Articles | Volume 23, issue 9
Hydrol. Earth Syst. Sci., 23, 3787–3805, 2019
https://doi.org/10.5194/hess-23-3787-2019
Hydrol. Earth Syst. Sci., 23, 3787–3805, 2019
https://doi.org/10.5194/hess-23-3787-2019

Research article 18 Sep 2019

Research article | 18 Sep 2019

Global sensitivity analysis and adaptive stochastic sampling of a subsurface-flow model using active subspaces

Daniel Erdal and Olaf A. Cirpka

Related authors

Presentation and discussion of the high-resolution atmosphere–land-surface–subsurface simulation dataset of the simulated Neckar catchment for the period 2007–2015
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021,https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach
Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler
Hydrol. Earth Syst. Sci., 25, 4041–4059, https://doi.org/10.5194/hess-25-4041-2021,https://doi.org/10.5194/hess-25-4041-2021, 2021
Short summary
Technical Note: Improved sampling of behavioral subsurface flow model parameters using active subspaces
Daniel Erdal and Olaf A. Cirpka
Hydrol. Earth Syst. Sci., 24, 4567–4574, https://doi.org/10.5194/hess-24-4567-2020,https://doi.org/10.5194/hess-24-4567-2020, 2020
Short summary
High-Resolution Virtual Catchment Simulations of the Subsurface-Land Surface-Atmosphere System
Bernd Schalge, Jehan Rihani, Gabriele Baroni, Daniel Erdal, Gernot Geppert, Vincent Haefliger, Barbara Haese, Pablo Saavedra, Insa Neuweiler, Harrie-Jan Hendricks Franssen, Felix Ament, Sabine Attinger, Olaf A. Cirpka, Stefan Kollet, Harald Kunstmann, Harry Vereecken, and Clemens Simmer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-557,https://doi.org/10.5194/hess-2016-557, 2016
Manuscript not accepted for further review
Short summary
Joint inference of groundwater–recharge and hydraulic–conductivity fields from head data using the ensemble Kalman filter
D. Erdal and O. A. Cirpka
Hydrol. Earth Syst. Sci., 20, 555–569, https://doi.org/10.5194/hess-20-555-2016,https://doi.org/10.5194/hess-20-555-2016, 2016
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment
Karina Y. Gutierrez-Jurado, Daniel Partington, and Margaret Shanafield
Hydrol. Earth Syst. Sci., 25, 4299–4317, https://doi.org/10.5194/hess-25-4299-2021,https://doi.org/10.5194/hess-25-4299-2021, 2021
Short summary
Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach
Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler
Hydrol. Earth Syst. Sci., 25, 4041–4059, https://doi.org/10.5194/hess-25-4041-2021,https://doi.org/10.5194/hess-25-4041-2021, 2021
Short summary
Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape
Vince P. Kaandorp, Hans Peter Broers, Ype van der Velde, Joachim Rozemeijer, and Perry G. B. de Louw
Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021,https://doi.org/10.5194/hess-25-3691-2021, 2021
Short summary
Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021,https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data
Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk
Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021,https://doi.org/10.5194/hess-25-2931-2021, 2021
Short summary

Cited articles

Aquanty Inc.: HydroGeoSphere User Manual, Tech. rep., Aquanty Inc., Waterloo, ON, Canada, 2015. a
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992. a
Cirpka, O. A. and Kitanidis, P. K.: Sensitivities of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data, Adv. Water Resour., 24, 89–103, 2000. a
Constantine, P. G. and Diaz, P.: Global sensitivity metrics from active subspaces, Reliab. Eng. Syst. Saf., 162, 1–13, https://doi.org/10.1016/j.ress.2017.01.013, 2017. a, b, c
Constantine, P. G. and Doostan, A.: Time-dependent global sensitivity analysis with active subspaces for a lithium ion battery model, Stat. Anal. Data Min., 10, 243–262, https://doi.org/10.1002/sam.11347, 2017. a
Download
Short summary
Assessing how sensitive uncertain model parameters are to observed data can be done by analyzing an ensemble of model simulations in which the parameters are varied. In subsurface modeling, this involves running heavy models. To reduce time wasted simulating models which show poor behavior, we use a fast polynomial model based on a simple parameter decomposition to approximate the behavior prior to full-model simulation. This largely reduces the cost for the global sensitivity analysis.