated them using eddy covariance wood and leaf biomass. The dynamic scheme based on work by Litton improved model performance, but this was dependent on model assumptions about woody turnover.
Natasha MacBean, Philippe Peylin, Frédéric Chevallier, Marko Scholze, and Gregor Schürmann
Geosci. Model Dev., 9, 3569–3588, https://doi.org/10.5194/gmd-9-3569-2016, https://doi.org/10.5194/gmd-9-3569-2016, 2016
Short summary
Short summary
Model projections of the response of the terrestrial biosphere to anthropogenic emissions are uncertain, in part due to unknown fixed parameters in a model. Data assimilation can address this by using observations to optimise these parameter values. Using multiple types of data is beneficial for constraining different model processes, but it can also pose challenges in a DA context. This paper demonstrates and discusses the issues involved using toy models and examples from existing literature.
N. MacBean, F. Maignan, P. Peylin, C. Bacour, F.-M. Bréon, and P. Ciais
Biogeosciences, 12, 7185–7208, https://doi.org/10.5194/bg-12-7185-2015, https://doi.org/10.5194/bg-12-7185-2015, 2015
Short summary
Short summary
Previous model evaluation studies have shown that terrestrial biosphere models (TBMs) need a better representation of the leaf phenology, but the model deficiency could be related to incorrect model parameters or inaccurate model structure. This paper presents a framework for optimising the parameters of phenology models that are commonly used in TBMs. It further demonstrates that the optimisation can result in changes to trends in vegetation productivity and an improvement in gross C fluxes.
B. Poulter, N. MacBean, A. Hartley, I. Khlystova, O. Arino, R. Betts, S. Bontemps, M. Boettcher, C. Brockmann, P. Defourny, S. Hagemann, M. Herold, G. Kirches, C. Lamarche, D. Lederer, C. Ottlé, M. Peters, and P. Peylin
Geosci. Model Dev., 8, 2315–2328, https://doi.org/10.5194/gmd-8-2315-2015, https://doi.org/10.5194/gmd-8-2315-2015, 2015
Short summary
Short summary
Land cover is an essential variable in earth system models and determines conditions driving biogeochemical, energy and water exchange between ecosystems and the atmosphere. A methodology is presented for mapping plant functional types used in global vegetation models from a updated land cover classification system and open-source conversion tool, resulting from a consultative process among map producers and modelers engaged in the European Space Agency’s Land Cover Climate Change Initiative.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
Jaime A. Riano Sanchez, Nicolas Vuichard, and Philippe Peylin
Earth Syst. Dynam., 15, 1227–1253, https://doi.org/10.5194/esd-15-1227-2024, https://doi.org/10.5194/esd-15-1227-2024, 2024
Short summary
Short summary
We quantify the projected change in land carbon store (CLCS) for different socioeconomic scenarios (SSPs). Using factorial simulations of a land surface model, we estimate the CLCS uncertainties associated with land use change (LUC) and nitrogen (N) deposition trajectories. Our study highlights the need for delivering additional LUC and N deposition trajectories from integrated assessment models for each SSP in order to accurately assess their impacts on the carbon cycle and climate.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2460, https://doi.org/10.5194/egusphere-2024-2460, 2024
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the CMIP6-LUMIP project. We found that LUC-induced carbon emissions contribute to a BGC warming of 0.20 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasise the need for improved representations of LUC processes.
Maureen Beaudor, Didier Hauglustaine, Juliette Lathière, Martin Van Damme, Lieven Clarisse, and Nicolas Vuichard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2022, https://doi.org/10.5194/egusphere-2024-2022, 2024
Short summary
Short summary
Agriculture is the biggest ammonia (NH3) source, impacting air quality, climate, and ecosystems. Because of food demand, NH3 emissions are projected to rise by 2100. Using a global model, we analyzed the impact of present and future NH3 emissions generated from a land model. Our results show improved ammonia patterns compared to a reference inventory. Future scenarios predict up to 70 % increase in global NH3 burden, significant changes in radiative forcing, and could significantly elevate N2O.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024, https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
Short summary
We show a new irrigation scheme included in the ORCHIDEE land surface model. The new irrigation scheme restrains irrigation due to water shortage, includes water adduction, and represents environmental limits and facilities to access water, due to representing infrastructure in a simple way. Our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, even if there are difficulties due to shortcomings and limited information.
Nina Raoult, Louis-Axel Edouard-Rambaut, Nicolas Vuichard, Vladislav Bastrikov, Anne Sofie Lansø, Bertrand Guenet, and Philippe Peylin
Biogeosciences, 21, 1017–1036, https://doi.org/10.5194/bg-21-1017-2024, https://doi.org/10.5194/bg-21-1017-2024, 2024
Short summary
Short summary
Observations are used to reduce uncertainty in land surface models (LSMs) by optimising poorly constraining parameters. However, optimising against current conditions does not necessarily ensure that the parameters treated as invariant will be robust in a changing climate. Manipulation experiments offer us a unique chance to optimise our models under different (here atmospheric CO2) conditions. By using these data in optimisations, we gain confidence in the future projections of LSMs.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billdesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Gharun Mana, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2024-165, https://doi.org/10.5194/egusphere-2024-165, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the earth surface to the atmosphere, or flux, is an important process to understand that impacts all of our lives. Here we outline a method to estimate global water and CO2 fluxes based on direct measurements from site around the world called FLUXCOM-X. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084, https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Short summary
This paper evaluates land models – computer based models that simulate ecosystem dynamics, the land carbon, water and energy cycles and the role of land in the climate system. It uses machine learning / AI approaches to show that despite the complexity of land models, they do not perform nearly as well as they could, given the amount of information they are provided with about the prediction problem.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Cédric Bacour, Natasha MacBean, Frédéric Chevallier, Sébastien Léonard, Ernest N. Koffi, and Philippe Peylin
Biogeosciences, 20, 1089–1111, https://doi.org/10.5194/bg-20-1089-2023, https://doi.org/10.5194/bg-20-1089-2023, 2023
Short summary
Short summary
The impact of assimilating different dataset combinations on regional to global-scale C budgets is explored with the ORCHIDEE model. Assimilating simultaneously multiple datasets is preferable to optimize the values of the model parameters and avoid model overfitting. The challenges in constraining soil C disequilibrium using atmospheric CO2 data are highlighted for an accurate prediction of the land sink distribution.
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023, https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
Short summary
Ammonia mainly comes from the agricultural sector, and its volatilization relies on environmental variables. Our approach aims at benefiting from an Earth system model framework to estimate it. By doing so, we represent a consistent spatial distribution of the emissions' response to environmental changes.
We greatly improved the seasonal cycle of emissions compared with previous work. In addition, our model includes natural soil emissions (that are rarely represented in modeling approaches).
Matthew P. Dannenberg, Mallory L. Barnes, William K. Smith, Miriam R. Johnston, Susan K. Meerdink, Xian Wang, Russell L. Scott, and Joel A. Biederman
Biogeosciences, 20, 383–404, https://doi.org/10.5194/bg-20-383-2023, https://doi.org/10.5194/bg-20-383-2023, 2023
Short summary
Short summary
Earth's drylands provide ecosystem services to many people and will likely be strongly affected by climate change, but it is quite challenging to monitor the productivity and water use of dryland plants with satellites. We developed and tested an approach for estimating dryland vegetation activity using machine learning to combine information from multiple satellite sensors. Our approach excelled at estimating photosynthesis and water use largely due to the inclusion of satellite soil moisture.
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022, https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Short summary
There are a few studies to examine if current models correctly represented the complex processes of transpiration. Here, we use a coefficient Ω, which indicates if transpiration is mainly controlled by vegetation processes or by turbulence, to evaluate the ORCHIDEE model. We found a good performance of ORCHIDEE, but due to compensation of biases in different processes, we also identified how different factors control Ω and where the model is wrong. Our method is generic to evaluate other models.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Irina Melnikova, Olivier Boucher, Patricia Cadule, Katsumasa Tanaka, Thomas Gasser, Tomohiro Hajima, Yann Quilcaille, Hideo Shiogama, Roland Séférian, Kaoru Tachiiri, Nicolas Vuichard, Tokuta Yokohata, and Philippe Ciais
Earth Syst. Dynam., 13, 779–794, https://doi.org/10.5194/esd-13-779-2022, https://doi.org/10.5194/esd-13-779-2022, 2022
Short summary
Short summary
The deployment of bioenergy crops for capturing carbon from the atmosphere facilitates global warming mitigation via generating negative CO2 emissions. Here, we explored the consequences of large-scale energy crops deployment on the land carbon cycle. The land-use change for energy crops leads to carbon emissions and loss of future potential increase in carbon uptake by natural ecosystems. This impact should be taken into account by the modeling teams and accounted for in mitigation policies.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Axel P. Belemtougri, Agnès Ducharne, and Harouna Karambiri
Proc. IAHS, 384, 19–23, https://doi.org/10.5194/piahs-384-19-2021, https://doi.org/10.5194/piahs-384-19-2021, 2021
Julia Bres, Pierre Sepulchre, Nicolas Viovy, and Nicolas Vuichard
Biogeosciences, 18, 5729–5750, https://doi.org/10.5194/bg-18-5729-2021, https://doi.org/10.5194/bg-18-5729-2021, 2021
Short summary
Short summary
We emulate angiosperm paleo-traits in a land surface model according to the fossil record, and we assess this paleovegetation functioning under different pCO2 from the leaf scale to the global scale. We show that photosynthesis, transpiration and water-use efficiency are dependent on both the vegetation parameterization and the pCO2. Comparing the modeled vegetation with the fossil record, we provide clues on how to account for angiosperm evolutionary traits in paleoclimate simulations.
Jina Jeong, Jonathan Barichivich, Philippe Peylin, Vanessa Haverd, Matthew Joseph McGrath, Nicolas Vuichard, Michael Neil Evans, Flurin Babst, and Sebastiaan Luyssaert
Geosci. Model Dev., 14, 5891–5913, https://doi.org/10.5194/gmd-14-5891-2021, https://doi.org/10.5194/gmd-14-5891-2021, 2021
Short summary
Short summary
We have proposed and evaluated the use of four benchmarks that leverage tree-ring width observations to provide more nuanced verification targets for land-surface models (LSMs), which currently lack a long-term benchmark for forest ecosystem functioning. Using relatively unbiased European biomass network datasets, we identify the extent to which presumed biases in the much larger International Tree-Ring Data Bank might degrade the validation of LSMs.
Fabienne Maignan, Camille Abadie, Marine Remaud, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Róisín Commane, Richard Wehr, J. Elliott Campbell, Sauveur Belviso, Stephen A. Montzka, Nina Raoult, Ulli Seibt, Yoichi P. Shiga, Nicolas Vuichard, Mary E. Whelan, and Philippe Peylin
Biogeosciences, 18, 2917–2955, https://doi.org/10.5194/bg-18-2917-2021, https://doi.org/10.5194/bg-18-2917-2021, 2021
Short summary
Short summary
The assimilation of carbonyl sulfide (COS) by continental vegetation has been proposed as a proxy for gross primary production (GPP). Using a land surface and a transport model, we compare a mechanistic representation of the plant COS uptake (Berry et al., 2013) to the classical leaf relative uptake (LRU) approach linking GPP and vegetation COS fluxes. We show that at high temporal resolutions a mechanistic approach is mandatory, but at large scales the LRU approach compares similarly.
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
Hiroki Mizuochi, Agnès Ducharne, Frédérique Cheruy, Josefine Ghattas, Amen Al-Yaari, Jean-Pierre Wigneron, Vladislav Bastrikov, Philippe Peylin, Fabienne Maignan, and Nicolas Vuichard
Hydrol. Earth Syst. Sci., 25, 2199–2221, https://doi.org/10.5194/hess-25-2199-2021, https://doi.org/10.5194/hess-25-2199-2021, 2021
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Salma Tafasca, Agnès Ducharne, and Christian Valentin
Hydrol. Earth Syst. Sci., 24, 3753–3774, https://doi.org/10.5194/hess-24-3753-2020, https://doi.org/10.5194/hess-24-3753-2020, 2020
Short summary
Short summary
In land surface models (LSMs), soil properties are inferred from soil texture. In this study, we use different input global soil texture maps from the literature to investigate the impact of soil texture on the simulated water budget in an LSM. The medium loamy textures give the highest evapotranspiration and lowest total runoff rates. However, the different soil texture maps result in similar water budgets because of their inherent similarities, especially when upscaled at the 0.5° resolution.
Shufen Pan, Naiqing Pan, Hanqin Tian, Pierre Friedlingstein, Stephen Sitch, Hao Shi, Vivek K. Arora, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Catherine Ottlé, Benjamin Poulter, Sönke Zaehle, and Steven W. Running
Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, https://doi.org/10.5194/hess-24-1485-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) links global water, carbon and energy cycles. We used 4 remote sensing models, 2 machine-learning algorithms and 14 land surface models to analyze the changes in global terrestrial ET. These three categories of approaches agreed well in terms of ET intensity. For 1982–2011, all models showed that Earth greening enhanced terrestrial ET. The small interannual variability of global terrestrial ET suggests it has a potential planetary boundary of around 600 mm yr-1.
Simon P. K. Bowring, Ronny Lauerwald, Bertrand Guenet, Dan Zhu, Matthieu Guimberteau, Pierre Regnier, Ardalan Tootchi, Agnès Ducharne, and Philippe Ciais
Geosci. Model Dev., 13, 507–520, https://doi.org/10.5194/gmd-13-507-2020, https://doi.org/10.5194/gmd-13-507-2020, 2020
Short summary
Short summary
In this second part of the study, we performed simulations of the carbon and water budget of the Lena catchment with the land surface model ORCHIDEE MICT-LEAK, enabled to simulate dissolved organic carbon (DOC) production in soils and its transport and fate in high-latitude inland waters. We compare simulations using this model to existing data sources to show that it is capable of reproducing dissolved carbon fluxes of potentially great importance for the future of the global permafrost.
Nicolas Vuichard, Palmira Messina, Sebastiaan Luyssaert, Bertrand Guenet, Sönke Zaehle, Josefine Ghattas, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 12, 4751–4779, https://doi.org/10.5194/gmd-12-4751-2019, https://doi.org/10.5194/gmd-12-4751-2019, 2019
Short summary
Short summary
In this research, we present a new version of the global terrestrial ecosystem model ORCHIDEE in which carbon and nitrogen cycles are coupled. We evaluate its skills at simulating primary production at 78 sites and at a global scale. Based on a set of additional simulations in which carbon and nitrogen cycles are coupled and uncoupled, we show that the functional responses of the model with carbon–nitrogen interactions better agree with our current understanding of photosynthesis.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Bruno Ringeval, Marko Kvakić, Laurent Augusto, Philippe Ciais, Daniel Goll, Nathaniel D. Mueller, Christoph Müller, Thomas Nesme, Nicolas Vuichard, Xuhui Wang, and Sylvain Pellerin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-298, https://doi.org/10.5194/bg-2019-298, 2019
Preprint withdrawn
Short summary
Short summary
Crossed fertilization additions lead to the definition of nutrient interaction categories. However, the implications of such categories in terms of nutrient interaction modeling are not clear. We developed a theoretical analysis of nitrogen and phosphorus fertilization experiments, then applied it to current estimates of nutrient limitation in cropland. We found that a true co-limitation could affect up to 42 % of the global maize area when using a given formalism of nutrient interaction.
Simon P. K. Bowring, Ronny Lauerwald, Bertrand Guenet, Dan Zhu, Matthieu Guimberteau, Ardalan Tootchi, Agnès Ducharne, and Philippe Ciais
Geosci. Model Dev., 12, 3503–3521, https://doi.org/10.5194/gmd-12-3503-2019, https://doi.org/10.5194/gmd-12-3503-2019, 2019
Short summary
Short summary
Few Earth system models represent permafrost soil biogeochemistry, contributing to uncertainty in estimating its response and that of the planet to warming. Because the permafrost contains over double the carbon in the present atmosphere, its fate as it is
unlockedby warming is globally significant. One way it can be mobilised is into rivers, the sea, or the atmosphere: a vector previously ignored in climate modelling. We present a model scheme for resolving this vector at a global scale.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Shushi Peng, Gerhard Krinner, Ardalan Tootchi, Agnès Ducharne, and Adam Hastie
Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, https://doi.org/10.5194/gmd-12-2961-2019, 2019
Short summary
Short summary
We present a model that can simulate the dynamics of peatland area extent and the vertical buildup of peat. The model is validated across a range of northern peatland sites and over the Northern Hemisphere (> 30° N). It is able to reproduce the spatial extent of northern peatlands and peat carbon accumulation over the Holocene.
Jennifer K. Brooke, R. Chawn Harlow, Russell L. Scott, Martin J. Best, John M. Edwards, Jean-Claude Thelen, and Mark Weeks
Geosci. Model Dev., 12, 1703–1724, https://doi.org/10.5194/gmd-12-1703-2019, https://doi.org/10.5194/gmd-12-1703-2019, 2019
Short summary
Short summary
This paper evaluates a significant cold land surface temperature bias in semi-arid regions in the Met Office Unified Model when compared with satellite observations. Sparse vegetation canopies are not well represented in ancillary datasets, in particular regions of cold bias are correlated with low bare soil cover fractions. The study demonstrates the difficulties in modelling land surface temperatures that match state-of-the-art satellite retrievals required for operational data assimilation.
Ardalan Tootchi, Anne Jost, and Agnès Ducharne
Earth Syst. Sci. Data, 11, 189–220, https://doi.org/10.5194/essd-11-189-2019, https://doi.org/10.5194/essd-11-189-2019, 2019
Short summary
Short summary
The role of wetlands at regional and global scales depends on their distribution and extent, which is highly uncertain in the literature. We developed comprehensive wetland maps using satellite imagery products and ground water modeling. These high-resolution maps encompass regularly flooded to non-flooded groundwater wetlands, covering more than 21 % of the land surface area, which is among the highest estimates. Wetlands are particularly concentrated over the tropics and northern cold zones.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Trung Nguyen-Quang, Jan Polcher, Agnès Ducharne, Thomas Arsouze, Xudong Zhou, Ana Schneider, and Lluís Fita
Geosci. Model Dev., 11, 4965–4985, https://doi.org/10.5194/gmd-11-4965-2018, https://doi.org/10.5194/gmd-11-4965-2018, 2018
Short summary
Short summary
This study presents a revised river routing scheme for the Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. The revision is carried out to benefit from the high-resolution topography provided by the Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS). We demonstrate that the finer description of the catchments allows for an improvement of the simulated river discharge of ORCHIDEE in an area with complex topography.
Vladislav Bastrikov, Natasha MacBean, Cédric Bacour, Diego Santaren, Sylvain Kuppel, and Philippe Peylin
Geosci. Model Dev., 11, 4739–4754, https://doi.org/10.5194/gmd-11-4739-2018, https://doi.org/10.5194/gmd-11-4739-2018, 2018
Short summary
Short summary
In this study, we compare different methods for optimising parameters of the ORCHIDEE land surface model (LSM) using in situ observations. We use two minimisation methods - local gradient-based and global random search - applied either at each individual site or a group of sites characterised by one plant functional type. We demonstrate the advantages and challenges of different techniques and provide some advice on using it for the LSM parameters optimisation.
Marta Camino-Serrano, Bertrand Guenet, Sebastiaan Luyssaert, Philippe Ciais, Vladislav Bastrikov, Bruno De Vos, Bert Gielen, Gerd Gleixner, Albert Jornet-Puig, Klaus Kaiser, Dolly Kothawala, Ronny Lauerwald, Josep Peñuelas, Marion Schrumpf, Sara Vicca, Nicolas Vuichard, David Walmsley, and Ivan A. Janssens
Geosci. Model Dev., 11, 937–957, https://doi.org/10.5194/gmd-11-937-2018, https://doi.org/10.5194/gmd-11-937-2018, 2018
Short summary
Short summary
Global models generally oversimplify the representation of soil organic carbon (SOC), and thus its response to global warming remains uncertain. We present the new soil module ORCHIDEE-SOM, within the global model ORCHIDEE, that refines the representation of SOC dynamics and includes the dissolved organic carbon (DOC) processes. The model is able to reproduce SOC stocks and DOC concentrations in four different ecosystems, opening an opportunity for improved predictions of SOC in global models.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Ardalan Tootchi, Anne Jost, and Agnès Ducharne
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-48, https://doi.org/10.5194/hess-2018-48, 2018
Manuscript not accepted for further review
Short summary
Short summary
There is a massive disagreement between wetland extent estimates in literature (3 to 21 % of the land surface area). Some inundated wetlands could be detected using satellite imagery while non-inundated ones and those below vegetation are not easily detectedable. We mapped all wetlands, using both satellite data and geomorphological information, showing large wetland over boreal and tropical zones plus thousands of small oases in arid areas.
Wei Li, Natasha MacBean, Philippe Ciais, Pierre Defourny, Céline Lamarche, Sophie Bontemps, Richard A. Houghton, and Shushi Peng
Earth Syst. Sci. Data, 10, 219–234, https://doi.org/10.5194/essd-10-219-2018, https://doi.org/10.5194/essd-10-219-2018, 2018
Short summary
Short summary
We evaluated the land cover changes based on plant functional types (PFTs) derived from the newly released annual ESA land cover maps. We addressed the geographical distributions and temporal trends of the translated PFT maps and compared with other datasets commonly used by the land surface model community. Different choices of these datasets for the applications in land surface models are proposed depending on the research purposes.
Matthieu Guimberteau, Dan Zhu, Fabienne Maignan, Ye Huang, Chao Yue, Sarah Dantec-Nédélec, Catherine Ottlé, Albert Jornet-Puig, Ana Bastos, Pierre Laurent, Daniel Goll, Simon Bowring, Jinfeng Chang, Bertrand Guenet, Marwa Tifafi, Shushi Peng, Gerhard Krinner, Agnès Ducharne, Fuxing Wang, Tao Wang, Xuhui Wang, Yilong Wang, Zun Yin, Ronny Lauerwald, Emilie Joetzjer, Chunjing Qiu, Hyungjun Kim, and Philippe Ciais
Geosci. Model Dev., 11, 121–163, https://doi.org/10.5194/gmd-11-121-2018, https://doi.org/10.5194/gmd-11-121-2018, 2018
Short summary
Short summary
Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module.
Ronny Lauerwald, Pierre Regnier, Marta Camino-Serrano, Bertrand Guenet, Matthieu Guimberteau, Agnès Ducharne, Jan Polcher, and Philippe Ciais
Geosci. Model Dev., 10, 3821–3859, https://doi.org/10.5194/gmd-10-3821-2017, https://doi.org/10.5194/gmd-10-3821-2017, 2017
Short summary
Short summary
ORCHILEAK is a new branch of the terrestrial ecosystem model ORCHIDEE that represents dissolved organic carbon (DOC) production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin.
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017, https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Short summary
To improve our understanding of paleoclimate in the northeastern (NE) US, we compiled data from pollen, tree rings, lake levels, testate amoeba from bogs, and other proxies from the last 3000 years. The paleoclimate synthesis supports long-term cooling until the 1800s and reveals an abrupt transition from wet to dry conditions around 550–750 CE. Evidence suggests the region is now becoming warmer and wetter, but more calibrated data are needed, especially to capture multidecadal variability.
Daniel S. Goll, Nicolas Vuichard, Fabienne Maignan, Albert Jornet-Puig, Jordi Sardans, Aurelie Violette, Shushi Peng, Yan Sun, Marko Kvakic, Matthieu Guimberteau, Bertrand Guenet, Soenke Zaehle, Josep Penuelas, Ivan Janssens, and Philippe Ciais
Geosci. Model Dev., 10, 3745–3770, https://doi.org/10.5194/gmd-10-3745-2017, https://doi.org/10.5194/gmd-10-3745-2017, 2017
Short summary
Short summary
We describe a representation of the terrestrial phosphorus cycle for the ORCHIDEE land surface model. The model is able to reproduce the observed shift from nitrogen to phosphorus limited net primary productivity along a soil formation chronosequence in Hawaii, as well as the contrasting responses of net primary productivity to nutrient addition. However, the simulated nutrient use efficiencies are lower, as observed primarily due to biases in the nutrient content and turnover of woody biomass.
Francesc Montané, Andrew M. Fox, Avelino F. Arellano, Natasha MacBean, M. Ross Alexander, Alex Dye, Daniel A. Bishop, Valerie Trouet, Flurin Babst, Amy E. Hessl, Neil Pederson, Peter D. Blanken, Gil Bohrer, Christopher M. Gough, Marcy E. Litvak, Kimberly A. Novick, Richard P. Phillips, Jeffrey D. Wood, and David J. P. Moore
Geosci. Model Dev., 10, 3499–3517, https://doi.org/10.5194/gmd-10-3499-2017, https://doi.org/10.5194/gmd-10-3499-2017, 2017
Short summary
Short summary
How carbon is allocated to different plant tissues (leaves, stem, and roots) determines carbon residence time and thus remains a central challenge for understanding the global carbon cycle. In this paper, we compared standard and novel carbon allocation schemes in CLM4.5 and evaluated them using eddy covariance wood and leaf biomass. The dynamic scheme based on work by Litton improved model performance, but this was dependent on model assumptions about woody turnover.
Matthieu Guimberteau, Philippe Ciais, Agnès Ducharne, Juan Pablo Boisier, Ana Paula Dutra Aguiar, Hester Biemans, Hannes De Deurwaerder, David Galbraith, Bart Kruijt, Fanny Langerwisch, German Poveda, Anja Rammig, Daniel Andres Rodriguez, Graciela Tejada, Kirsten Thonicke, Celso Von Randow, Rita C. S. Von Randow, Ke Zhang, and Hans Verbeeck
Hydrol. Earth Syst. Sci., 21, 1455–1475, https://doi.org/10.5194/hess-21-1455-2017, https://doi.org/10.5194/hess-21-1455-2017, 2017
Palmira Messina, Juliette Lathière, Katerina Sindelarova, Nicolas Vuichard, Claire Granier, Josefine Ghattas, Anne Cozic, and Didier A. Hauglustaine
Atmos. Chem. Phys., 16, 14169–14202, https://doi.org/10.5194/acp-16-14169-2016, https://doi.org/10.5194/acp-16-14169-2016, 2016
Short summary
Short summary
We provide BVOC emissions for the present scenario, employing the updated ORCHIDEE emission module and the MEGAN model. The modelling community still faces the problem of emission model evaluation because of the absence of adequate observations. The accurate analysis performed, employing the two models, allowed the various processes modelled to be investigated, in order to fully understand the origin of the mismatch between the model estimates and to quantify the emission uncertainties.
Natasha MacBean, Philippe Peylin, Frédéric Chevallier, Marko Scholze, and Gregor Schürmann
Geosci. Model Dev., 9, 3569–3588, https://doi.org/10.5194/gmd-9-3569-2016, https://doi.org/10.5194/gmd-9-3569-2016, 2016
Short summary
Short summary
Model projections of the response of the terrestrial biosphere to anthropogenic emissions are uncertain, in part due to unknown fixed parameters in a model. Data assimilation can address this by using observations to optimise these parameter values. Using multiple types of data is beneficial for constraining different model processes, but it can also pose challenges in a DA context. This paper demonstrates and discusses the issues involved using toy models and examples from existing literature.
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Congsheng Fu, Guiling Wang, Michael L. Goulden, Russell L. Scott, Kenneth Bible, and Zoe G. Cardon
Hydrol. Earth Syst. Sci., 20, 2001–2018, https://doi.org/10.5194/hess-20-2001-2016, https://doi.org/10.5194/hess-20-2001-2016, 2016
Short summary
Short summary
Hydraulic redistribution (HR) of plant root has important hydrological impact (on evapotranspiration, Bowen ratio, and soil moisture) in ecosystems that have a pronounced dry season but are not overall so dry that sparse vegetation and very low soil moisture limit HR.
W. Shen, G. D. Jenerette, D. Hui, and R. L. Scott
Biogeosciences, 13, 425–439, https://doi.org/10.5194/bg-13-425-2016, https://doi.org/10.5194/bg-13-425-2016, 2016
Short summary
Short summary
This simulation study found that dry legacy imposed positive impacts on net ecosystem production (NEP) whereas wet legacy had negative impacts on NEP, indicating that dry legacy can foster more C sequestration and wet legacy more C release. The carryover of soil nitrogen was mainly responsible for the gross ecosystem production (GEP) responses, while the carryovers of plant biomass, litter and soil organic matter were mainly responsible for the ecosystem respiration (Re) responses.
N. MacBean, F. Maignan, P. Peylin, C. Bacour, F.-M. Bréon, and P. Ciais
Biogeosciences, 12, 7185–7208, https://doi.org/10.5194/bg-12-7185-2015, https://doi.org/10.5194/bg-12-7185-2015, 2015
Short summary
Short summary
Previous model evaluation studies have shown that terrestrial biosphere models (TBMs) need a better representation of the leaf phenology, but the model deficiency could be related to incorrect model parameters or inaccurate model structure. This paper presents a framework for optimising the parameters of phenology models that are commonly used in TBMs. It further demonstrates that the optimisation can result in changes to trends in vegetation productivity and an improvement in gross C fluxes.
B. Poulter, N. MacBean, A. Hartley, I. Khlystova, O. Arino, R. Betts, S. Bontemps, M. Boettcher, C. Brockmann, P. Defourny, S. Hagemann, M. Herold, G. Kirches, C. Lamarche, D. Lederer, C. Ottlé, M. Peters, and P. Peylin
Geosci. Model Dev., 8, 2315–2328, https://doi.org/10.5194/gmd-8-2315-2015, https://doi.org/10.5194/gmd-8-2315-2015, 2015
Short summary
Short summary
Land cover is an essential variable in earth system models and determines conditions driving biogeochemical, energy and water exchange between ecosystems and the atmosphere. A methodology is presented for mapping plant functional types used in global vegetation models from a updated land cover classification system and open-source conversion tool, resulting from a consultative process among map producers and modelers engaged in the European Space Agency’s Land Cover Climate Change Initiative.
N. Vuichard and D. Papale
Earth Syst. Sci. Data, 7, 157–171, https://doi.org/10.5194/essd-7-157-2015, https://doi.org/10.5194/essd-7-157-2015, 2015
Short summary
Short summary
In order to fill the gaps in the in situ meteorological data that is acquired at FLUXNET stations, we develop a method that makes use of the reanalysis ERA-interim, which is available globally and at a high temporal resolution. Because the ERA-interim data are not measured at site level, we bias-correct them. The developed method is applied and evaluated at 153 FLUXNET stations. The final product consists of uninterrupted meteorological records that can be used for running most ecosystem models.
T. De Groote, D. Zona, L. S. Broeckx, M. S. Verlinden, S. Luyssaert, V. Bellassen, N. Vuichard, R. Ceulemans, A. Gobin, and I. A. Janssens
Geosci. Model Dev., 8, 1461–1471, https://doi.org/10.5194/gmd-8-1461-2015, https://doi.org/10.5194/gmd-8-1461-2015, 2015
Short summary
Short summary
This paper describes the modification of the widely used land surface model ORCHIDEE for stand-scale simulations of short rotation coppice (SRC) plantations. The modifications presented in this paper were evaluated using data from two Belgian poplar-based SRC sites, for which multiple measurements and meteorological data were available. The simulations show that the model predicts aboveground biomass production, ecosystem photosynthesis and ecosystem respiration well.
S.-H. Hong, J. M. H. Hendrickx, J. Kleissl, R. G. Allen, W. G. M. Bastiaanssen, R. L. Scott, and A. L. Steinwand
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-13479-2014, https://doi.org/10.5194/hessd-11-13479-2014, 2014
Manuscript not accepted for further review
P. Roudier, A. Ducharne, and L. Feyen
Hydrol. Earth Syst. Sci., 18, 2789–2801, https://doi.org/10.5194/hess-18-2789-2014, https://doi.org/10.5194/hess-18-2789-2014, 2014
M. Guimberteau, A. Ducharne, P. Ciais, J. P. Boisier, S. Peng, M. De Weirdt, and H. Verbeeck
Geosci. Model Dev., 7, 1115–1136, https://doi.org/10.5194/gmd-7-1115-2014, https://doi.org/10.5194/gmd-7-1115-2014, 2014
K. Nishina, A. Ito, D. J. Beerling, P. Cadule, P. Ciais, D. B. Clark, P. Falloon, A. D. Friend, R. Kahana, E. Kato, R. Keribin, W. Lucht, M. Lomas, T. T. Rademacher, R. Pavlick, S. Schaphoff, N. Vuichard, L. Warszawaski, and T. Yokohata
Earth Syst. Dynam., 5, 197–209, https://doi.org/10.5194/esd-5-197-2014, https://doi.org/10.5194/esd-5-197-2014, 2014
Z. Shi, M. L. Thomey, W. Mowll, M. Litvak, N. A. Brunsell, S. L. Collins, W. T. Pockman, M. D. Smith, A. K. Knapp, and Y. Luo
Biogeosciences, 11, 621–633, https://doi.org/10.5194/bg-11-621-2014, https://doi.org/10.5194/bg-11-621-2014, 2014
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests
Machine learning and global vegetation: random forests for downscaling and gap filling
Unraveling phenological and stomatal responses to flash drought and implications for water and carbon budgets
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Technical assessment combined with extended cost-benefit analysis for groundwater ecosystem services restoration – An application for Grand Bahama
Technical note: Seamless extraction and analysis of river networks in R
Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California
Improving regional climate simulations based on a hybrid data assimilation and machine learning method
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Impacts of different types of El Niño events on water quality over the Corn Belt, United States
Leveraging sap flow data in a catchment-scale hybrid model to improve soil moisture and transpiration estimates
Coupled modelling of hydrological processes and grassland production in two contrasting climates
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling
How does water yield respond to mountain pine beetle infestation in a semiarid forest?
Daily soil temperature modeling improved by integrating observed snow cover and estimated soil moisture in the USA Great Plains
Plant hydraulic transport controls transpiration sensitivity to soil water stress
Drought onset and propagation into soil moisture and grassland vegetation responses during the 2012–2019 major drought in Southern California
Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects
Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion
Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models
Quantification of ecohydrological sensitivities and their influencing factors at the seasonal scale
Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis
Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor
Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies
Calibration of hydrological models for ecologically relevant streamflow predictions: a trade-off between fitting well to data and estimating consistent parameter sets?
Spatial variability of mean daily estimates of actual evaporation from remotely sensed imagery and surface reference data
Quantification of soil water balance components based on continuous soil moisture measurement and the Richards equation in an irrigated agricultural field of a desert oasis
Mapping the suitability of groundwater-dependent vegetation in a semi-arid Mediterranean area
Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach
The 18O ecohydrology of a grassland ecosystem – predictions and observations
A comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions
Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river
Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data
Testing an optimality-based model of rooting zone water storage capacity in temperate forests
A regional-scale ecological risk framework for environmental flow evaluations
Climate-driven disturbances in the San Juan River sub-basin of the Colorado River
Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space
Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States
Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI
Importance of considering riparian vegetation requirements for the long-term efficiency of environmental flows in aquatic microhabitats
Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish
Jesús Sánchez-Dávila, Miquel De Cáceres, Jordi Vayreda, and Javier Retana
Hydrol. Earth Syst. Sci., 28, 3037–3050, https://doi.org/10.5194/hess-28-3037-2024, https://doi.org/10.5194/hess-28-3037-2024, 2024
Short summary
Short summary
Forest blue water is determined by the climate, functional traits, and stand structure variables. The leaf area index (LAI) is the main driver of the trade-off between the blue and green water. Blue water is concentrated in the autumn–winter season, and deciduous trees can increase the relative blue water. The leaf phenology and seasonal distribution are determinants for the relative blue water.
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024, https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Short summary
Drought often manifests itself in vegetation; however, obtaining high-resolution remote-sensing products that are spatially and temporally consistent is difficult. In this study, we show that machine learning (ML) can fill data gaps in existing products. We also demonstrate that ML can be used as a downscaling tool. By relying on ML for gap filling and downscaling, we can obtain a more holistic view of the impacts of drought on vegetation.
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024, https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Short summary
We simulate how dynamic vegetation interacts with the atmosphere during extreme drought events known as flash droughts. We find that plants nearly halt water and carbon exchanges and limit their growth during flash drought. This work has implications for how to account for changes in vegetation state during extreme drought events when making predictions under future climate scenarios.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Anne Imig, Francesca Perosa, Carolina Iwane Hotta, Sophia Klausner, Kristen Welsh, and Arno Rein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-236, https://doi.org/10.5194/hess-2023-236, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
In 2019, Hurricane Dorian led to salinization of groundwater resources on the island of Grand Bahama. We assessed the feasibility of managed aquifer recharge (MAR) for restoring fresh groundwater. Furthermore, we applied a financial and an extended cost-benefit analysis for assessing ecosystem services supported by MAR and reforestation. As a first estimate, MAR could only provide a small contribution to the water demand. Reforestation measures were assessed as financially profitable.
Luca Carraro
Hydrol. Earth Syst. Sci., 27, 3733–3742, https://doi.org/10.5194/hess-27-3733-2023, https://doi.org/10.5194/hess-27-3733-2023, 2023
Short summary
Short summary
Mathematical models are key to the study of environmental processes in rivers. Such models often require information on river morphology from geographic information system (GIS) software, which hinders the use of replicable workflows. Here I present rivnet, an R package for simple, robust, GIS-free extraction and analysis of river networks. The package is designed so as to require minimal user input and is oriented towards ecohydrological, ecological and biogeochemical modeling.
Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein
Hydrol. Earth Syst. Sci., 27, 3021–3039, https://doi.org/10.5194/hess-27-3021-2023, https://doi.org/10.5194/hess-27-3021-2023, 2023
Short summary
Short summary
Managing streams for environmental flows involves prioritizing healthy stream ecosystems while distributing water resources. Classifying streams of similar types is a useful step in developing environmental flows. Environmental flows are often developed on data-poor streams that must be modeled. This paper has developed a new method of classification that prioritizes model accuracy. The new method advances environmental streamflow management and modeling of data-poor watersheds.
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023, https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Short summary
This study attempts to provide a framework for direct integration of soil moisture observations collected from soil sensors and satellite imagery into process-based crop models for improving the representation of agricultural systems. The performance of this framework was evaluated across 19 sites times years for crop yield, normalized difference vegetation index (NDVI), soil moisture, tile flow drainage, and nitrate leaching.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Don A. White, Shiqi Ren, Daniel S. Mendham, Francisco Balocchi-Contreras, Richard P. Silberstein, Dean Meason, Andrés Iroumé, and Pablo Ramirez de Arellano
Hydrol. Earth Syst. Sci., 26, 5357–5371, https://doi.org/10.5194/hess-26-5357-2022, https://doi.org/10.5194/hess-26-5357-2022, 2022
Short summary
Short summary
Of all the planting options for wood production and carbon storage, Eucalyptus species provoke the greatest concern about their effect on water resources. We compared Eucalyptus and Pinus species (the two most widely planted genera) by fitting a simple model to the published estimates of their annual water use. There was no significant difference between the two genera. This has important implications for the global debate around Eucalyptus and is an option for carbon forests.
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314, https://doi.org/10.5194/hess-26-5291-2022, https://doi.org/10.5194/hess-26-5291-2022, 2022
Short summary
Short summary
Variable infiltration capacity simulation considering dynamic vegetation types and structural parameters is able to better capture the effect of temporally explicit vegetation change and climate variation in hydrological regimes. Vegetation greening including interannual LAI and intra-annual LAI temporal pattern change induced by large-scale ecological restoration and non-vegetation underlying surface change played dominant roles in the natural streamflow reduction of the Yellow River basin.
Pan Chen, Wenhong Li, and Keqi He
Hydrol. Earth Syst. Sci., 26, 4875–4892, https://doi.org/10.5194/hess-26-4875-2022, https://doi.org/10.5194/hess-26-4875-2022, 2022
Short summary
Short summary
The study assessed changes in total nitrogen (TN) and total phosphorus (TP) loads in response to eastern Pacific (EP) and central Pacific (CP) El Niño events over the Corn Belt, USA, using the SWAT model. Results showed that EP (CP) El Niño events improved (exacerbated) water quality in the region. Furthermore, EP El Niño had a much broader and longer impact on water quality at the outlets, but CP El Niño could lead to similar increases in TN/TP loads as EP El Niño at the specific watersheds.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022, https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Short summary
Most models that simulate water and carbon exchanges with the atmosphere rely on information about vegetation, but optimality models predict vegetation properties based on general principles. Here, we use the Vegetation Optimality Model (VOM) to predict vegetation behaviour at five savanna sites. The VOM overpredicted vegetation cover and carbon uptake during the wet seasons but also performed similarly to conventional models, showing that vegetation optimality is a promising approach.
Hongyu Li, Yi Luo, Lin Sun, Xiangdong Li, Changkun Ma, Xiaolei Wang, Ting Jiang, and Haoyang Zhu
Hydrol. Earth Syst. Sci., 26, 17–34, https://doi.org/10.5194/hess-26-17-2022, https://doi.org/10.5194/hess-26-17-2022, 2022
Short summary
Short summary
Drying soil layers (DSLs) have been extensively reported in artificial forestland in the Loess Plateau, China, which has limited water resources and deep loess. To address this issue relating to plant root–soil water interactions, this study developed a root growth model that simulates both the dynamic rooting depth and fine-root distribution. Evaluation vs. field data proved a positive performance. Long-term simulation reproduced the evolution process of the DSLs and revealed their mechanisms.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021, https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary
Short summary
To quantify how vegetation greening impacts the capacity of water supply, we built a hybrid model and conducted a case study using the upper Han River basin (UHRB) that serves as the water source area to the world’s largest water diversion project. Vegetation greening in the UHRB during 2001–2018 induced annual water yield (WY) greatly decreased. Vegetation greening also increased the possibility of drought and reduced a quarter of WY on average during drought periods.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou
Hydrol. Earth Syst. Sci., 25, 4681–4699, https://doi.org/10.5194/hess-25-4681-2021, https://doi.org/10.5194/hess-25-4681-2021, 2021
Short summary
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.
Haidong Zhao, Gretchen F. Sassenrath, Mary Beth Kirkham, Nenghan Wan, and Xiaomao Lin
Hydrol. Earth Syst. Sci., 25, 4357–4372, https://doi.org/10.5194/hess-25-4357-2021, https://doi.org/10.5194/hess-25-4357-2021, 2021
Short summary
Short summary
This study was done to develop an improved soil temperature model for the USA Great Plains by using common weather station variables as inputs. After incorporating knowledge of estimated soil moisture and observed daily snow depth, the improved model showed a near 50 % gain in performance compared to the original model. We conclude that our improved model can better estimate soil temperature at the surface soil layer where most hydrological and biological processes occur.
Brandon P. Sloan, Sally E. Thompson, and Xue Feng
Hydrol. Earth Syst. Sci., 25, 4259–4274, https://doi.org/10.5194/hess-25-4259-2021, https://doi.org/10.5194/hess-25-4259-2021, 2021
Short summary
Short summary
Plants affect the global water and carbon cycles by modifying their water use and carbon intake in response to soil moisture. Global climate models represent this response with either simple empirical models or complex physical models. We reveal that the latter improves predictions in plants with large flow resistance; however, adding dependence on atmospheric moisture demand to the former matches performance of the latter, leading to a new tool for improving carbon and water cycle predictions.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Yanlan Liu, Nataniel M. Holtzman, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 25, 2399–2417, https://doi.org/10.5194/hess-25-2399-2021, https://doi.org/10.5194/hess-25-2399-2021, 2021
Short summary
Short summary
The flow of water through plants varies with species-specific traits. To determine how they vary across the world, we mapped the traits that best allowed a model to match microwave satellite data. We also defined average values across a few clusters of trait behavior. These form a tractable solution for use in large-scale models. Transpiration estimates using these clusters were more accurate than if using plant functional types. We expect our maps to improve transpiration forecasts.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Yiping Hou, Mingfang Zhang, Xiaohua Wei, Shirong Liu, Qiang Li, Tijiu Cai, Wenfei Liu, Runqi Zhao, and Xiangzhuo Liu
Hydrol. Earth Syst. Sci., 25, 1447–1466, https://doi.org/10.5194/hess-25-1447-2021, https://doi.org/10.5194/hess-25-1447-2021, 2021
Short summary
Short summary
Ecohydrological sensitivity, defined as the response intensity of streamflow to vegetation change, indicates the hydrological sensitivity to vegetation change. The study revealed seasonal ecohydrological sensitivities were highly variable, depending on climate condition and watershed attributes. Dry season ecohydrological sensitivity was mostly determined by topography, soil and vegetation, while wet season ecohydrological sensitivity was mainly controlled by soil, landscape and vegetation.
Xiangyu Luan and Giulia Vico
Hydrol. Earth Syst. Sci., 25, 1411–1423, https://doi.org/10.5194/hess-25-1411-2021, https://doi.org/10.5194/hess-25-1411-2021, 2021
Short summary
Short summary
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the joint effects of (unpredictable) air temperature and soil water availability on crop heat stress via a mechanistic model. Larger but more infrequent precipitation increased crop canopy temperatures. Keeping crops well watered via irrigation could reduce canopy temperature but not enough to always exclude heat damage. Thus, irrigation is only a partial solution to adapt to warmer and drier climates.
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020, https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Short summary
There is a growing interest globally in the spatial distribution and temporal dynamics of intermittently flowing streams and rivers. We developed an approach to quantify catchment-wide flow intermittency over long time frames. Modelled patterns of flow intermittency in eastern Australia revealed highly dynamic behaviour in space and time. The developed approach is transferable to other parts of the world and can inform hydro-ecological understanding and management of intermittent streams.
Yusen Yuan, Taisheng Du, Honglang Wang, and Lixin Wang
Hydrol. Earth Syst. Sci., 24, 4491–4501, https://doi.org/10.5194/hess-24-4491-2020, https://doi.org/10.5194/hess-24-4491-2020, 2020
Short summary
Short summary
The isotopic composition of ambient water vapor is an important source of atmospheric water vapor and has not been able to be estimated to date using the Keeling plot approach. Here we proposed two new methods to estimate the isotopic composition of ambient water vapor: one using the intersection point method and another relying on the intermediate value theorem.
Valentin Couvreur, Youri Rothfuss, Félicien Meunier, Thierry Bariac, Philippe Biron, Jean-Louis Durand, Patricia Richard, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020, https://doi.org/10.5194/hess-24-3057-2020, 2020
Short summary
Short summary
Isotopic labeling of soil water is a broadly used tool for tracing the origin of water extracted by plants and computing root water uptake (RWU) profiles with multisource mixing models. In this study, we show how a method such as this may misconstrue time series of xylem water isotopic composition as the temporal dynamics of RWU by simulating data collected during a tall fescue rhizotron experiment with an isotope-enabled physical soil–root model accounting for variability in root traits.
Thibault Hallouin, Michael Bruen, and Fiachra E. O'Loughlin
Hydrol. Earth Syst. Sci., 24, 1031–1054, https://doi.org/10.5194/hess-24-1031-2020, https://doi.org/10.5194/hess-24-1031-2020, 2020
Short summary
Short summary
A hydrological model was used to compare different parameterisation strategies in view of predicting ecologically relevant streamflow indices in 33 Irish catchments. Compared for 14 different periods, a strategy fitting simulated and observed streamflow indices yielded better performance than fitting simulated and observed streamflow, but it also yielded a less consistent ensemble of parameter sets, suggesting that these indices may not be hydrologically relevant for model parameterisation.
Robert N. Armstrong, John W. Pomeroy, and Lawrence W. Martz
Hydrol. Earth Syst. Sci., 23, 4891–4907, https://doi.org/10.5194/hess-23-4891-2019, https://doi.org/10.5194/hess-23-4891-2019, 2019
Short summary
Short summary
Digital and thermal images taken near midday were used to scale daily point observations of key factors driving actual-evaporation estimates across a complex Canadian Prairie landscape. Point estimates of actual evaporation agreed well with observed values via eddy covariance. Impacts of spatial variations on areal estimates were minor, and no covariance was found between model parameters driving the energy term. The methods can be applied further to improve land surface parameterisations.
Zhongkai Li, Hu Liu, Wenzhi Zhao, Qiyue Yang, Rong Yang, and Jintao Liu
Hydrol. Earth Syst. Sci., 23, 4685–4706, https://doi.org/10.5194/hess-23-4685-2019, https://doi.org/10.5194/hess-23-4685-2019, 2019
Short summary
Short summary
A database of soil moisture measurements from the middle Heihe River basin of China was used to test the potential of a soil moisture database in estimating the soil water balance components (SWBCs). We determined SWBCs using a method that combined the soil water balance method and the inverse Richards equation. This work confirmed that relatively reasonable estimations of the SWBCs in coarse-textured sandy soils can be derived using soil moisture measurements.
Inês Gomes Marques, João Nascimento, Rita M. Cardoso, Filipe Miguéns, Maria Teresa Condesso de Melo, Pedro M. M. Soares, Célia M. Gouveia, and Cathy Kurz Besson
Hydrol. Earth Syst. Sci., 23, 3525–3552, https://doi.org/10.5194/hess-23-3525-2019, https://doi.org/10.5194/hess-23-3525-2019, 2019
Short summary
Short summary
Mediterranean cork woodlands are very particular agroforestry systems present in a confined area of the Mediterranean Basin. They are of great importance due to their high socioeconomic value; however, a decrease in water availability has put this system in danger. In this paper we build a model that explains this system's tree-species distribution in southern Portugal from environmental variables. This could help predict their future distribution under changing climatic conditions.
Samuli Launiainen, Mingfu Guan, Aura Salmivaara, and Antti-Jussi Kieloaho
Hydrol. Earth Syst. Sci., 23, 3457–3480, https://doi.org/10.5194/hess-23-3457-2019, https://doi.org/10.5194/hess-23-3457-2019, 2019
Short summary
Short summary
Boreal forest evapotranspiration and water cycle is modeled at stand and catchment scale using physiological and physical principles, open GIS data and daily weather data. The approach can predict daily evapotranspiration well across Nordic coniferous-dominated stands and successfully reproduces daily streamflow and annual evapotranspiration across boreal headwater catchments in Finland. The model is modular and simple and designed for practical applications over large areas using open data.
Regina T. Hirl, Hans Schnyder, Ulrike Ostler, Rudi Schäufele, Inga Schleip, Sylvia H. Vetter, Karl Auerswald, Juan C. Baca Cabrera, Lisa Wingate, Margaret M. Barbour, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2581–2600, https://doi.org/10.5194/hess-23-2581-2019, https://doi.org/10.5194/hess-23-2581-2019, 2019
Short summary
Short summary
We evaluated the system-scale understanding of the propagation of the oxygen isotope signal (δ18O) of rain through soil and xylem to leaf water in a temperate drought-prone grassland. Biweekly δ18O observations of the water pools made during seven growing seasons were accurately reproduced by the 18O-enabled process-based model MuSICA. While water uptake occurred from shallow soil depths throughout dry and wet periods, leaf water 18O enrichment responded to both soil and atmospheric moisture.
Christoph Schürz, Brigitta Hollosi, Christoph Matulla, Alexander Pressl, Thomas Ertl, Karsten Schulz, and Bano Mehdi
Hydrol. Earth Syst. Sci., 23, 1211–1244, https://doi.org/10.5194/hess-23-1211-2019, https://doi.org/10.5194/hess-23-1211-2019, 2019
Short summary
Short summary
For two Austrian catchments we simulated discharge and nitrate-nitrogen (NO3-N) considering future changes of climate, land use, and point source emissions together with the impact of different setups and parametrizations of the implemented eco-hydrological model. In a comprehensive analysis we identified the dominant sources of uncertainty for the simulation of discharge and NO3-N and further examined how specific properties of the model inputs control the future simulation results.
Yu-Ting Shih, Pei-Hao Chen, Li-Chin Lee, Chien-Sen Liao, Shih-Hao Jien, Fuh-Kwo Shiah, Tsung-Yu Lee, Thomas Hein, Franz Zehetner, Chung-Te Chang, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 22, 6579–6590, https://doi.org/10.5194/hess-22-6579-2018, https://doi.org/10.5194/hess-22-6579-2018, 2018
Short summary
Short summary
DOC and DIC export in Taiwan shows that the annual DOC and DIC fluxes were 2.7–4.8 and 48.4–54.3 ton C km2 yr1, respectively, which were approximately 2 and 20 times higher than the global means of 1.4 and 2.6 ton C km2 yr1, respectively.
Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, Dan Zhu, Fabienne Maignan, Shushi Peng, Shilong Piao, Jan Polcher, Feng Zhou, Hyungjun Kim, and other China-Trend-Stream project members
Hydrol. Earth Syst. Sci., 22, 5463–5484, https://doi.org/10.5194/hess-22-5463-2018, https://doi.org/10.5194/hess-22-5463-2018, 2018
Short summary
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Matthias J. R. Speich, Heike Lischke, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4097–4124, https://doi.org/10.5194/hess-22-4097-2018, https://doi.org/10.5194/hess-22-4097-2018, 2018
Short summary
Short summary
To simulate the water balance of, e.g., a forest plot, it is important to estimate the maximum volume of water available to plants. This depends on soil properties and the average depth of roots. Rooting depth has proven challenging to estimate. Here, we applied a model assuming that plants dimension their roots to optimize their carbon budget. We compared its results with values obtained by calibrating a dynamic water balance model. In most cases, there is good agreement between both methods.
Gordon C. O'Brien, Chris Dickens, Eleanor Hines, Victor Wepener, Retha Stassen, Leo Quayle, Kelly Fouchy, James MacKenzie, P. Mark Graham, and Wayne G. Landis
Hydrol. Earth Syst. Sci., 22, 957–975, https://doi.org/10.5194/hess-22-957-2018, https://doi.org/10.5194/hess-22-957-2018, 2018
Short summary
Short summary
In global water resource allocation, robust tools are required to establish environmental flows. In addition, tools should characterize past, present and future consequences of altered flows and non-flow variables to social and ecological management objectives. PROBFLO is a risk assessment method designed to meet best practice principles for regional-scale holistic E-flow assessments. The approach has been developed in Africa and applied across the continent.
Katrina E. Bennett, Theodore J. Bohn, Kurt Solander, Nathan G. McDowell, Chonggang Xu, Enrique Vivoni, and Richard S. Middleton
Hydrol. Earth Syst. Sci., 22, 709–725, https://doi.org/10.5194/hess-22-709-2018, https://doi.org/10.5194/hess-22-709-2018, 2018
Short summary
Short summary
We applied the Variable Infiltration Capacity hydrologic model to examine scenarios of change under climate and landscape disturbances in the San Juan River basin, a major sub-watershed of the Colorado River basin. Climate change coupled with landscape disturbance leads to reduced streamflow in the San Juan River basin. Disturbances are expected to be widespread in this region. Therefore, accounting for these changes within the context of climate change is imperative for water resource planning.
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary
Short summary
Which is the dominant effect on evapotranspiration in northern forests, an increase by recent forests expansion or a decrease by the water use response due to increasing CO2 concentrations? We determined the dominant effect during the period 1961–2012 in 65 Swedish basins. We used the Budyko framework to study the hydroclimatic movements in Budyko space. Our findings suggest that forest expansion is the dominant driver of long-term and large-scale evapotranspiration changes.
Jie Zhu, Ge Sun, Wenhong Li, Yu Zhang, Guofang Miao, Asko Noormets, Steve G. McNulty, John S. King, Mukesh Kumar, and Xuan Wang
Hydrol. Earth Syst. Sci., 21, 6289–6305, https://doi.org/10.5194/hess-21-6289-2017, https://doi.org/10.5194/hess-21-6289-2017, 2017
Short summary
Short summary
Forested wetlands provide myriad ecosystem services threatened by climate change. This study develops empirical hydrologic models by synthesizing hydrometeorological data across the southeastern US. We used global climate projections to model hydrological changes for five wetlands. We found all wetlands are predicted to become drier by the end of this century. This study suggests that climate change may substantially affect wetland biogeochemical cycles and other functions in the future.
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary
Short summary
Plants are shaping the landscape and controlling the hydrological cycle, particularly in arid and semi-arid ecosystems. Remote sensing data appears as an appealing source of information for vegetation monitoring, in particular in areas with a limited amount of available field data. Here, we present an example of how remote sensing data can be exploited in a data-scarce basin. We propose a mathematical methodology that can be used as a springboard for future applications.
Rui Rivaes, Isabel Boavida, José M. Santos, António N. Pinheiro, and Teresa Ferreira
Hydrol. Earth Syst. Sci., 21, 5763–5780, https://doi.org/10.5194/hess-21-5763-2017, https://doi.org/10.5194/hess-21-5763-2017, 2017
Short summary
Short summary
We analyzed the influence of considering riparian requirements for the long-term efficiency of environmental flows. After a decade, environmental flows disregarding riparian requirements promoted riparian degradation and consequently the change in the hydraulic characteristics of the river channel and the modification of the available habitat area for fish species. Environmental flows regarding riparian vegetation requirements were able to sustain the fish habitat close to the natural condition.
José María Santiago, Rafael Muñoz-Mas, Joaquín Solana-Gutiérrez, Diego García de Jalón, Carlos Alonso, Francisco Martínez-Capel, Javier Pórtoles, Robert Monjo, and Jaime Ribalaygua
Hydrol. Earth Syst. Sci., 21, 4073–4101, https://doi.org/10.5194/hess-21-4073-2017, https://doi.org/10.5194/hess-21-4073-2017, 2017
Short summary
Short summary
High-time-resolution models for streamflow and stream temperature are used in this study to predict future brown trout habitat loss. Flow reductions falling down to 51 % of current values and water temperature increases growing up to 4 ºC are predicted. Streamflow and temperature will act synergistically affecting fish. We found that the thermal response of rivers is influenced by basin geology and, consequently, geology will be also an influent factor in the cold-water fish distribution shift.
Cited articles
Abramowitz, G., Leuning, R., Clark, M., and Pitman, A.:
Evaluating the performance of land surface models,
J. Climate, 21, 5468–5481, 2008.
Allen, C. D.:
Chapter 4 – Forest ecosystem reorganization underway in the Southwestern US: A preview of widespread forest changes in the Anthropocene?,
in: Forest Conservation and Management in the Anthropocene: Adaptation of Science, Policy and Practice,
edited by: Bixler, R. P. and Miller, C.,
University Press of Colorado, Boulder, Colorado, 57–79, 2016.
Anderson-Teixeira, K. J., Delong, J. P., Fox, A. M., Brese, D. A., and Litvak, M. E.: Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico, Glob. Change Biol., 17, 410–424, https://doi.org/10.1111/j.1365-2486.2010.02269.x, 2011.
Archer, S. R. and Predick, K. I.: Climate Change and Ecosystems of the Southwestern United States, Rangelands, 30, 23–28, https://doi.org/10.2111/1551-501x(2008)30[23:ccaeot]2.0.co;2, 2008.
Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., and Meko, D. M.: Assessing the Risk of Persistent Drought Using Climate Model Simulations and Paleoclimate Data, J. Climate, 27, 7529–7549, https://doi.org/10.1175/jcli-d-12-00282.1, 2014.
Ault, T. R., Mankin, J. S., Cook, B. I., and Smerdon, J. E.:
Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest,
Science Advances,
2, e1600873, https://doi.org/10.1126/sciadv.1600873, 2016.
Baldocchi, D. D., Ma, S., Rambal, S., Misson, L., Ourcival, J.-M., Limousin, J.-M., Pereira, J., and Papale, D.:
On the differential advantages of evergreenness and deciduousness in mediterranean oak woodlands: a flux perspective,
Ecol. Appl.,
20, 1583–1597, https://doi.org/10.1890/08-2047.1, 2010.
Belnap, J., Weber, B., and Büdel, B.: Biological Soil Crusts: an Organizing Principle in Drylands, in Biological soil crusts: an organizing principle in drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Springer, Cham, Switzerland, 3–13, https://doi.org/10.1007/978-3-319-30214-0, 2016.
Berg, A., Findell, K., Lintner, B., Giannini, A., Seneviratne, S., van den Hurk, B., Lorenz, R., Pitman, A., Hagemann, S., Meier, A., Cheruy, F., Ducharne, A., Malyshev, S., and Milly, P. C. D.:
Land-atmosphere feedbacks amplify aridity increase over land under global warning,
Nat. Clim. Change,
6, 869–874, https://doi.org/10.1038/nclimate3029, 2016.
Best, M. J., Abramowitz, G., Johnson, H. R., Pitman, A. J., Balsamo, G., Boone, A., Cuntz, M., Decharme, B., Dirmeyer, P. A., Dong, J., Ek, M., Guo, Z., Haverd, V., Van Den Hurk, B. J. J., Nearing, G. S., Pak, B., Peters-Lidard, C., Santanello, J. A., Stevens, L., and Vuichard, N.:
The Plumbing of Land Surface Models: Benchmarking Model Performance,
J. Hydrometeorol.,
16, 1425–1442, https://doi.org/10.1175/jhm-d-14-0158.1, 2015.
Biederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R., Litvak, M. E., Kolb, T. E., Yepez, E. A., Oechel, W. C., Blanken, P. D., Bell, T. W., Garatuza-Payan, J., Maurer, G. E., Dore, S., and Burns, S. P.:
Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America,
Global Change Biol.,
22, 1867–1879, https://doi.org/10.1111/gcb.13222, 2016.
Biederman, J. A., Scott, R. L., Bell, T. W., Bowling, D. R., Dore, S., Garatuza-Payan, J., Kolb, T. E., Krishnan, P., Krofcheck, D. J., Litvak, M. E., Maurer, G. E., Meyers, T. P., Oechel, W. C., Papuga, S. A., Ponce-Campos, G. E., Rodriguez, J. C., Smith, W. K., Vargas, R., Watts, C. J., Yepez, E. A., and Goulden, M. L.: CO2
exchange and evapotranspiration across dryland ecosystems of southwestern North America, Glob. Change Biol., 23, 4204–4221, https://doi.org/10.1111/gcb.13686, 2017.
Bierkens, M. F. P.:
Global hydrology 2015: State, trends, and directions,
Water Resour. Res.,
51, 4923–4947, https://doi.org/10.1002/2015wr017173, 2015.
Bonan, G. B., Williams, M., Fisher, R. A., and Oleson, K. W.: Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum, Geosci. Model Dev., 7, 2193–2222, https://doi.org/10.5194/gmd-7-2193-2014, 2014.
Boone, A., de Rosnay, P. D., Balsamo, G., Beljaars, A., Chopin, F., Decharme, B., Delire, C., Ducharne, A., Gascoin, S., Grippa, M., Guichard, F., Gusev, Y., Harris, P., Jarlan, L., Kergoat, L., Mougin, E., Nasonova, O., Norgaard, A., Orgeval, T., Ottlé, C., Poccard-Leclercq, I., Polcher, J., Sandholt, I., Saux-Picart, S., Taylor, C., and Xue, Y.:
The AMMA Land Surface Model Intercomparison Project (ALMIP),
B. Am. Meteorol. Soc.,
90, 1865–1880, https://doi.org/10.1175/2009bams2786.1, 2009.
Botta, A., Viovy, N., Ciais, P., Friedlingstein, P., and Monfray, P.:
A global prognostic scheme of leaf onset using satellite data,
Global Change Biol.,
6, 709–725, https://doi.org/10.1046/j.1365-2486.2000.00362.x, 2000.
Carsel, R. F. and Parrish, R. S.:
Developing joint probability distributions of soil water retention characteristics,
Water Resour. Res.,
24, 755–769, https://doi.org/10.1029/wr024i005p00755, 1988.
CeCILL: https://cecill.info/index.en.html, last access: 2 November 2020.
Chang, L.-L., Dwivedi, R., Knowles, J. F., Fang, Y.-H., Niu, G.-Y., Pelletier, J. D., Rasmussen, C., Durcik, M., Barron-Gafford, G. A., and Meixner, T.:
Why Do Large-Scale Land Surface Models Produce a Low Ratio of Transpiration to Evapotranspiration?,
J. Geophys. Res.-Atmos.,
123, 9109–9130, https://doi.org/10.1029/2018jd029159, 2018.
Chen, X., Maignan, F., Viovy, N., Bastos, A., Goll, D., Wu, J., Liu, L., Yue, C., Peng, S., Yuan, W., Conceição, A. C., O'Sullivan, M., and Ciais, P.: Novel Representation of Leaf Phenology Improves Simulation of Amazonian Evergreen Forest Photosynthesis in a Land Surface Model,
J. Adv. Model. Earth Sy.,
12, e2018MS001565, https://doi.org/10.1029/2018ms001565, 2020.
Choisnel, E. M., Jourdain, S. V., and Jacquart, C. J.: Climatological evaluation of some fluxes of the surface energy and soil water balances over France, Ann. Geophys., 13, 666–674, https://doi.org/10.1007/s00585-995-0666-y, 1995.
Chubb, T., Manton, M. J., Siems, S. T., Peace, A. D., and Bilish, S. P.: Estimation of Wind-Induced Losses from a Precipitation Gauge Network in the Australian Snowy Mountains, J. Hydrometeorol., 16, 2619–2638, https://doi.org/10.1175/jhm-d-14-0216.1, 2015.
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and Zeng, X.:
Improving the representation of hydrologic processes in Earth System Models,
Water Resour. Res.,
51, 5929–5956, https://doi.org/10.1002/2015wr017096, 2015.
Cook, B. I., Ault, T. R., and Smerdon, J. E.:
Unprecedented 21st century drought risk in the American Southwest and Central Plains,
Science Advances,
1, e1400082, https://doi.org/10.1126/sciadv.1400082, 2015.
De Kauwe, M. G., Taylor, C. M., Harris, P. P., Weedon, G. P., and Ellis, R. J.:
Quantifying Land Surface Temperature Variability for Two Sahelian Mesoscale Regions during the Wet Season,
J. Hydrometeorol.,
14, 1605–1619, https://doi.org/10.1175/jhm-d-12-0141.1, 2013.
De Kauwe, M. G., Zhou, S.-X., Medlyn, B. E., Pitman, A. J., Wang, Y.-P., Duursma, R. A., and Prentice, I. C.: Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe, Biogeosciences, 12, 7503–7518, https://doi.org/10.5194/bg-12-7503-2015, 2015.
De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., Harper, A. B., Hickler, T., Jain, A. K., Luo, Y., Lu, X., Luus, K., Parton, W. J., Shu, S., Wang, Y. P., Werner, C., Xia, J., Pendall, E., Morgan, J. A., Ryan, E. M., Carrillo, Y., Dijkstra, F. A., Zelikova, T. J., and Norby, R. J.:
Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment,
Global Change Biol.,
23, 3623–3645, https://doi.org/10.1111/gcb.13643, 2017.
de Rosnay, P. and Polcher, J.: Modelling root water uptake in a complex land surface scheme coupled to a GCM, Hydrol. Earth Syst. Sci., 2, 239–255, https://doi.org/10.5194/hess-2-239-1998, 1998.
de Rosnay, P., Bruen, M., and Polcher, J.:
Sensitivity of surface fluxes to the number of layers in the soil model used in GCMs,
Geophys. Res. Lett.,
27, 3329–3332, https://doi.org/10.1029/2000gl011574, 2000.
de Rosnay, P., Polcher, J., Bruen, M., and Laval, K.:
Impact of a physically based soil water flow and soil-plant interaction representation for modeling large-scale land surface processes,
J. Geophys. Res.-Atmos.,
107, 4118, https://doi.org/10.1029/2001jd000634, 2002.
Decker, M., Or, D., Pitman, A., and Ukkola, A.:
New turbulent resistance parameterization for soil evaporation based on a pore-scale model: Impact on surface fluxes in CABLE,
J. Adv. Model. Earth Sy.,
9, 220–238, https://doi.org/10.1002/2016ms000832, 2017.
Diffenbaugh, N. S., Giorgi, F., and Pal, J. S.:
Climate change hotspots in the United States,
Geophys. Res. Lett.,
35, L16709, https://doi.org/10.1029/2008gl035075, 2008.
Dirmeyer, P. A.:
A History and Review of the Global Soil Wetness Project (GSWP),
J. Hydrometeorol.,
12, 729–749, https://doi.org/10.1175/JHM-D-10-05010.1, 2011.
Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A., and Maher, N.:
More extreme precipitation in the world's dry and wet regions,
Nat. Clim. Change,
6, 508–513, https://doi.org/10.1038/nclimate2941, 2016.
Dore, S. and Kolb, T.: AmeriFlux US-Fuf Flagstaff – Unmanaged Forest, Dataset, https://doi.org/10.17190/AMF/1246051, 2006–2010.
Dore, S., Kolb, T. E., Montes-Helu, M., Eckert, S. E., Sullivan, B. W., Hungate, B. A., Kaye, J. P., Hart, S. C., Koch, G. W., and Finkral, A.:
Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning,
Ecol. Appl.,
20, 663–683, https://doi.org/10.1890/09-0934.1, 2010.
Dore, S., Montes-Helu, M., Hart, S. C., Hungate, B. A., Koch, G. W., Moon, J. B., Finkral, A. J., and Kolb, T. E.:
Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand-replacing fire,
Global Change Biol.,
18, 3171–3185, https://doi.org/10.1111/j.1365-2486.2012.02775.x, 2012.
Druel, A., Peylin, P., Krinner, G., Ciais, P., Viovy, N., Peregon, A., Bastrikov, V., Kosykh, N., and Mironycheva-Tokareva, N.: Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0), Geosci. Model Dev., 10, 4693–4722, https://doi.org/10.5194/gmd-10-4693-2017, 2017.
Ducharne, A., Laval, K., and Polcher, J.:
Sensitivity of the hydrological cycle to the parametrization of soil hydrology in a GCM,
Clim. Dynam.,
14, 307–327, https://doi.org/10.1007/s003820050226, 1998.
Ducharne, A., Ghattas, J., Maignan, F., Ottlé, C., Vuichard, N., Guimberteau, M., Krinner, G., Polcher, J., Tafasca, S., Bastrikov, V., Cheruy, F., Guénet, B., Mizuochi, H., Peylin, P., Tootchi, A., and Wang, F.:
Soil water processes in the ORCHIDEE-2.0 land surface model: state of the art for CMIP6,
in preparation, Geosci. Model Dev., 2020.
Ducoudré, N. I., Laval, K., and Perrier, A.:
SECHIBA, a New Set of Parameterizations of the Hydrologic Exchanges at the Land-Atmosphere Interface within the LMD Atmospheric General Circulation Model,
J. Climate,
6, 248–273, https://doi.org/10.1175/1520-0442(1993)006<0248:sansop>2.0.co;2, 1993.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., Noblet, N. D., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.:
Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5,
Clim. Dynam.,
40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013.
d'Orgeval, T., Polcher, J., and de Rosnay, P.: Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes, Hydrol. Earth Syst. Sci., 12, 1387–1401, https://doi.org/10.5194/hess-12-1387-2008, 2008.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., William Munger, J., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual sums of net ecosystem exchange, Agr. Forest Meteorol., 107, 43–69, https://doi.org/10.1016/s0168-1923(00)00225-2, 2001.
Fang, H., Jiang, C., Li, W., Wei, S., Baret, F., Chen, J.M., Garcia-Haro, J., Liang, S., Liu, R., Myneni, R.B., and Pinty, B.:
Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties,
J. Geophys. Res.-Biogeo.,
118, 529–548, 2013.
Ferrenberg, S. and Reed, S. C.:
Biocrust ecology: unifying micro- and macro-scales to confront global change,
New Phytol.,
216, 643–646, https://doi.org/10.1111/nph.14826, 2017.
Garrigues, S., Lacaze, R., Baret, F. J. T. M., Morisette, J. T., Weiss, M., Nickeson, J. E., Fernandes, R., Plummer, S., Shabanov, N. V., Myneni, R. B., and Knyazikhin, Y.: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data.
J. Geophys. Res.-Biogeo.,
113, G02028,
https://doi.org/10.1029/2007JG000635, 2008.
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence, D. M., and Gentine, P.: Large influence of soil moisture on long-term terrestrial carbon uptake, Nature, 565, 476–479, https://doi.org/10.1038/s41586-018-0848-x, 2019.
Gremer, J. R., Bradford, J. B., Munson, S. M., and Duniway, M. C.:
Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States,
Global Change Biol.,
21, 4049–4062, https://doi.org/10.1111/gcb.13043, 2015.
Grippa, M., Kergoat, L., Frappart, F., Araud, Q., Boone, A., de Rosnay, P. D., Lemoine, J.-M., Gascoin, S., Balsamo, G., Ottlé, C., Decharme, B., Saux-Picart, S., and Ramillien, G.:
Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models,
Water Resour. Res.,
47, W05549, https://doi.org/10.1029/2009wr008856, 2011.
Grippa, M., Kergoat, L., Boone, A., Peugeot, C., Demarty, J., Cappelaere, B., Gal, L., Hiernaux, P., Mougin, E., Ducharne, A., Dutra, E., Anderson, M., and Hain, C.:
Modeling Surface Runoff and Water Fluxes over Contrasted Soils in the Pastoral Sahel: Evaluation of the ALMIP2 Land Surface Models over the Gourma Region in Mali,
J. Hydrometeorol.,
18, 1847–1866, https://doi.org/10.1175/jhm-d-16-0170.1, 2017.
Guimberteau, M., Drapeau, G., Ronchail, J., Sultan, B., Polcher, J., Martinez, J.-M., Prigent, C., Guyot, J.-L., Cochonneau, G., Espinoza, J. C., Filizola, N., Fraizy, P., Lavado, W., De Oliveira, E., Pombosa, R., Noriega, L., and Vauchel, P.: Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets, Hydrol. Earth Syst. Sci., 16, 911–935, https://doi.org/10.5194/hess-16-911-2012, 2012a.
Guimberteau, M., Perrier, A., Laval, K., and Polcher, J.: A comprehensive approach to analyze discrepancies between land surface models and in-situ measurements: a case study over the US and Illinois with SECHIBA forced by NLDAS, Hydrol. Earth Syst. Sci., 16, 3973–3988, https://doi.org/10.5194/hess-16-3973-2012, 2012b.
Guimberteau, M., Ronchail, J., Espinoza, J. C., Lengaigne, M., Sultan, B., Polcher, J., Drapeau, G., Guyot, J.-L., Ducharne, A., and Ciais, P.:
Future changes in precipitation and impacts on extreme streamflow over Amazonian sub-basins,
Environ. Res. Lett.,
8, 014035, https://doi.org/10.1088/1748-9326/8/1/014035, 2013.
Guimberteau, M., Ducharne, A., Ciais, P., Boisier, J. P., Peng, S., De Weirdt, M., and Verbeeck, H.: Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin, Geosci. Model Dev., 7, 1115–1136, https://doi.org/10.5194/gmd-7-1115-2014, 2014.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.:
Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling,
J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., and Kern, R.:
Array programming with NumPy,
Nature,
585, 357–362, 2020.
Haverd, V., Ahlström, A., Smith, B., and Canadell, J. G.:
Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall,
Global Change Biol.,
23, 793–800, https://doi.org/10.1111/gcb.13412, 2016.
Hogue, T. S., Bastidas, L., Gupta, H., Sorooshian, S., Mitchell, K., and Emmerich, W.:
Evaluation and Transferability of the Noah Land Surface Model in Semiarid Environments,
J. Hydrometeorol.,
6, 68–84, https://doi.org/10.1175/jhm-402.1, 2005.
Huang, J., Yu, H., Dai, A., Wei, Y., and Kang, L.:
Drylands face potential threat under 2 ∘C global warming target,
Nat. Clim. Change,
7, 417–422, https://doi.org/10.1038/nclimate3275, 2017.
Humphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch, S., and Seneviratne, S. I.: Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage, Nature, 560, 628–631, https://doi.org/10.1038/s41586-018-0424-4, 2018.
Hunter, J. D.:
Matplotlib: A 2D graphics environment,
Comput. Sci. Eng.,
9, 90–95, 2007.
IPCC:
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp., 2013.
Keenan, T., Sabate, S., and Gracia, C.:
The importance of mesophyll conductance in regulating forest ecosystem productivity during drought periods,
Global Change Biol.,
16, 1019–1034, https://doi.org/10.1111/j.1365-2486.2009.02017.x, 2010.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox,
P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu,
P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko,
D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M.,
Verseghy, D., Vasic, R., Xue, Y., Yamada, T., and GLACE Team:
Regions of strong coupling between soil moisture and precipitation,
Science, 305, 1138–1140, 2004.
Krinner, G., Viovy, N., Noblet-Ducoudré, N. D., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.:
A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system,
Global Biogeochem. Cy.,
19, GB1015, https://doi.org/10.1029/2003gb002199, 2005.
Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., Ciais, P., Mcvicar, T. R., Peng, S., Ottlé, C., Yang, H., Yang, Y., Zhang, Y., and Wang, T.:
Partitioning global land evapotranspiration using CMIP5 models constrained by observations,
Nat. Clim. Change,
8, 640–646, https://doi.org/10.1038/s41558-018-0207-9, 2018.
Litvak, M.: AmeriFlux US-Vcp Valles Caldera Ponderosa Pine, Dataset, https://doi.org/10.17190/AMF/1246122, 2007–Present.
Lohou, F., Kergoat, L., Guichard, F., Boone, A., Cappelaere, B., Cohard, J.-M., Demarty, J., Galle, S., Grippa, M., Peugeot, C., Ramier, D., Taylor, C. M., and Timouk, F.: Surface response to rain events throughout the West African monsoon, Atmos. Chem. Phys., 14, 3883–3898, https://doi.org/10.5194/acp-14-3883-2014, 2014.
MacBean, N., Maignan, F., Peylin, P., Bacour, C., Bréon, F.-M., and Ciais, P.: Using satellite data to improve the leaf phenology of a global terrestrial biosphere model, Biogeosciences, 12, 7185–7208, https://doi.org/10.5194/bg-12-7185-2015, 2015.
Maestre, F. T., Salguero-Gomez, R., and Quero, J. L.:
It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands,
Philos. T. R. Soc. B,
367, 3062–3075, https://doi.org/10.1098/rstb.2011.0323, 2012.
Manabe, S.:
Climate And The Ocean Circulation1,
Mon. Weather Rev.,
97, 739–774, https://doi.org/10.1175/1520-0493(1969)097<0739:catoc>2.3.co;2, 1969.
MacBean, N.: nmacbean/SW-US-Hydro-Model-Eval-HESS: v1, Zenodo, https://doi.org/10.5281/zenodo.4198088, 2020.
Medlyn, B. E., Kauwe, M. G. D., Zaehle, S., Walker, A. P., Duursma, R. A., Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y.-P., Yang, X., Crous, K. Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power, S. A., Tjoelker, M. G., and Ellsworth, D. S.:
Using models to guide field experiments:a prioripredictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland,
Global Change Biol.,
22(8), 2834–2851, https://doi.org/10.1111/gcb.13268, 2016.
Mermoud, A. and Xu, D.:
Comparative analysis of three methods to generate soil hydraulic functions,
Soil Till. Res.,
87, 89–100, https://doi.org/10.1016/j.still.2005.02.034, 2006.
Miller, G. R., Chen, X., Rubin, Y., Ma, S., and Baldocchi, D. D.:
Groundwater uptake by woody vegetation in a semiarid oak savanna,
Water Resour. Res.,
46, W10503, https://doi.org/10.1029/2009wr008902, 2010.
Mualem, Y.:
A new model for predicting the hydraulic conductivity of unsaturated porous media,
Water Resour. Res.,
12, 513–522, https://doi.org/10.1029/wr012i003p00513, 1976.
Mueller, B. and Seneviratne, S. I.:
Systematic land climate and evapotranspiration biases in CMIP5 simulations,
Geophys. Res. Lett.,
41, 128–134, https://doi.org/10.1002/2013gl058055, 2014.
Naudts, K., Ryder, J., McGrath, M. J., Otto, J., Chen, Y., Valade, A., Bellasen, V., Berhongaray, G., Bönisch, G., Campioli, M., Ghattas, J., De Groote, T., Haverd, V., Kattge, J., MacBean, N., Maignan, F., Merilä, P., Penuelas, J., Peylin, P., Pinty, B., Pretzsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y., and Luyssaert, S.: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geosci. Model Dev., 8, 2035–2065, https://doi.org/10.5194/gmd-8-2035-2015, 2015.
Niu, G. Y. and Yang, Z. L.:
An observation-based formulation of snow cover fraction and its evaluation over large North American river basins,
J. Geophys. Res.-Atmos.,
112, D21101, https://doi.org/10.1029/2007JD008674 , 2007.
Peylin, P., Ghattas, J., Cadule, P., Cheruy, F., Ducharne, A., Guenet, B., Lathière, J., Luyssaert, S., Maignan, F., Maugis, P., Ottle,
C., Polcher, J., Viovy, N., Vuichard, N., Bastrikov, V., Guimberteau, M., Lanso, A.-S., MacBean, N., Mcgrath, M., Tafasca, S., and Wang, F.: The global land surface model ORCHIDEE – Tag2.0, available at: http://forge.ipsl.jussieu.fr/orchidee/browser/tags/ORCHIDEE_2_0/ORCHIDEE/, last access: 19 October 2020.
Raoult, N., Delorme, B., Ottlé, C., Peylin, P., Bastrikov, V., Maugis, P., and Polcher, J.:
Confronting Soil Moisture Dynamics from the ORCHIDEE Land Surface Model With the ESA-CCI Product: Perspectives for Data Assimilation,
Remote Sens.-Basel,
10, 1786, https://doi.org/10.3390/rs10111786, 2018.
Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.: How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed, B. Am. Meteorol. Soc., 93, 811–829, https://doi.org/10.1175/bams-d-11-00052.1, 2012.
Reynolds, C. A., Jackson, T. J., and Rawls, W. J.:
Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions,
Water Resour. Res.,
36, 3653–3662, https://doi.org/10.1029/2000wr900130, 2000.
Richards, L. A.:
Capillary Conduction Of Liquids Through Porous Mediums,
Physics,
1, 318–333, https://doi.org/10.1063/1.1745010, 1931.
Saux-Picart, S., Ottlé, C., Perrier, A., Decharme, B., Coudert, B., Zribi, M., Boulain, N., Cappelaere, B., and Ramier, D.:
SEtHyS_Savannah: A multiple source land surface model applied to Sahelian landscapes,
Agr. Forest Meteorol.,
149, 1421–1432, 2009.
Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Schmied, H. M., Beek, L. P. H. V., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., Longuevergne, L., Döll, P., and Bierkens, M. F. P.:
Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data,
P. Natl. Acad. Sci. USA,
115, E1080–E1089, https://doi.org/10.1073/pnas.1704665115, 2018.
Scanlon, B. R., Zhang, Z., Rateb, A., Sun, A., Wiese, D., Save, H., Beaudoing, H., Lo, M. H., Müller-Schmied, H., Döll, P., Beek, R., Swenson, S., Lawrence, D., Croteau, M., and Reedy, R. C.:
Tracking Seasonal Fluctuations in Land Water Storage Using Global Models and GRACE Satellites,
Geophys. Res. Lett.,
46, 5254–5264, https://doi.org/10.1029/2018gl081836, 2019.
Scott, R.: AmeriFlux US-SRM Santa Rita Mesquite, Dataset, https://doi.org/10.17190/AMF/1246104, 2004a–Present.
Scott, R.: AmeriFlux US-Wkg Walnut Gulch Kendall Grasslands, Dataset, https://doi.org/10.17190/AMF/1246112, 2004b–Present.
Scott, R.: AmeriFlux US-Whs Walnut Gulch Lucky Hills Shrub, Dataset, https://doi.org/10.17190/AMF/1246113, 2007–Present.
Scott, R.: AmeriFlux US-SRG Santa Rita Grassland, Dataset, https://doi.org/10.17190/AMF/1246154, 2008–Present.
Scott, R. L. and Biederman, J. A.:
Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes,
Geophys. Res. Lett.,
44, 6833–6840, https://doi.org/10.1002/2017gl074324, 2017.
Scott, R. L. and Biederman, J. A.:
Critical Zone Water Balance Over 13 Years in a Semiarid Savanna,
Water Resour. Res.,
55, 574–588, https://doi.org/10.1029/2018wr023477, 2019.
Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron-Gafford, G. A.:
The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought,
J. Geophys. Res.-Biogeo.,
120, 2612–2624, https://doi.org/10.1002/2015jg003181, 2015.
Seager, R. and Vecchi, G. A.: Greenhouse warming and the 21st century hydroclimate of southwestern North America, P. Natl. Acad. Sci. USA, 107, 21277–21282, https://doi.org/10.1073/pnas.0910856107, 2010.
Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.-P., Harnik, N., Leetmaa, A., Lau, N.-C., Li, C., Velez, J., and Naik, N.:
Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America,
Science,
316, 1181–1184, https://doi.org/10.1126/science.1139601, 2007.
Sellers, P. J., Heiser, M. D., and Hall, F. G.:
Relations between surface conductance and spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales,
J. Geophys. Res.,
97, 19033, https://doi.org/10.1029/92jd01096, 1992.
Seneviratne, S. I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M. E., Meier, A., Brovkin, V., Claussen, M., Ducharne, A., Dufresne, J. L., Findell, K. L., Ghattas, J., Lawrence, D. M., Malyshev, S., Rummukainen, M., and Smith, B.:
Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment,
Geophys. Res. Lett.,
40, 5212–5217, https://doi.org/10.1002/grl.50956, 2013.
Seneviratne, S. I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M. E., Meier, A., Brovkin, V., Claussen, M., Ducharne, A., Dufresne, J. L., Findell, K. L., Ghattas, J., Lawrence, D. M., Malyshev, S., Rummukainen, M., and Smith, B.: Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment, Geophys. Res. Lett., 40, 5212–5217, https://doi.org/10.1002/grl.50956, 2013.
Sippel, S., Zscheischler, J., Heimann, M., Lange, H., Mahecha, M. D., van Oldenborgh, G. J., Otto, F. E. L., and Reichstein, M.: Have precipitation extremes and annual totals been increasing in the world's dry regions over the last 60 years?, Hydrol. Earth Syst. Sci., 21, 441–458, https://doi.org/10.5194/hess-21-441-2017, 2017.
Smith, S. D., Monson, R. K., and Anderson, J. E.:
Physiological Ecology of North American Desert Plants,
Springer-Verlag, Berlin Heidelberg, 1997.
Su, Z., Schmugge, T., Kustas, W. P., and Massman, W. J.: An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere, J. Appl. Meteorol., 40, 1933–1951, https://doi.org/10.1175/1520-0450(2001)040<1933:aeotmf>2.0.co;2, 2001.
Swenson, S. C. and Lawrence, D. M.:
Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data,
J. Geophys. Res.-Atmos.,
119, 10299–10312, https://doi.org/10.1002/2014jd022314, 2014.
Tietjen, B., Jeltsch, F., Zehe, E., Classen, N., Groengroeft, A., Schiffers, K., and Oldeland, J.:
Effects of climate change on the coupled dynamics of water and vegetation in drylands,
Ecohydrology, 3, 226–237, https://doi.org/10.1002/eco.70, 2010.
Ukkola, A. M., Kauwe, M. G. D., Pitman, A. J., Best, M. J., Abramowitz, G., Haverd, V., Decker, M., and Haughton, N.:
Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts,
Environ. Res. Lett.,
11, 104012, https://doi.org/10.1088/1748-9326/11/10/104012, 2016a.
Ukkola, A. M., Pitman, A. J., Decker, M., De Kauwe, M. G., Abramowitz, G., Kala, J., and Wang, Y.-P.: Modelling evapotranspiration during precipitation deficits: identifying critical processes in a land surface model, Hydrol. Earth Syst. Sci., 20, 2403–2419, https://doi.org/10.5194/hess-20-2403-2016, 2016b.
van Genuchten, M. T.:
A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,
Soil Sci. Soc. Am J.,
44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Vuichard, N. and Papale, D.: Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis, Earth Syst. Sci. Data, 7, 157–171, https://doi.org/10.5194/essd-7-157-2015, 2015.
Wang, T., Ottlé, C., Boone, A., Ciais, P., Brun, E., Morin, S., Krinner, G., Piao, S., and Peng, S.:
Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model,
J. Geophys. Res.-Atmos.,
118, 6064–6079, https://doi.org/10.1002/jgrd.50395, 2013.
Wang, F., Ducharne, A., Cheruy, F., Lo, M.-H., and Grandpeix, J.-Y.:
Impact of a shallow groundwater table on the global water cycle in the IPSL land–atmosphere coupled model,
Clim. Dynam.,
50, 3505–3522, https://doi.org/10.1007/s00382-017-3820-9, 2018.
Waskom, M., Botvinnik, O., O'Kane, D., Hobson, P., Lukauskas, S., Gemperline, D. C., Augspurger, T., Halchenko, Y., Cole, J. B., Warmenhoven, J., and de Ruiter, J.: mwaskom/seaborn: v0. 8.1 (September 2017),
Zenodo,
https://doi.org/10.5281/zenodo.883859, 2017.
Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., and Lee, X.: Revisiting the contribution of transpiration to global terrestrial evapotranspiration, Geophys. Res. Lett., 44, 2792–2801, https://doi.org/10.1002/2016gl072235, 2017.
Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Duursma, R., Evans, B., Haverd, V., Li, L., Ryu, Y., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas, Biogeosciences, 13, 3245–3265, https://doi.org/10.5194/bg-13-3245-2016, 2016.
Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Evans, B., Haverd, V., Li, L., Moore, C., Ryu, Y., Scheiter, S., Schymanski, S. J., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: Challenges and opportunities in land surface modelling of savanna ecosystems, Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, 2017.
Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W., and Prentice, I. C.:
How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress,
Agr. Forest Meteorol.,
182–183, 204–214, https://doi.org/10.1016/j.agrformet.2013.05.009, 2013.
Zhou, S., Medlyn, B., Sabaté, S., Sperlich, D., Prentice, I. C., and Whitehead, D.:
Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates,
Tree Physiol.,
34, 1035–1046, https://doi.org/10.1093/treephys/tpu072, 2014.
Zhou, S., Yu, B., Zhang, Y., Huang, Y., and Wang, G.:
Partitioning evapotranspiration based on the concept of underlying water use efficiency,
Water Resour. Res.,
52, 1160–1175, https://doi.org/10.1002/2015wr017766, 2016.