Articles | Volume 24, issue 5
Research article
08 May 2020
Research article |  | 08 May 2020

Conditional simulation of surface rainfall fields using modified phase annealing

Jieru Yan, András Bárdossy, Sebastian Hörning, and Tao Tao

Related authors

Conditional simulation of spatial rainfall fields using random mixing: a study that implements full control over the stochastic process
Jieru Yan, Fei Li, András Bárdossy, and Tao Tao
Hydrol. Earth Syst. Sci., 25, 3819–3835,,, 2021
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416,,, 2024
Short summary
Synoptic weather patterns conducive to compound extreme rainfall–wave events in the NW Mediterranean
Marc Sanuy, Juan C. Peña, Sotiris Assimenidis, and José A. Jiménez
Hydrol. Earth Syst. Sci., 28, 283–302,,, 2024
Short summary
Exploring the joint probability of precipitation and soil moisture over Europe using copulas
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115,,, 2024
Short summary
Water cycle changes in Czechia: a multi-source water budget perspective
Mijael Rodrigo Vargas Godoy, Yannis Markonis, Oldrich Rakovec, Michal Jenicek, Riya Dutta, Rajani Kumar Pradhan, Zuzana Bešťáková, Jan Kyselý, Roman Juras, Simon Michael Papalexiou, and Martin Hanel
Hydrol. Earth Syst. Sci., 28, 1–19,,, 2024
Short summary
A statistical–dynamical approach for probabilistic prediction of sub-seasonal precipitation anomalies over 17 hydroclimatic regions in China
Yuan Li, Kangning Xü, Zhiyong Wu, Zhiwei Zhu, and Quan J. Wang
Hydrol. Earth Syst. Sci., 27, 4187–4203,,, 2023
Short summary

Cited articles

Bárdossy, A. and Hörning, S.: Process-Driven Direction-Dependent Asymmetry: Identification and Quantification of Directional Dependence in Spatial Fields, Math. Geosci., 49, 871–891,, 2017. a, b
Chilès, J. P. and Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, in: Series In Probability and Statistics, Wiley,, 2012. a, b
Collier, C.: The impact of wind drift on the utility of very high spatial resolution radar data over urban areas, Phys. Chem. Earth Pt. B, 24, 889–893,, 1999. a
Cristiano, E., ten Veldhuis, M.-C., and van de Giesen, N.: Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review, Hydrol. Earth Syst. Sci., 21, 3859–3878,, 2017. a
Deutsch, C. V. and Journel, A. G.: The application of simulated annealing to stochastic reservoir modeling, SPE Adv. Technol. Ser., 2, 222–227,, 1994. a
Short summary
For applications such as flood forecasting of urban- or town-scale distributed hydrological modeling, high-resolution quantitative precipitation estimation (QPE) with enough accuracy is the most important driving factor and thus the focus of this paper. Considering the fact that rain gauges are sparse but accurate and radar-based precipitation estimates are inaccurate but densely distributed, we are merging the two types of data intellectually to obtain accurate QPEs with high resolution.