Articles | Volume 23, issue 12
https://doi.org/10.5194/hess-23-5175-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-5175-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A three-dimensional palaeohydrogeological reconstruction of the groundwater salinity distribution in the Nile Delta Aquifer
Joeri van Engelen
CORRESPONDING AUTHOR
Department of Physical Geography, Utrecht University, Utrecht, 3584
CB, the Netherlands
Unit Subsurface and Groundwater systems, Deltares, Utrecht,
3584 BK, the Netherlands
Jarno Verkaik
Department of Physical Geography, Utrecht University, Utrecht, 3584
CB, the Netherlands
Unit Subsurface and Groundwater systems, Deltares, Utrecht,
3584 BK, the Netherlands
Jude King
Department of Physical Geography, Utrecht University, Utrecht, 3584
CB, the Netherlands
Unit Subsurface and Groundwater systems, Deltares, Utrecht,
3584 BK, the Netherlands
Eman R. Nofal
Research Institute for Groundwater, National Water Research Center, El-Kanater El-Khairiya, Egypt
Marc F. P. Bierkens
Department of Physical Geography, Utrecht University, Utrecht, 3584
CB, the Netherlands
Unit Subsurface and Groundwater systems, Deltares, Utrecht,
3584 BK, the Netherlands
Gualbert H. P. Oude Essink
Department of Physical Geography, Utrecht University, Utrecht, 3584
CB, the Netherlands
Unit Subsurface and Groundwater systems, Deltares, Utrecht,
3584 BK, the Netherlands
Related authors
No articles found.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-112, https://doi.org/10.5194/hess-2024-112, 2024
Revised manuscript under review for HESS
Short summary
Short summary
The contribution of groundwater to groundwater dependent ecosystems (GDEs) is declining as a result of an increase in groundwater abstractions and climate change. This may lead to loss of habitat and biodiversity. This proposed framework enables the mapping and understanding of the temporal and spatial dynamics of GDEs on a large scale. The next step is to assess the global impacts of climate change and water use on GDEs' extent and health.
Barry van Jaarsveld, Niko Wanders, Edwin H. Sutanudjaja, Jannis Hoch, Bram Droppers, Joren Janzing, Rens L. P. H. van Beek, and Marc F. P. Bierkens
EGUsphere, https://doi.org/10.5194/egusphere-2024-1025, https://doi.org/10.5194/egusphere-2024-1025, 2024
Short summary
Short summary
Policy makers use global hydrological models to develop water management strategies and policies. However, if these models provided information at higher resolutions that would be better. We present a first of its kind, truly global hyper-resolution model and show that hyper-resolution brings about better estimates of river discharge and this is especially true for smaller catchments. Our results also suggest future hyper-resolution model need to include more detailed landcover information.
Sneha Chevuru, Rens L. P. H. van Beek, Michelle T. H. van Vliet, Jerom P. M. Aerts, and Marc F. P. Bierkens
EGUsphere, https://doi.org/10.5194/egusphere-2024-465, https://doi.org/10.5194/egusphere-2024-465, 2024
Short summary
Short summary
This paper integrates PCR-GLOBWB 2 hydrological model with WOFOST crop growth model to analyze mutual feedbacks between hydrology and crop growth. It quantifies one-way and two-way feedbacks between hydrology and crop growth, revealing patterns in crop yield and irrigation water use. Dynamic interactions enhance understanding of climate variability impacts on food production, highlighting the importance of two-way model coupling for accurate assessments.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Daniel Zamrsky, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 10, 1591–1603, https://doi.org/10.5194/essd-10-1591-2018, https://doi.org/10.5194/essd-10-1591-2018, 2018
Short summary
Short summary
An increasing number of coastal areas worldwide are facing a threat of groundwater quality degradation by saltwater intrusion. Groundwater flow models help to get a better idea of the volumes of fresh groundwater reserves in these areas. Our research provides information on aquifer thickness, which is one of the most important parameters for such models. However, we found that geological complexity of coastal aquifer systems is at least equally as important a factor for accurate predictions.
Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C. Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch, Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver Schmitz, Menno W. Straatsma, Ekkamol Vannametee, Dominik Wisser, and Marc F. P. Bierkens
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, https://doi.org/10.5194/gmd-11-2429-2018, 2018
Short summary
Short summary
PCR-GLOBWB 2 is an integrated hydrology and water resource model that fully integrates water use simulation and consolidates all features that have been developed since PCR-GLOBWB 1 was introduced. PCR-GLOBWB 2 can have a global coverage at 5 arcmin resolution and supersedes PCR-GLOBWB 1, which has a resolution of 30 arcmin only. Comparing the 5 arcmin with 30 arcmin simulations using discharge data, we clearly find improvement in the model performance of the higher-resolution model.
Sebastian Huizer, Max Radermacher, Sierd de Vries, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 22, 1065–1080, https://doi.org/10.5194/hess-22-1065-2018, https://doi.org/10.5194/hess-22-1065-2018, 2018
Short summary
Short summary
For a large beach nourishment called the Sand Engine we have examined the impact of groundwater recharge, tides, storm surges, and geomorphological changes on the growth of the fresh groundwater resources between 2011 and 2016. With detailed model simulations of these coastal processes we were able to get a good match with field measurements, and demonstrated the importance of wave runup and coastal erosion in studies on fresh groundwater in such dynamic coastal environments.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Joyce H. C. Bosmans, Ludovicus P. H. van Beek, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 5603–5626, https://doi.org/10.5194/hess-21-5603-2017, https://doi.org/10.5194/hess-21-5603-2017, 2017
Short summary
Short summary
We investigate how changes in land cover, such as deforestation, affect river runoff and evaporation from the land surface. We use computer simulations to show that the impact of land cover changes is significant and, when globally averaged, it is as important as more direct human impacts through water use (such as irrigation). There is large spatial variability in the impact of land cover change, with the largest changes when tall vegetation (such as forests) is replaced by crop fields.
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirmeyer, James S. Famiglietti, Naota Hanasaki, Megan Konar, Junguo Liu, Hannes Müller Schmied, Taikan Oki, Yadu Pokhrel, Murugesu Sivapalan, Tara J. Troy, Albert I. J. M. van Dijk, Tim van Emmerik, Marjolein H. J. Van Huijgevoort, Henny A. J. Van Lanen, Charles J. Vörösmarty, Niko Wanders, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, https://doi.org/10.5194/hess-21-4169-2017, 2017
Short summary
Short summary
Rapidly increasing population and human activities have altered terrestrial water fluxes on an unprecedented scale. Awareness of potential water scarcity led to first global water resource assessments; however, few hydrological models considered the interaction between terrestrial water fluxes and human activities. Our contribution highlights the importance of human activities transforming the Earth's water cycle, and how hydrological models can include such influences in an integrated manner.
Naze Candogan Yossef, Rens van Beek, Albrecht Weerts, Hessel Winsemius, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 4103–4114, https://doi.org/10.5194/hess-21-4103-2017, https://doi.org/10.5194/hess-21-4103-2017, 2017
Short summary
Short summary
This paper presents a skill assessment of the global seasonal streamflow forecasting system FEWS-World. For 20 large basins of the world, forecasts using the ESP procedure are compared to forecasts using actual S3 seasonal meteorological forecast ensembles by ECMWF. The results are discussed in the context of prevailing hydroclimatic conditions per basin. The study concludes that in general, the skill of ECMWF S3 forecasts is close to that of the ESP forecasts.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Emmy E. Stigter, Niko Wanders, Tuomo M. Saloranta, Joseph M. Shea, Marc F. P. Bierkens, and Walter W. Immerzeel
The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, https://doi.org/10.5194/tc-11-1647-2017, 2017
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Patricia López López, Edwin H. Sutanudjaja, Jaap Schellekens, Geert Sterk, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 3125–3144, https://doi.org/10.5194/hess-21-3125-2017, https://doi.org/10.5194/hess-21-3125-2017, 2017
Short summary
Short summary
We perform various calibration experiments of a large-scale hydrological model using satellite-based products of evapotranspiration and soil moisture in the Oum Er Rbia River basin in Morocco. In addition, we study the impact on discharge estimates of three global precipitation products in comparison with model parameter calibration. Results show that evapotranspiration and soil moisture observations can be used for model calibration, resulting in discharge estimates of acceptable accuracy.
Jannis M. Hoch, Arjen V. Haag, Arthur van Dam, Hessel C. Winsemius, Ludovicus P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017, https://doi.org/10.5194/hess-21-117-2017, 2017
Short summary
Short summary
Modelling inundations is pivotal to assess current and future flood hazard, and to define sound measures and policies. Yet, many models focus on the hydrologic or hydrodynamic aspect of floods only. We combined both by spatially coupling a hydrologic with a hydrodynamic model. This way we are able to balance the weaknesses of each model with the strengths of the other. We found that model coupling can indeed strongly improve discharge simulation, and see big potential in our approach.
Rolf Hut, Niels Drost, Maarten van Meersbergen, Edwin Sutanudjaja, Marc Bierkens, and Nick van de Giesen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-225, https://doi.org/10.5194/gmd-2016-225, 2016
Revised manuscript not accepted
Short summary
Short summary
A system that predicts the amount of water flowing in each river on earth, 9 days ahead, is build using existing parts of open source computer code build by different researchers in other projects.
The glue between all pre-existing parts are all open interfaces which means that the pieces system click together like a house of LEGOs. It is easy to remove a piece (a brick) and replace it with another, improved, piece.
The resulting predictions are available online at forecast.ewatercycle.org
Sebastian Huizer, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3149–3166, https://doi.org/10.5194/hess-20-3149-2016, https://doi.org/10.5194/hess-20-3149-2016, 2016
Short summary
Short summary
The anticipation of sea-level rise has led to an innovative project called the Sand Engine, where a large volume of sand was placed on the Dutch coast. The intention is that the sand is redistributed by wind, current and tide, reinforcing coastal defence structures. Model simulations show that this large sand replenishment can result in a substantial growth of fresh groundwater resources. Thus, sand replenishments could combine coastal protection with an increase of fresh groundwater resources.
Patricia López López, Niko Wanders, Jaap Schellekens, Luigi J. Renzullo, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3059–3076, https://doi.org/10.5194/hess-20-3059-2016, https://doi.org/10.5194/hess-20-3059-2016, 2016
Short summary
Short summary
We perform a joint assimilation experiment of high-resolution satellite soil moisture and discharge observations in the Murrumbidgee River basin with a large-scale hydrological model. Additionally, we study the impact of high- and low-resolution meteorological forcing on the model performance. We show that the assimilation of high-resolution satellite soil moisture and discharge observations has a significant impact on discharge simulations and can bring them closer to locally calibrated models.
Inge E. M. de Graaf, Rens L. P. H. van Beek, Tom Gleeson, Nils Moosdorf, Oliver Schmitz, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-121, https://doi.org/10.5194/hess-2016-121, 2016
Revised manuscript not accepted
Short summary
Short summary
In this study we want to understand groundwater flows at the global scale better. We simulated groundwater storage and fluctuations in confined and unconfined aquifer systems. This is the first study that includes confined systems at the global scale. Confined systems change timing and amplitude of head fluctuations, flow paths, and groundwater-surface water interactions. Hotspots of groundwater depletion are identified and resulted in a global estimate of 6700 km3.
Maria Stergiadi, Marcel van der Perk, Ton C. M. de Nijs, and Marc F. P. Bierkens
Biogeosciences, 13, 1519–1536, https://doi.org/10.5194/bg-13-1519-2016, https://doi.org/10.5194/bg-13-1519-2016, 2016
Short summary
Short summary
We modelled the effects of changes in climate and land management on soil organic carbon (SOC) and dissolved organic carbon (DOC) levels in sandy and loamy soils under forest, grassland, and arable land. Climate change causes a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC slightly increases. A reduction in fertilizer application leads to a decrease in SOC and DOC levels under arable land but has a negligible effect under grassland.
W. W. Immerzeel, N. Wanders, A. F. Lutz, J. M. Shea, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, https://doi.org/10.5194/hess-19-4673-2015, 2015
Short summary
Short summary
The water resources of the upper Indus river basin (UIB) are important for millions of people, yet little is known about the rain and snow fall in the high-altitude regions because of the inaccessibility, the climatic complexity and the lack of observations. In this study we use mass balance of glaciers to reconstruct the amount of precipitation in the UIB and we conclude that this amount is much higher than previously thought.
B. R. Voortman, R. P. Bartholomeus, S. E. A. T. M. van der Zee, M. F. P. Bierkens, and J. P. M. Witte
Hydrol. Earth Syst. Sci., 19, 3787–3805, https://doi.org/10.5194/hess-19-3787-2015, https://doi.org/10.5194/hess-19-3787-2015, 2015
Short summary
Short summary
This study explores the magnitude of energy and water fluxes in an inland dune ecosystem in the Netherlands. We parameterized the Penman-Monteith evapotranspiration model for four different surfaces: bare sand, moss, grass and heather. The knowledge presented in this paper will help improve the simulations of water recharge in sand dunes by hydrological models, and allow the quantification of the cost and benefit of nature conservation in terms of groundwater recharge.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
A. Lourens, M. F. P. Bierkens, and F. C. van Geer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-4191-2015, https://doi.org/10.5194/hessd-12-4191-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We present a method to find the most likely properties (layer thickness and conductivity) for each litho-class of the constituting layers of an aquitard, using a readily calibrated groundwater model. The prior litho-class properties are uncertain, and based on borehole data. The groundwater model parameters are assumed to be the truth. The combination of prior data and calibration result yields the most likely litho-class properties. The method is applicable to aquifers as well.
I. E. M. de Graaf, E. H. Sutanudjaja, L. P. H. van Beek, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 19, 823–837, https://doi.org/10.5194/hess-19-823-2015, https://doi.org/10.5194/hess-19-823-2015, 2015
Short summary
Short summary
In this paper we present a high-resolution global-scale groundwater model of an upper aquifer. An equilibrium water table at its natural state is constructed. Aquifer parameterization is based on available global datasets on lithology and conductivity combined with estimated aquifer thickness. The results showed groundwater levels are well simulated for many regions of the world. Simulated flow paths showed the relevance of including lateral groundwater flows in global scale hydrological models.
B. J. Dermody, R. P. H. van Beek, E. Meeks, K. Klein Goldewijk, W. Scheidel, Y. van der Velde, M. F. P. Bierkens, M. J. Wassen, and S. C. Dekker
Hydrol. Earth Syst. Sci., 18, 5025–5040, https://doi.org/10.5194/hess-18-5025-2014, https://doi.org/10.5194/hess-18-5025-2014, 2014
Short summary
Short summary
Our virtual water network of the Roman World shows that virtual water trade and irrigation provided the Romans with resilience to interannual climate variability. Virtual water trade enabled the Romans to meet food demands from regions with a surplus. Irrigation provided stable water supplies for agriculture, particularly in large river catchments. However, virtual water trade also stimulated urbanization and population growth, which eroded Roman resilience to climate variability over time.
J. R. Delsman, K. R. M. Hu-a-ng, P. C. Vos, P. G. B. de Louw, G. H. P. Oude Essink, P. J. Stuyfzand, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 3891–3905, https://doi.org/10.5194/hess-18-3891-2014, https://doi.org/10.5194/hess-18-3891-2014, 2014
N. Wanders, D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, https://doi.org/10.5194/hess-18-2343-2014, 2014
Y. Wada, D. Wisser, and M. F. P. Bierkens
Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, https://doi.org/10.5194/esd-5-15-2014, 2014
A. F. Lutz, W. W. Immerzeel, A. Gobiet, F. Pellicciotti, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 17, 3661–3677, https://doi.org/10.5194/hess-17-3661-2013, https://doi.org/10.5194/hess-17-3661-2013, 2013
E. Vannametee, D. Karssenberg, M. R. Hendriks, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 17, 2981–3004, https://doi.org/10.5194/hess-17-2981-2013, https://doi.org/10.5194/hess-17-2981-2013, 2013
A. F. Bouwman, M. F. P. Bierkens, J. Griffioen, M. M. Hefting, J. J. Middelburg, H. Middelkoop, and C. P. Slomp
Biogeosciences, 10, 1–22, https://doi.org/10.5194/bg-10-1-2013, https://doi.org/10.5194/bg-10-1-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
The impact of future changes in climate variables and groundwater abstraction on basin-scale groundwater availability
Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Training deep learning models with a multi-station approach and static aquifer attributes for groundwater level simulation: what’s the best way to leverage regionalised information?
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
A high-resolution map of diffuse groundwater recharge rates for Australia
Influence of bank slope on sinuosity-driven hyporheic exchange flow and residence time distribution during a dynamic flood event
Technical note: A model of chemical transport in a wellbore–aquifer system
Disentangling coastal groundwater level dynamics in a global dataset
Current and future roles of meltwater–groundwater dynamics in a proglacial Alpine outwash plain
On the challenges of global entity-aware deep learning models for groundwater level prediction
Incorporating interpretation uncertainties from deterministic 3D hydrostratigraphic models in groundwater models
Adjoint subordination to calculate backward travel time probability of pollutants in water with various velocity resolutions
On the optimal level of complexity for the representation of groundwater-dependent wetland systems in land surface models
Estimation of groundwater age distributions from hydrochemistry: comparison of two metamodelling algorithms in the Heretaunga Plains aquifer system, New Zealand
Technical note: Novel analytical solution for groundwater response to atmospheric tides
Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties
Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River basin
Comparison of artificial neural networks and reservoir models for simulating karst spring discharge on five test sites in the Alpine and Mediterranean regions
A general model of radial dispersion with wellbore mixing and skin effects
Estimation of hydraulic conductivity functions in karst regions by particle swarm optimization with application to Lake Vrana, Croatia
The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Three-dimensional hydrogeological parametrization using sparse piezometric data
Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Characterizing groundwater heat transport in a complex lowland aquifer using paleo-temperature reconstruction, satellite data, temperature–depth profiles, and numerical models
Karst spring recession and classification: efficient, automated methods for both fast- and slow-flow components
Exploring river–aquifer interactions and hydrological system response using baseflow separation, impulse response modeling, and time series analysis in three temperate lowland catchments
Experimental study of non-Darcy flow characteristics in permeable stones
Karst spring discharge modeling based on deep learning using spatially distributed input data
HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling”
Spatiotemporal variations in water sources and mixing spots in a riparian zone
Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data
Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Improved understanding of regional groundwater drought development through time series modelling: the 2018–2019 drought in the Netherlands
Simulation of long-term spatiotemporal variations in regional-scale groundwater recharge: contributions of a water budget approach in cold and humid climates
Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields
Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment
Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach
Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape
Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe
Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data
Early hypogenic carbonic acid speleogenesis in unconfined limestone aquifers by upwelling deep-seated waters with high CO2 concentration: a modelling approach
Impacts of climate change on groundwater flooding and ecohydrology in lowland karst
How daily groundwater table drawdown affects the diel rhythm of hyporheic exchange
Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX)
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Steven Reinaldo Rusli, Victor F. Bense, Syed M. T. Mustafa, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024, https://doi.org/10.5194/hess-28-5107-2024, 2024
Short summary
Short summary
In this paper, we investigate the impact of climatic and anthropogenic factors on future groundwater availability. The changes are simulated using hydrological and groundwater flow models. We find that future groundwater status is influenced more by anthropogenic factors than climatic factors. The results are beneficial for informing responsible parties in operational water management about achieving future (ground)water governance.
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024, https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short summary
To understand the impact of external factors on groundwater level modelling using a 1-D convolutional neural network (CNN) model, we train, validate, and tune individual CNN models for 505 wells distributed across Lower Saxony, Germany. We then evaluate the performance of these models against available geospatial and time series features. This study provides new insights into the relationship between these factors and the accuracy of groundwater modelling.
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024, https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
Short summary
Determining water transit times in aquifers is key to a better understanding of groundwater resources and their sustainable management. For our research, we used high-accuracy tritium data from 35 springs draining the Luxembourg Sandstone aquifer. We assessed the mean transit times of groundwater and found that water moves on average more than 10 times more slowly vertically in the vadose zone of the aquifer (~12 m yr-1) than horizontally in its saturated zone (~170 m yr-1).
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024, https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Short summary
This study advances groundwater research using a high-resolution random forest model, revealing new recharge areas and spatial variability, mainly in humid regions. Limited data in rainy zones is a constraint for the model. Our findings underscore the promise of machine learning for large-scale groundwater modelling while further emphasizing the importance of data collection for robust results.
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024, https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Short summary
Seasons have a strong influence on groundwater levels, but relationships are complex and partly unknown. Using data from wells in Germany and an explainable machine learning approach, we showed that summer precipitation is the key factor that controls the severeness of a low-water period in fall; high summer temperatures do not per se cause stronger decreases. Preceding winters have only a minor influence on such low-water periods in general.
Sivarama Krishna Reddy Chidepudi, Nicolas Massei, Abderrahim Jardani, Bastien Dieppois, Abel Henriot, and Matthieu Fournier
EGUsphere, https://doi.org/10.5194/egusphere-2024-794, https://doi.org/10.5194/egusphere-2024-794, 2024
Short summary
Short summary
This study explores how deep learning can improve our understanding of groundwater levels, using an approach that combines climate data and physical characteristics of aquifers. By focusing on different types of groundwater levels and employing techniques like clustering and wavelet transform, the study highlights the importance of targeting relevant information. This research not only advances groundwater simulation but also emphasizes the benefits of different modelling approaches.
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024, https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
Short summary
We investigate the interaction of transport with dissolution–precipitation reactions in porous media using the concepts of entropy and work to quantify the emergence of preferential flow paths. We show that the preferential-flow-path phenomenon and the hydraulic power required to maintain the driving pressure drop intensify over time along with the heterogeneity due to the interaction between the transport and the reactive processes. This is more pronounced in diffusion-dominated flows.
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024, https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Short summary
Global groundwater recharge studies collate recharge values estimated using different methods that apply to different timescales. We develop a recharge prediction model, based solely on chloride, to produce a recharge map for Australia. We reveal that climate and vegetation have the most significant influence on recharge variability in Australia. Our recharge rates were lower than other models due to the long timescale of chloride in groundwater. Our method can similarly be applied globally.
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024, https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary
Short summary
Meandering rivers are an integral part of many landscapes around the world. Here we used a new modeling approach to look at how the slope of riverbanks influences water flow and solute transport from a meandering river channel through its bank and into/out of the connected groundwater compartment (aquifer). We found that the bank slope can be a significant factor to be considered, especially when bank slope angles are small, and riverbank and aquifer conditions only allow for slow water flow.
Yiqun Gan and Quanrong Wang
Hydrol. Earth Syst. Sci., 28, 1317–1323, https://doi.org/10.5194/hess-28-1317-2024, https://doi.org/10.5194/hess-28-1317-2024, 2024
Short summary
Short summary
1. A revised 3D model of solute transport is developed in the well–aquifer system. 2. The accuracy of the new model is tested against benchmark analytical solutions. 3. Previous models overestimate the concentration of solute in both aquifers and wellbores in the injection well test case. 4. Previous models underestimate the concentration in the extraction well test case.
Annika Nolte, Ezra Haaf, Benedikt Heudorfer, Steffen Bender, and Jens Hartmann
Hydrol. Earth Syst. Sci., 28, 1215–1249, https://doi.org/10.5194/hess-28-1215-2024, https://doi.org/10.5194/hess-28-1215-2024, 2024
Short summary
Short summary
This study examines about 8000 groundwater level (GWL) time series from five continents to explore similarities in groundwater systems at different scales. Statistical metrics and machine learning techniques are applied to identify common GWL dynamics patterns and analyze their controlling factors. The study also highlights the potential and limitations of this data-driven approach to improve our understanding of groundwater recharge and discharge processes.
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024, https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
Short summary
We investigate the role of a newly formed floodplain in an alpine glaciated catchment to store and release water. Based on field measurements, we built a numerical model to simulate the water fluxes and show that recharge occurs mainly due to the ice-melt-fed river. We identify three future floodplains, which could emerge from glacier retreat, and show that their combined storage leads to some additional groundwater storage but contributes little additional baseflow for the downstream river.
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024, https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Short summary
We build a neural network to predict groundwater levels from monitoring wells. We predict all wells at the same time, by learning the differences between wells with static features, making it an entity-aware global model. This works, but we also test different static features and find that the model does not use them to learn exactly how the wells are different, but only to uniquely identify them. As this model class is not actually entity aware, we suggest further steps to make it so.
Trine Enemark, Rasmus Bødker Madsen, Torben O. Sonnenborg, Lærke Therese Andersen, Peter B. E. Sandersen, Jacob Kidmose, Ingelise Møller, Thomas Mejer Hansen, Karsten Høgh Jensen, and Anne-Sophie Høyer
Hydrol. Earth Syst. Sci., 28, 505–523, https://doi.org/10.5194/hess-28-505-2024, https://doi.org/10.5194/hess-28-505-2024, 2024
Short summary
Short summary
In this study, we demonstrate an approach to evaluate the interpretation uncertainty within a manually interpreted geological model in a groundwater model. Using qualitative estimates of uncertainties, several geological realizations are developed and implemented in groundwater models. We confirm existing evidence that if the conceptual model is well defined, interpretation uncertainties within the conceptual model have limited impact on groundwater model predictions.
Yong Zhang, Graham E. Fogg, HongGuang Sun, Donald M. Reeves, Roseanna M. Neupauer, and Wei Wei
Hydrol. Earth Syst. Sci., 28, 179–203, https://doi.org/10.5194/hess-28-179-2024, https://doi.org/10.5194/hess-28-179-2024, 2024
Short summary
Short summary
Pollutant release history and source identification are helpful for managing water resources, but it remains a challenge to reliably identify such information for real-world, complex transport processes in rivers and aquifers. In this study, we filled this knowledge gap by deriving a general backward governing equation and developing the efficient solver. Field applications showed that this model and solver are applicable for a broad range of flow systems, dimensions, and spatiotemporal scales.
Mennatullah T. Elrashidy, Andrew M. Ireson, and Saman Razavi
Hydrol. Earth Syst. Sci., 27, 4595–4608, https://doi.org/10.5194/hess-27-4595-2023, https://doi.org/10.5194/hess-27-4595-2023, 2023
Short summary
Short summary
Wetlands are important ecosystems that store carbon and play a vital role in the water cycle. However, hydrological computer models do not always represent wetlands and their interaction with groundwater accurately. We tested different possible ways to include groundwater–wetland interactions in these models. We found that the optimal method to include wetlands and groundwater in the models is reliant on the intended use of the models and the characteristics of the land and soil being studied.
Conny Tschritter, Christopher J. Daughney, Sapthala Karalliyadda, Brioch Hemmings, Uwe Morgenstern, and Catherine Moore
Hydrol. Earth Syst. Sci., 27, 4295–4316, https://doi.org/10.5194/hess-27-4295-2023, https://doi.org/10.5194/hess-27-4295-2023, 2023
Short summary
Short summary
Understanding groundwater travel time (groundwater age) is crucial for tracking flow and contaminants. While groundwater age is usually inferred from age tracers, this study utilised two machine learning techniques with common groundwater chemistry data. The results of both methods correspond to traditional approaches. They are useful where hydrochemistry data exist but age tracer data are limited. These methods could help enhance our knowledge, aiding in sustainable freshwater management.
Jose M. Bastias Espejo, Chris Turnadge, Russell S. Crosbie, Philipp Blum, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 27, 3447–3462, https://doi.org/10.5194/hess-27-3447-2023, https://doi.org/10.5194/hess-27-3447-2023, 2023
Short summary
Short summary
Analytical models estimate subsurface properties from subsurface–tidal load interactions. However, they have limited accuracy in representing subsurface physics and parameter estimation. We derived a new analytical solution which models flow to wells due to atmospheric tides. We applied it to field data and compared our findings with subsurface knowledge. Our results enhance understanding of subsurface systems, providing valuable information on their behavior.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Amanda Triplett and Laura E. Condon
Hydrol. Earth Syst. Sci., 27, 2763–2785, https://doi.org/10.5194/hess-27-2763-2023, https://doi.org/10.5194/hess-27-2763-2023, 2023
Short summary
Short summary
Accelerated melting in mountains is a global phenomenon. The Heihe River basin depends on upstream mountains for its water supply. We built a hydrologic model to examine how shifts in streamflow and warming will impact ground and surface water interactions. The results indicate that degrading permafrost has a larger effect than melting glaciers. Additionally, warming temperatures tend to have more impact than changes to streamflow. These results can inform other mountain–valley system studies.
Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde
Hydrol. Earth Syst. Sci., 27, 1961–1985, https://doi.org/10.5194/hess-27-1961-2023, https://doi.org/10.5194/hess-27-1961-2023, 2023
Short summary
Short summary
Numerous modelling approaches can be used for studying karst water resources, which can make it difficult for a stakeholder or researcher to choose the appropriate method. We conduct a comparison of two widely used karst modelling approaches: artificial neural networks (ANNs) and reservoir models. Results show that ANN models are very flexible and seem great for reproducing high flows. Reservoir models can work with relatively short time series and seem to accurately reproduce low flows.
Wenguang Shi, Quanrong Wang, Hongbin Zhan, Renjie Zhou, and Haitao Yan
Hydrol. Earth Syst. Sci., 27, 1891–1908, https://doi.org/10.5194/hess-27-1891-2023, https://doi.org/10.5194/hess-27-1891-2023, 2023
Short summary
Short summary
The mechanism of radial dispersion is important for understanding reactive transport in the subsurface and for estimating aquifer parameters required in the optimization design of remediation strategies. A general model and associated analytical solutions are developed in this study. The new model represents the most recent advancement on radial dispersion studies and incorporates a host of important processes that are not taken into consideration in previous investigations.
Vanja Travaš, Luka Zaharija, Davor Stipanić, and Siniša Družeta
Hydrol. Earth Syst. Sci., 27, 1343–1359, https://doi.org/10.5194/hess-27-1343-2023, https://doi.org/10.5194/hess-27-1343-2023, 2023
Short summary
Short summary
In order to model groundwater flow in karst aquifers, it is necessary to approximate the influence of the unknown and irregular structure of the karst conduits. For this purpose, a procedure based on inverse modeling is adopted. Moreover, in order to reconstruct the functional dependencies related to groundwater flow, the particle swarm method was used, through which the optimal solution of unknown functions is found by imitating the movement of ants in search of food.
Shouchuan Zhang, Zheming Shi, Guangcai Wang, Zuochen Zhang, and Huaming Guo
Hydrol. Earth Syst. Sci., 27, 401–415, https://doi.org/10.5194/hess-27-401-2023, https://doi.org/10.5194/hess-27-401-2023, 2023
Short summary
Short summary
We documented the step-like increases of water level, flow rate, and water temperatures in a confined aquifer following multiple earthquakes. By employing tidal analysis and a coupled temperature and flow rate model, we find that post-seismic vertical permeability changes and recharge model could explain the co-seismic response. And co-seismic temperature changes are caused by mixing of different volumes of water, with the mixing ratio varying according to each earthquake.
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023, https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary
Short summary
In a data-driven framework, groundwater levels can generally only be calculated 1 time step ahead. We discuss the advance prediction with longer forecast periods rather than single time steps by constructing a model based on a temporal convolutional network. Model accuracy and efficiency were further compared with an LSTM-based model. The two models derived in this study can help people cope with the uncertainty of what might occur in hydrological scenarios under the threat of climate change.
Dimitri Rambourg, Raphaël Di Chiara, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022, https://doi.org/10.5194/hess-26-6147-2022, 2022
Short summary
Short summary
The reproduction of flows and contaminations underground requires a good estimation of the parameters of the geological environment (mainly permeability and porosity), in three dimensions. While most researchers rely on geophysical methods, which are costly and difficult to implement in the field, this study proposes an alternative using data that are already widely available: piezometric records (monitoring of the water table) and the lithological description of the piezometric wells.
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022, https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Short summary
Hydrological models at high spatial resolution are computationally expensive. However, outputs from such models, such as the depth of the groundwater table, are often desired in high resolution. We developed a downscaling algorithm based on machine learning that allows us to increase spatial resolution of hydrological model outputs, alleviating computational burden. We successfully applied the downscaling algorithm to the climate-change-induced impacts on the groundwater table across Denmark.
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022, https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary
Short summary
Recharge, defining the renewal rate of groundwater resources, is difficult to estimate at basin scale. Here, recharge variations are inferred from water table variations recorded in boreholes. First, results show that aquifer-scale properties controlling these variations can be inferred from boreholes. Second, groundwater is recharged by both intense and seasonal rainfall. Third, the short-term contribution appears overestimated in recharge models and depends on the unsaturated zone thickness.
Alberto Casillas-Trasvina, Bart Rogiers, Koen Beerten, Laurent Wouters, and Kristine Walraevens
Hydrol. Earth Syst. Sci., 26, 5577–5604, https://doi.org/10.5194/hess-26-5577-2022, https://doi.org/10.5194/hess-26-5577-2022, 2022
Short summary
Short summary
Heat in the subsurface can be used to characterize aquifer flow behaviour. The temperature data obtained can be useful for understanding the groundwater flow, which is of particular importance in waste disposal studies. Satellite images of surface temperature and a temperature–time curve were implemented in a heat transport model. Results indicate that conduction plays a major role in the aquifer and support the usefulness of temperature measurements.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Min Lu, Bart Rogiers, Koen Beerten, Matej Gedeon, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 26, 3629–3649, https://doi.org/10.5194/hess-26-3629-2022, https://doi.org/10.5194/hess-26-3629-2022, 2022
Short summary
Short summary
Lowland rivers and shallow aquifers are closely coupled. We study their interactions here using a combination of impulse response modeling and hydrological data analysis. The results show that the lowland catchments are groundwater dominated and that the hydrological system from precipitation impulse to groundwater inflow response is a very fast response regime. This study also provides an alternative method to estimate groundwater inflow to rivers from the perspective of groundwater level.
Zhongxia Li, Junwei Wan, Tao Xiong, Hongbin Zhan, Linqing He, and Kun Huang
Hydrol. Earth Syst. Sci., 26, 3359–3375, https://doi.org/10.5194/hess-26-3359-2022, https://doi.org/10.5194/hess-26-3359-2022, 2022
Short summary
Short summary
Four permeable rocks with different pore sizes were considered to provide experimental evidence of Forchheimer flow and the transition between different flow regimes. The mercury injection technique was used to measure the pore size distribution, which is an essential factor for determining the flow regime, for four permeable stones. Finally, the influences of porosity and particle size on the Forchheimer coefficients were discussed.
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
Short summary
Modeling complex karst water resources is difficult enough, but often there are no or too few climate stations available within or close to the catchment to deliver input data for modeling purposes. We apply image recognition algorithms to time-distributed, spatially gridded meteorological data to simulate karst spring discharge. Our models can also learn the approximate catchment location of a spring independently.
Brian Berkowitz
Hydrol. Earth Syst. Sci., 26, 2161–2180, https://doi.org/10.5194/hess-26-2161-2022, https://doi.org/10.5194/hess-26-2161-2022, 2022
Short summary
Short summary
Extensive efforts have focused on quantifying conservative chemical transport in geological formations. We assert that an explicit accounting of temporal information, under uncertainty, in addition to spatial information, is fundamental to an effective modeling formulation. We further assert that efforts to apply chemical transport equations at large length scales, based on measurements and model parameter values relevant to significantly smaller length scales, are an unattainable
holy grail.
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022, https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
Short summary
In near-stream aquifers, mixing between stream water and ambient groundwater can lead to dilution and the removal of substances that can be harmful to the water ecosystem at high concentrations. We used a numerical model to track the spatiotemporal evolution of different water sources and their mixing around a stream, which are rather difficult in the field. Results show that mixing mainly develops as narrow spots, varying In time and space, and is affected by magnitudes of discharge events.
Jacques Bodin, Gilles Porel, Benoît Nauleau, and Denis Paquet
Hydrol. Earth Syst. Sci., 26, 1713–1726, https://doi.org/10.5194/hess-26-1713-2022, https://doi.org/10.5194/hess-26-1713-2022, 2022
Short summary
Short summary
Assessment of the karst network geometry is an important challenge in the accurate modeling of karst aquifers. In this study, we propose an approach for the identification of effective three-dimensional discrete karst conduit networks conditioned on tracer tests and geophysical data. The applicability of the proposed approach is illustrated through a case study at the Hydrogeological Experimental Site in Poitiers, France.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Esther Brakkee, Marjolein H. J. van Huijgevoort, and Ruud P. Bartholomeus
Hydrol. Earth Syst. Sci., 26, 551–569, https://doi.org/10.5194/hess-26-551-2022, https://doi.org/10.5194/hess-26-551-2022, 2022
Short summary
Short summary
Periods of drought often lead to groundwater shortages in large regions, which cause damage to nature and the economy. To take measures, we need a good understanding of where and when groundwater shortage occurs. In this study, we have tested a method that can combine large amounts of groundwater measurements in an automated way and provide detailed maps of how groundwater shortages develop during a drought period. This information can help water managers to limit future groundwater shortages.
Emmanuel Dubois, Marie Larocque, Sylvain Gagné, and Guillaume Meyzonnat
Hydrol. Earth Syst. Sci., 25, 6567–6589, https://doi.org/10.5194/hess-25-6567-2021, https://doi.org/10.5194/hess-25-6567-2021, 2021
Short summary
Short summary
This work demonstrates the relevance of using a water budget model to understand long-term transient and regional-scale groundwater recharge (GWR) in cold and humid climates where groundwater observations are scarce. Monthly GWR is simulated for 57 years on 500 m x 500 m cells in Canada (36 000 km2 area) with limited uncertainty due to a robust automatic calibration method. The increases in precipitation and temperature since the 1960s have not yet produced significant changes in annual GWR.
Yaniv Edery, Martin Stolar, Giovanni Porta, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 5905–5915, https://doi.org/10.5194/hess-25-5905-2021, https://doi.org/10.5194/hess-25-5905-2021, 2021
Short summary
Short summary
The interplay between dissolution, precipitation and transport is widely encountered in porous media, from CO2 storage to cave formation in carbonate rocks. We show that dissolution occurs along preferential flow paths with high hydraulic conductivity, while precipitation occurs at locations close to yet separated from these flow paths, thus further funneling the flow and changing the probability density function of the transport, as measured on the altered conductivity field at various times.
Karina Y. Gutierrez-Jurado, Daniel Partington, and Margaret Shanafield
Hydrol. Earth Syst. Sci., 25, 4299–4317, https://doi.org/10.5194/hess-25-4299-2021, https://doi.org/10.5194/hess-25-4299-2021, 2021
Short summary
Short summary
Understanding the hydrologic cycle in semi-arid landscapes includes knowing the physical processes that govern where and why rivers flow and dry within a given catchment. To gain this understanding, we put together a conceptual model of what processes we think are important and then tested that model with numerical analysis. The results broadly confirmed our hypothesis that there are three distinct regions in our study catchment that contribute to streamflow generation in quite different ways.
Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler
Hydrol. Earth Syst. Sci., 25, 4041–4059, https://doi.org/10.5194/hess-25-4041-2021, https://doi.org/10.5194/hess-25-4041-2021, 2021
Short summary
Short summary
We compare two approaches for coupling a 2D groundwater model with multiple 1D models for the unsaturated zone. One is non-iterative and very fast. The other one is iterative and involves a new way of treating the specific yield, which is crucial for obtaining a consistent solution in both model compartments. Tested on different scenarios, this new method turns out to be slower than the non-iterative approach but more accurate and still very efficient compared to fully integrated 3D model runs.
Vince P. Kaandorp, Hans Peter Broers, Ype van der Velde, Joachim Rozemeijer, and Perry G. B. de Louw
Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021, https://doi.org/10.5194/hess-25-3691-2021, 2021
Short summary
Short summary
We reconstructed historical and present-day tritium, chloride, and nitrate concentrations in stream water of a catchment using
land-use-based input curves and calculated travel times of groundwater. Parameters such as the unsaturated zone thickness, mean travel time, and input patterns determine time lags between inputs and in-stream concentrations. The timescale of the breakthrough of pollutants in streams is dependent on the location of pollution in a catchment.
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021, https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Short summary
This study utilized spatiotemporally continuous precipitation anomaly (pra) and water table depth anomaly (wtda) data from integrated hydrologic simulation results over Europe in combination with Long Short-Term Memory (LSTM) networks to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain reliable models to estimate wtda at the individual pixel level.
Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk
Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, https://doi.org/10.5194/hess-25-2931-2021, 2021
Short summary
Short summary
This study explores the use of nonlinear transfer function noise (TFN) models to simulate groundwater levels and estimate groundwater recharge from observed groundwater levels. A nonlinear recharge model is implemented in a TFN model to compute the recharge. The estimated recharge rates are shown to be in good agreement with the recharge observed with a lysimeter present at the case study site in Austria. The method can be used to obtain groundwater recharge rates at
sub-yearly timescales.
Franci Gabrovšek and Wolfgang Dreybrodt
Hydrol. Earth Syst. Sci., 25, 2895–2913, https://doi.org/10.5194/hess-25-2895-2021, https://doi.org/10.5194/hess-25-2895-2021, 2021
Short summary
Short summary
The evolution of karst aquifers is often governed by solutions gaining their aggressiveness in depth. Although the principles of
hypogene speleogenesisare known, modelling studies based on reactive flow in fracture networks are missing. We present a model where dissolution at depth is triggered by the mixing of waters of different origin and chemistry. We show how the initial position of the mixing zone and flow instabilities therein determine the position and shape of the final conduits.
Patrick Morrissey, Paul Nolan, Ted McCormack, Paul Johnston, Owen Naughton, Saheba Bhatnagar, and Laurence Gill
Hydrol. Earth Syst. Sci., 25, 1923–1941, https://doi.org/10.5194/hess-25-1923-2021, https://doi.org/10.5194/hess-25-1923-2021, 2021
Short summary
Short summary
Lowland karst aquifers provide important wetland habitat resulting from seasonal flooding on the land surface. This flooding is controlled by surcharging of the karst system, which is very sensitive to changes in rainfall. This study investigates the predicted impacts of climate change on a lowland karst catchment in Ireland and highlights the relative vulnerability to future changing climate conditions of karst systems and any associated wetland habitats.
Liwen Wu, Jesus D. Gomez-Velez, Stefan Krause, Anders Wörman, Tanu Singh, Gunnar Nützmann, and Jörg Lewandowski
Hydrol. Earth Syst. Sci., 25, 1905–1921, https://doi.org/10.5194/hess-25-1905-2021, https://doi.org/10.5194/hess-25-1905-2021, 2021
Short summary
Short summary
With a physically based model that couples flow and heat transport in hyporheic zones, the present study provides the first insights into the dynamics of hyporheic responses to the impacts of daily groundwater withdrawal and river temperature fluctuations, allowing for a better understanding of transient hyporheic exchange processes and hence an improved pumping operational scheme.
Andreas Wunsch, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, https://doi.org/10.5194/hess-25-1671-2021, 2021
Cited articles
Abdel Aal, A., El Barkooky, A., Gerrits, M., Meyer, H., Schwander, M., and
Zaki, H.: Tectonic evolution of the Eastern Mediterranean Basin and its
significance for hydrocarbon prospectivity in the ultradeepwater of the Nile
Delta, Lead. Edge, 19, 1086, https://doi.org/10.1190/1.1438485, 2000.
Abdel-Fattah, M. I.: Petrophysical characteristics of the messinian abu madi
formation in the baltim east and north fields, offshore Nile delta, Egypt,
J. Petrol. Geol., 37, 183–195, https://doi.org/10.1111/jpg.12577, 2014.
Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C., and van der Vorst, H.: Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, Math.
Comput., 64, 1349, https://doi.org/10.2307/2153507, 2006.
Barrocu, G. and Dahab, K.: Changing climate and saltwater intrusion in the
Nile Delta, Egypt, in: Groundwater Response to a changing Climate, edited by:
Makato, T. and Holman, I., Taylor & Francis, Boca Raton, Florida, USA, 11–25, 2010.
Biswas, A. K.: Land Resources for Sustainable Agricultural Development in
Egypt, Ambio, 22, 556–560, 1993.
Bunbury, J.: Geomorphological development of the Memphite floodplain over
the past 6000 years, Stud. Quat., 30, 61–67,
https://doi.org/10.2478/squa-2013-0005, 2013.
Coleman, J. M., Roberts, H. H., Murray, S. P., and Salama, M.: Morphology and
dynamic sedimentology of the eastern nile delta shelf, Dev. Sedimentol.,
32, 301–326, https://doi.org/10.1016/S0070-4571(08)70304-2, 1981.
Colombani, N., Cuoco, E., and Mastrocicco, M.: Origin and pattern of
salinization in the Holocene aquifer of the southern Po Delta (NE Italy), J.
Geochem. Explor., 175, 130–137, https://doi.org/10.1016/j.gexplo.2017.01.011, 2017.
De Lange, W. J., Prinsen, G. F., Hoogewoud, J. C., Veldhuizen, A. A.,
Verkaik, J., Oude Essink, G. H. P., Van Walsum, P. E. V., Delsman, J. R.,
Hunink, J. C., Massop, H. T. L., and Kroon, T.: An operational, multi-scale,
multi-model system for consensus-based, integrated water management and
policy analysis: The Netherlands Hydrological Instrument, Environ. Modell.
Softw., 59, 98–108, https://doi.org/10.1016/j.envsoft.2014.05.009, 2014.
Delsman, J. R., Huang, K. R. M., Vos, P. C., de Louw, P. G. B., Oude Essink, G. H. P., Stuyfzand, P. J., and Bierkens, M. F. P.: Paleo-modeling of coastal saltwater intrusion during the Holocene: an application to the Netherlands, Hydrol. Earth Syst. Sci., 18, 3891–3905, https://doi.org/10.5194/hess-18-3891-2014, 2014.
Delsman, J. R., Van Baaren, E. S., Siemon, B., Dabekaussen, W., Karaoulis, M.
C., Pauw, P., Vermaas, T., Bootsma, H., De Louw, P. G. B., Gunnink, J. L.,
Dubelaar, W., Menkovic, A., Steuer, A., Meyer, U., Revil, A., and Oude
Essink, G. H. P.: Large-scale, probabilistic salinity mapping using airborne
electromagnetics for groundwater management in Zeeland, the Netherlands,
Environ. Res. Lett., 13, 1–13, https://doi.org/10.1088/1748-9326/aad19e, 2018.
Dermody, B. J., van Beek, R. P. H., Meeks, E., Klein Goldewijk, K., Scheidel, W., van der Velde, Y., Bierkens, M. F. P., Wassen, M. J., and Dekker, S. C.: A virtual water network of the Roman world, Hydrol. Earth Syst. Sci., 18, 5025–5040, https://doi.org/10.5194/hess-18-5025-2014, 2014.
Diab, M. S., Dahab, K. A., and El-Fakharany, M. A.: Impact of the
Paleohydrogeological conditions on the groundwater quality in the Northern
Part of the Nile Delta, Egypt, Egypt. J. Geol., 41, 779–796, 1997.
Dolean, V., Jolivet, P., and Nataf, F.: An Introduction to Domain Decomposition Methods : algorithms, theory and parallel implementation, Paris, available at: https://hal.archives-ouvertes.fr/cel-01100932v2 (last access: 17 December 2019), 2015.
Domenico, P. A. and Schwartz, F. W.: Physical and Chemical Hydrogeology,
1st edn., John Wiley & Sons, Toronto, Canada, 1990.
Edmunds, W. M.: Palaeowaters in European coastal aquifers – the goals and
main conclusions of the PALAEAUX project, Geol. Soc. London Spec. Publ.,
189, 1–16, https://doi.org/10.1144/GSL.SP.2001.189.01.02, 2001.
El-Agha, D. E., Closas, A., and Molle, F.: Below the radar: the boom of
groundwater use in the central part of the Nile Delta in Egypt, Hydrogeol.
J., 25, 1621–1631, https://doi.org/10.1007/s10040-017-1570-8, 2017.
El Banna, M. M.: Nature and human impact on Nile Delta coastal sand dunes,
Egypt, Environ. Geol., 45, 690–695, https://doi.org/10.1007/s00254-003-0922-y, 2004.
Elkrail, A. B. and Obied, B. A.: Hydrochemical characterization and
groundwater quality in Delta Tokar alluvial plain, Red Sea coast-Sudan,
Arab. J. Geosci., 6, 3133–3138, https://doi.org/10.1007/s12517-012-0594-6, 2013.
Enemark, T., Peeters, L. J. M., Mallants, D., and Batelaan, O.:
Hydrogeological conceptual model building and testing: A review, J. Hydrol.,
569, 310–329, https://doi.org/10.1016/j.jhydrol.2018.12.007, 2019.
Farid, M.: Nile Delta Groundwater Study, Cairo University, Cairo, Egypt, 1980.
Fass, T., Cook, P. G., Stieglitz, T., and Herczeg, A. L.: Development of
saline ground water through transpiration of sea water, Ground Water, 45,
703–710, https://doi.org/10.1111/j.1745-6584.2007.00344.x, 2007.
Faye, S., Maloszewski, P., Stichler, W., Trimborn, P., Faye, S. C., and Gaye,
C. B.: Groundwater salinization in the Saloum (Senegal) delta aquifer: Minor
elements and isotopic indicators, Sci. Total Environ., 343, 243–259,
https://doi.org/10.1016/j.scitotenv.2004.10.001, 2005.
Flaux, C., Claude, C., Marriner, N., and Morhange, C.: A 7500-year strontium
isotope record from the northwestern Nile delta (Maryut lagoon, Egypt),
Quaternary Sci. Rev., 78, 22–33, https://doi.org/10.1016/j.quascirev.2013.06.018,
2013.
Gallichand, J., Marcotte, D., Prasher, S. O., and Broughton, R. S.: Optimal
sampling density of hydraulic conductivity for subsurface drainage in the
Nile delta, Agr. Water Manage., 20, 299–312,
https://doi.org/10.1016/0378-3774(92)90004-G, 1992.
Galloway, W. D.: Process Framework for describing the morphologic and
stratigraphic evolution of deltaic depositional systems, in: Deltas: Models for Exploration, edited by: Broussard, M. L., Houston Geological Society, Houston, USA, 86–98, 1975.
GEBCO: GEBCO Dataset, available at:
http://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_30_second_grid/
(last access: 5 October 2016), 2014.
Geirnaert, W. and Laeven, M. P.: Composition and history of ground water in
the western Nile Delta, J. Hydrol., 138, 169–189,
https://doi.org/10.1016/0022-1694(92)90163-P, 1992.
Gelhar, L. W., Welty, C., and Rehfeldt, K. R.: A Critical Review of Data on
Field-Scale Dispersion in Aquifers, Water Resour. Res., 28, 1955–1974,
https://doi.org/10.1029/92WR00607, 1992.
Geriesh, M. H., Balke, K.-D., El-Rayes, A. E., and Mansour, B. M.:
Implications of climate change on the groundwater flow regime and
geochemistry of the Nile Delta, Egypt, J. Coast. Conserv., 19, 589–608,
https://doi.org/10.1007/s11852-015-0409-5, 2015.
Golub, G. and Van Loan, C. F.: Matrix Computations, 3rd edn., The Johns
Hobkins University Press, London, UK, 1996.
Guo, W. and Langevin, C. D.: User's Guide to SEAWAT: A computer program for
simulation of three-dimensional variable-density ground-water flow, USGS,
Tallahassee, USA, 2002.
Higgins, S. A.: Review: Advances in delta-subsidence research using
satellite methods, Hydrogeol. J., 587–600, https://doi.org/10.1007/s10040-015-1330-6,
2016.
Ibrahim Hussein, H. A., Ricka, A., Kuchovsky, T., and El Osta, M. M.:
Groundwater hydrochemistry and origin in the south-eastern part of Wadi El Natrun, Egypt, Arab. J. Geosci., 10, 1–14,
https://doi.org/10.1007/s12517-017-2960-x, 2017.
Jasechko, S., Perrone, D., Befus, K. M., Bayani Cardenas, M., Ferguson, G.,
Gleeson, T., Luijendijk, E., McDonnell, J. J., Taylor, R. G., Wada, Y., and
Kirchner, J. W.: Global aquifers dominated by fossil groundwaters but wells
vulnerable to modern contamination, Nat. Geosci., 10, 425–430,
https://doi.org/10.1038/ngeo2943, 2017.
Jazayeri, A. and Werner, A. D.: Boundary condition nomenclature confusion in
groundwater flow modelling, Groundwater, 57, gwat.12893, https://doi.org/10.1111/gwat.12893,
2019.
Kashef, A.-A. I.: Salt-Water Intrusion in the Nile Delta, Groundwater,
21, 160–167, https://doi.org/10.1111/j.1745-6584.1983.tb00713.x, 1983.
Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B., and Simmons, C. T.:
Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and
integration, J. Hydrol., 535, 235–255, https://doi.org/10.1016/j.jhydrol.2016.01.083,
2016.
King, C. and Salem, B.: A socio-ecological investigation of options to
manage groundwater degradation in the western desert, Egypt, Ambio, 41,
490–503, https://doi.org/10.1007/s13280-012-0255-8, 2012.
Kooi, H. and Groen, J.: Geological processes and the management of
groundwater resources in coastal areas, Geol. en Mijnbouw/Netherlands, J.
Geosci., 82, 31–40, https://doi.org/10.1017/S0016774600022770, 2003.
Kooi, H., Groen, J., and Leijnse, A.: Modes of seawater intrusion during
transgressions, Water Resour. Res., 36, 3581–3589,
https://doi.org/10.1029/2000WR900243, 2000.
Kubota, A., Zayed, B., Fujimaki, H., Higashi, T., Yoshida, S., Mahmoud, M.
M. A., Kitamura, Y., and Hassan, W. H. A. E.: Chapter 7: Water and salt
movement in Soils of the Nile Delta, in: Irrigated Agriculture in Egypt, edited by: Satoh, M. and Aboulroos, S., Springer International Publishing, Switzerland, 153–186,
2017.
Laeven, M. P.: Hydrogeological Study of the Nile Delta and Adjacent Desert
Areas Egypt with emphasis on hydrochemistry and isotope hydrology, Free University of Amsterdam,
Amsterdam, the Netherlands, 1991.
Langevin, C. D., Shoemaker, W. B., and Guo, W.: MODFLOW-2000, the U.S.
Gelogical Survey Modular Ground-Water Model-Documentation of the SEAWAT-2000
version with the Variable-Density Flow Process (VDF) and the Integrated
MT3DMS Transport Process (IMT), available at:
http://water.usgs.gov/ogw/seawat/ (last access: 17 December 2019), 2003.
Langevin, C. D., Thorne Jr., D. T., Dausman, A. M., Sukop, M. C., and Guo,
W.: SEAWAT Version 4: A Computer Program for Simulation of Multi-Species
Solute and Heat Transport, U.S. Geol. Surv. Tech. Methods B. 6, 39, Reston, Virginia, USA, 2008.
Larsen, F., Tran, L. V., Van Hoang, H., Tran, L. T., Christiansen, A. V., and
Pham, N. Q.: Groundwater salinity influenced by Holocene seawater trapped in
incised valleys in the Red River delta plain, Nat. Geosci., 10, 376–382,
https://doi.org/10.1038/ngeo2938, 2017.
Mabrouk, M. B., Jonoski, A., Solomatine, D., and Uhlenbrook, S.: A review of seawater intrusion in the Nile Delta groundwater system – the basis for assessing impacts due to climate changes and water resources development, Hydrol. Earth Syst. Sci. Discuss., 10, 10873–10911, https://doi.org/10.5194/hessd-10-10873-2013, 2013.
Mabrouk, M. B., Jonoski, A., Oude Essink, G. H. P., and Uhlenbrook, S.: Impacts
of sea level rise and increasing fresh water demand on sustainable
groundwater management, Water, 10, 1–14, https://doi.org/10.3390/w10111690, 2018.
Malm, A. and Esmailian, S.: Ways In and Out of Vulnerability to Climate
Change: Abandoning the Mubarak Project in the Northern Nile Delta, Egypt,
Antipode, 45, 474–492, https://doi.org/10.1111/j.1467-8330.2012.01007.x, 2013.
Manzano, M., Custodio, E., Loosli, H., Cabrera, M. C., Riera, X., and
Custodio, J.: Palaeowater in coastal aquifers of Spain, Geol. Soc. London,
Spec. Publ., 189, 107–138, https://doi.org/10.1144/gsl.sp.2001.189.01.08, 2001.
Meisler, H., Leahy, P. P., and Knobel, L. L.: Effect of Eustatic Sea-Level
Changes on Saltwater-Freshwater in the Northern Atlantic Coastal Plain, in:
USGS Water Supply Paper: 2255, p. 28, U.S. Geological Survey, Alexandria, Virginia, USA, 1984.
Michael, H. A., Scott, K. C., Koneshloo, M., Yu, X., Khan, M. R., and Li, K.:
Geologic influence on groundwater salinity drives large seawater circulation
through the continental shelf, Geophys. Res. Lett., 43, 10782–10791,
https://doi.org/10.1002/2016GL070863, 2016.
MPI Forum: MPI: A Message Passing Interface, Knoxville, Tennessee, USA, 1993.
NASA: Shuttle Radar Topography Mission, Pasadena, California, USA, 2014.
Nichols, G.: Sequence Stratigraphy and Sea-level Changes, in: Sedimentology
And Stratigraphy, John Wiley & Sons, Chichester, UK, 349–380, 2009.
Nofal, E. R., Amer, M. A., El-Didy, S. M., and Akram, M. F.: Sea Water
Intrusion in Nile Delta in Perspective of New Configuration of the Aquifer
Heterogeneity Using the Recent Stratigraphy Data, J. Am. Sci., 11,
567–570, 2015.
Nofal, E. R., Mostafa, H. F. A., van der Linden, W., and Oude Essink, G. H.
P.: Enhanced Water Resources Management Project Egypt, Technical Study 4:
Groundwater Modelling, Nile Delta, National Water Research Center (NWRC) Research, Cairo, Egypt, 2016.
Nofal, E. R., Fekry, A. M., Ahmed, M. H., and El-Kharakany, M. M.:
Groundwater: Extraction versus recharge; vulnerability assessment, Water
Sci., 32, 287–300, https://doi.org/10.1016/j.wsj.2018.07.002, 2018.
Oude Essink, G. H. P., Van Baaren, E. S., and De Louw, P. G. B.: Effects of
climate change on coastal groundwater systems: A modeling study in the
Netherlands, Water Resour. Res., 46, 1–16, https://doi.org/10.1029/2009WR008719,
2010.
Panday, S., Langevin, C. D., Niswonger, R. G., Ibaraki, M., and Hughes, J.
D.: MODFLOW-USG Version 1: An Unstructured Grid Version of MODFLOW for
Simulating Groundwater Flow and Tightly Coupled Processes Using a Control
Volume Finite-Difference Formulation, U.S. Geol. Surv. Tech. Methods,
(6-A45), 66, Reston, Virginia, USA, 2013.
Paradigm: SKUA-GOCAD, available at:
http://www.pdgm.com/products/skua-gocad/ (last access: 17 December 2019), 2017.
Pauw, P. S., van der Zee, S. E. A. T. M., Leijnse, A., and Oude Essink, G. H.
P.: Saltwater Upconing Due to Cyclic Pumping by Horizontal Wells in
Freshwater Lenses, Groundwater, 54, 521–531, https://doi.org/10.1111/gwat.12382, 2015.
Pennington, B. T., Sturt, F., Wilson, P., Rowland, J., and Brown, A. G.: The
fluvial evolution of the Holocene Nile Delta, Quaternary Sci. Rev., 170,
212–231, https://doi.org/10.1016/j.quascirev.2017.06.017, 2017.
Post, V. E. A., Groen, J., Kooi, H., Person, M., Ge, S., and Edmunds, W. M.:
Offshore fresh groundwater reserves as a global phenomenon, Nature,
504, 71–8, https://doi.org/10.1038/nature12858, 2013.
Post, V. E. A., Houben, G. J., and Engelen, J. Van: What is the
Ghijben-Herzberg principle and who formulated it?, Hydrogeol. J., 26, 1801–1807, 2018.
Rasmussen, E. K., Svenstrup Petersen, O., Thompson, J. R., Flower, R. J., and
Ahmed, M. H.: Hydrodynamic-ecological model analyses of the water quality of
Lake Manzala nile delta, northern Egypt, Hydrobiologia, 622, 195–220,
https://doi.org/10.1007/s10750-008-9683-7, 2009.
Salem, Z. E., Al Temamy, A. M., Salah, M. K., and Kassab, M.: Origin and
characteristics of brackish groundwater in Abu Madi coastal area, Northern
Nile Delta, Egypt, Estuar. Coast. Shelf Sci., 178, 21–35,
https://doi.org/10.1016/j.ecss.2016.05.015, 2016.
Samuel, A., Kneller, B., Raslan, S., Sharp, A., and Parsons, C.: Prolific deep marine slope channels of
the Nile Delta, Egypt, Am. Assoc. Petr. Geol. B., 87, 541–560,
https://doi.org/10.1306/1105021094, 2003.
Sanford, W. E. and Pope, J. P.: Current challenges using models to forecast
seawater intrusion: lessons from the Eastern Shore of Virginia, USA,
Hydrogeol. J., 18, 73–93, https://doi.org/10.1007/s10040-009-0513-4, 2010.
Sefelnasr, A. and Sherif, M.: Impacts of Seawater Rise on Seawater Intrusion
in the Nile Delta Aquifer, Egypt, Groundwater, 52, 264–276,
https://doi.org/10.1111/gwat.12058, 2014.
Sestini, G.: Nile Delta: a review of depositional environments and
geological history, Geol. Soc. London Spec. Publ., 41, 99–127,
https://doi.org/10.1144/GSL.SP.1989.041.01.09, 1989.
Shen, C., Zhang, C., Xin, P., Kong, J., and Li, L.: Salt Dynamics in Coastal
Marshes: Formation of Hypersaline Zones, Water Resour. Res., 54,
3259–3276, https://doi.org/10.1029/2017WR022021, 2018.
Sherif, M. M., Singh, V. P., and Amer, A. M.: A two-dimensional finite
element model for dispersion (2D-FED) in coastal aquifers, J. Hydrol.,
103, 11–36, https://doi.org/10.1016/0022-1694(88)90003-0, 1988.
Sinsakul, S.: Late Quaternary geology of the Lower Central Plain, Thailand,
J. Asian Earth Sci., 18, 415–426, https://doi.org/10.1016/S1367-9120(99)00075-9,
2000.
Sivan, D., Wdowinski, S., Lambeck, K., Galili, E., and Raban, A.: Holocene
sea-level changes along the Mediterranean coast of Israel, based on
archaeological observations and numerical model, Palaeogeogr.
Palaeocl., 167, 101–117,
https://doi.org/10.1016/S0031-0182(00)00234-0, 2001.
Smith, B. F., Bjørstad, P. E., and Gropp, W. D.: Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations,
Cambridge University Press, NY, USA, 1996.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Stanley, D. J. and Warne, A. G.: Nile Delta: Recent Geological Evolution and
Human Impact, Science, 260, 628–634,
https://doi.org/10.1126/science.260.5108.628, 1993.
Stanley, J.-D. and Clemente, P. L.: Clay Distributions, Grain Sizes,
Sediment Thicknesses, and Compaction Rates to Interpret Subsidence in
Egypt's Northern Nile Delta, J. Coast. Res., 30, 88–101,
https://doi.org/10.2112/JCOASTRES-D-13-00146.1, 2014.
Stanley, J. D. and Clemente, P. L.: Increased land subsidence and sea-level
rise are submerging Egypt's nile delta coastal margin, GSA Today, 27,
4–11, https://doi.org/10.1130/GSATG312A.1, 2017.
Strack, O. D. L.: Groundwater Mechanics, Prentice Hall, Portland, Oregon, USA, 1989.
Stuyfzand, P. J.: Base exchange indices as indicators of salinization or
freshening of (coastal) aquifers, 20th Salt Water Intrusion Meet., 23–27 June 2008, Naples,
Florida, USA, 1941, 262–265, available at:
http://www.swim-site.nl/pdf/swim20/file281-284.pdf (last access: 17 December 2019), 2008.
Summerhayes, C. P., Sestini, G., Misdorp, R., and Marks, N.: Nile Delta:
Nature and Evolution of Continental Shelf Sediments, Mar. Geol., 27,
43–65, 1978.
Surfsara: Description of the Cartesius system, available at:
https://userinfo.surfsara.nl/systems/cartesius/description (last access: 14 May 2018), 2014.
Switzman, H., Coulibaly, P., and Adeel, Z.: Modeling the impacts of dryland
agricultural reclamation on groundwater resources in Northern Egypt using
sparse data, J. Hydrol., 520, 420–438, https://doi.org/10.1016/j.jhydrol.2014.10.064,
2015.
Tanabe, S., Saito, Y., Lan Vu, Q., Hanebuth, T. J. J., Lan Ngo, Q., and
Kitamura, A.: Holocene evolution of the Song Hong (Red River) delta system,
northern Vietnam, Sediment. Geol., 187, 29–61,
https://doi.org/10.1016/j.sedgeo.2005.12.004, 2006.
Timmerman, P. H. A. and Hemker, C. J.: Determination of the entry-resistance of the Lek and the vertical resistances of the floodplains and polders near Langerak (Alblasserwaard, NL), H20, 26, 2–7, available at: https://edepot.wur.nl/371144 (last access: 17 December 2019), 1993 (in Dutch).
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J. D., Yager, N., Gouillart, E., and Yu, T.: scikit-image: image
processing in Python, PeerJ, 2, e453, https://doi.org/10.7717/peerj.453, 2014.
van Engelen, J.: Model input files, Zenodo, https://doi.org/10.5281/zenodo.3461667, 2019a.
van Engelen, J.: Nile_Delta_post: Postprocessing scripts, Zenodo, https://doi.org/10.5281/zenodo.3461788, 2019b.
van Engelen, J.: Video supplement: A three-dimensional palaeo-reconstruction of the groundwater salinity distribution in the Nile Delta Aquifer, Zenodo, https://doi.org/10.5281/zenodo.2628427, 2019c.
van Engelen, J., Oude Essink, G. H. P., Kooi, H., and Bierkens, M. F. P.: On
the origins of hypersaline groundwater in the Nile Delta aquifer, J.
Hydrol., 560, 301–317, https://doi.org/10.1016/j.jhydrol.2018.03.029, 2018.
Van Pham, H., van Geer, F. C., Tran, V. B., Dubelaar, W., and Oude Essink, G.
H. P.: Paleo-hydrogeological reconstruction of the fresh-saline groundwater
distribution in the Vietnamese Mekong Delta since the late Pleistocene, J.
Hydrol. Reg. Stud., 6, 1–22, 2019.
Verkaik, J., Van Engelen, J., Huizer, S., and Oude Essink, G. H. P.: The New
Parallel Krylov Solver for SEAWAT, in: AGU Fall Meeting 2017, 11–15 December 2017, New Orleans, USA, 2017.
Wang, Y. and Jiao, J. J.: Origin of groundwater salinity and
hydrogeochemical processes in the confined Quaternary aquifer of the Pearl
River Delta, China, J. Hydrol., 438–439, 112–124,
https://doi.org/10.1016/j.jhydrol.2012.03.008, 2012.
Warne, A. G. and Stanley, D. J.: Late Quaternary Evolution of the Northwest
Nile Delta and Adjacent Coast in the Alexandria Region, Egypt, J. Coast.
Res., 9, 26–64, 1993.
WMO: Weather Information for Alexandria, available at:
https://worldweather.wmo.int/059/c01268.htm (last access: 11 September 2018), 2006.
World Bank: Population, total, Databank, available at:
https://data.worldbank.org/indicator/SP.POP.TOTL?end=2016&locations=EG&start=1960&type=points&view=chart,
last access: 23 March 2018.
WRI: World Resources 2008 Data Tables, Washington D.C., USA, 2008.
Yamanaka, T., Shimada, J., Tsujimura, M., Lorphensri, O., Mikita, M.,
Hagihara, A., and Onodera, S.: Tracing a confined groundwater flow system
under the pressure of excessive groundwater use in the lower central plain,
Thailand, Hydrol. Process., 25, 2654–2664, https://doi.org/10.1002/hyp.8007, 2011.
Yechieli, Y., Shalev, E., Wollman, S., Kiro, Y., and Kafri, U.: Response of
the Mediterranean and Dead Sea coastal aquifers to sea level variations,
Water Resour. Res., 46, W12550, https://doi.org/10.1029/2009WR008708, 2010.
Zamrsky, D., Oude Essink, G. H. P., and Bierkens, M. F. P.: Estimating the thickness of unconsolidated coastal aquifers along the global coastline, Earth Syst. Sci. Data, 10, 1591–1603, https://doi.org/10.5194/essd-10-1591-2018, 2018.
Zech, A., Attinger, S., Cvetkovic, V., Dagan, G., Dietrich, P., Fiori, A.,
Rubin, Y., and Teutsch, G.: Is unique scaling of aquifer macrodispersivity
supported by field data?, Water Resour. Res., 51, 7662–7679, https://doi.org/10.1002/2015WR017220, 2015.
Zhang, C., Li, L., and Lockington, D.: A physically based surface resistance
model for evaporation from bare soils, Water Resour. Res., 51, 1084–1111,
https://doi.org/10.1002/2014WR015490, 2015.
Zong, Y., Huang, G., Switzer, A. D., Yu, F., and Yim, W. W. S.: An
evolutionary model for the Holocene formation of the Pearl River delta,
China, Holocene, 19, 129–142, https://doi.org/10.1177/0959683608098957, 2009.
Short summary
The Nile Delta is an important agricultural area with a fast-growing population, relying increasingly on groundwater. However, saline groundwater extends far land-inward, rendering groundwater close to the coastal zone useless for consumption or agriculture. It normally is assumed that this is caused by mixing due to velocity differences, but here we show that it might also be caused by the coastline being located more land-inward 8000 years ago.
The Nile Delta is an important agricultural area with a fast-growing population, relying...