Articles | Volume 24, issue 1
https://doi.org/10.5194/hess-24-451-2020
https://doi.org/10.5194/hess-24-451-2020
Research article
 | 
28 Jan 2020
Research article |  | 28 Jan 2020

Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates

Lei Gu, Jie Chen, Jiabo Yin, Sylvia C. Sullivan, Hui-Min Wang, Shenglian Guo, Liping Zhang, and Jong-Suk Kim

Related authors

Opinion: Tropical cirrus – from micro-scale processes to climate-scale impacts
Blaž Gasparini, Sylvia C. Sullivan, Adam B. Sokol, Bernd Kärcher, Eric Jensen, and Dennis L. Hartmann
Atmos. Chem. Phys., 23, 15413–15444, https://doi.org/10.5194/acp-23-15413-2023,https://doi.org/10.5194/acp-23-15413-2023, 2023
Short summary
Variation and attribution of probable maximum precipitation of China using high-resolution dataset in a changing climate
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-265,https://doi.org/10.5194/hess-2023-265, 2023
Revised manuscript accepted for HESS
Short summary
GTWS-MLrec: global terrestrial water storage reconstruction by machine learning from 1940 to present
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023,https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
ET-WB: water-balance-based estimations of terrestrial evaporation over global land and major global basins
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023,https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Machine learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-181,https://doi.org/10.5194/hess-2023-181, 2023
Revised manuscript under review for HESS
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Technical note: Comparing three different methods for allocating river points to coarse-resolution hydrological modelling grid cells
Juliette Godet, Eric Gaume, Pierre Javelle, Pierre Nicolle, and Olivier Payrastre
Hydrol. Earth Syst. Sci., 28, 1403–1413, https://doi.org/10.5194/hess-28-1403-2024,https://doi.org/10.5194/hess-28-1403-2024, 2024
Short summary
Representing farmer irrigated crop area adaptation in a large-scale hydrological model
Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024,https://doi.org/10.5194/hess-28-899-2024, 2024
Short summary
Combined impacts of climate and land-use change on future water resources in Africa
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci., 28, 117–138, https://doi.org/10.5194/hess-28-117-2024,https://doi.org/10.5194/hess-28-117-2024, 2024
Short summary
Deep learning for quality control of surface physiographic fields using satellite Earth observations
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023,https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
Global dryland aridity changes indicated by atmospheric, hydrological, and vegetation observations at meteorological stations
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023,https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary

Cited articles

Ahmad, M. I., Sinclair, C. D., and Werritty, A.: Log-logistic flood frequency analysis, J. Hydrol., 98, 205–224, 1988. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Fao, Rome, available at: http://www.scscourt.org/complexcivil/105CV049053/volume3/172618e_5xAGWAx8.pdf (last access: January 2020), 1998. 
Ayantobo, O. O., Li, Y., Song, S., and Yao, N.: Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013, J. Hydrol., 550, 549–567, 2017. 
Ayantobo, O. O., Li, Y., Song, S., Javed, T., and Yao, N.: Probabilistic modelling of drought events in China via 2-dimensional joint copula, J. Hydrol., 559, 373–391, 2018. 
Below, R., Grover-Kopec, E., and Dilley, M.: Documenting drought-related disasters: a global reassessment, J. Environ. Dev., 16, 328–344, 2007. 
Download
Short summary
Focusing on the multifaceted nature of droughts, this study quantifies the change in global drought risks for 1.5 and 2.0 °C warming trajectories by a multi-model ensemble under three representative concentration pathways (RCP2.6, 4.5 and 8.5). Socioeconomic exposures are investigated by incorporating the dynamic shared socioeconomic pathways (SSPs) into the drought impact assessment. The results show that even the ambitious 1.5 °C warming level can cause substantial increases on the global scale.