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Abstract. Integrated hydrological modeling of domains with
complex subsurface features requires many highly uncertain
parameters. Performing a global uncertainty analysis using
an ensemble of model runs can help bring clarity as to which
of these parameters really influence system behavior and for
which high parameter uncertainty does not result in sim-
ilarly high uncertainty of model predictions. However, al-
ready creating a sufficiently large ensemble of model sim-
ulation for the global sensitivity analysis can be challenging,
as many combinations of model parameters can lead to unre-
alistic model behavior. In this work we use the method of ac-
tive subspaces to perform a global sensitivity analysis. While
building up the ensemble, we use the already-existing ensem-
ble members to construct low-order meta-models based on
the first two active-subspace dimensions. The meta-models
are used to pre-determine whether a random parameter com-
bination in the stochastic sampling is likely to result in unre-
alistic behavior so that such a parameter combination is ex-
cluded without running the computationally expensive full
model. An important reason for choosing the active-subspace
method is that both the activity score of the global sensitivity
analysis and the meta-models can easily be understood and
visualized. We test the approach on a subsurface-flow model
including uncertain hydraulic parameters, uncertain bound-
ary conditions and uncertain geological structure. We show
that sufficiently detailed active subspaces exist for most ob-
servations of interest. The pre-selection by the meta-model
significantly reduces the number of full-model runs that must
be rejected due to unrealistic behavior. An essential but diffi-
cult part in active-subspace sampling using complex models
is approximating the gradient of the simulated observation
with respect to all parameters. We show that this can effec-

tively and meaningfully be done with second-order polyno-
mials.

1 Introduction

Water flow in the subsurface is an integral part of the wa-
ter cycle. In recent years, integrated hydrological modeling
based on the partial differential equation (pde), coupling flow
in the subsurface and on the land surface, has become a rather
standard tool (Maxwell et al., 2015; Kollet et al., 2017). With
the increasing computational power, the size of the models
has also increased (Kollet et al., 2010). However, increas-
ing the size and/or complexity of a model usually also in-
creases the number of (spatially variable) parameters of the
model. Identifying suitable parameter values from a limited
number of observed data (i.e., calibration, inverse modeling
and parameter estimation) has been, and continues to be, a
large topic in hydrological and hydrogeological modeling
(Vrugt et al., 2008; Shuttleworth et al., 2012; Yeh, 2015).
Related to the topic of model calibration is the question of
how sensitive certain parameters actually are to the observed
data and, hence, which parameters can and cannot be in-
ferred from these data. This is explored by sensitivity anal-
ysis (e.g., Saltelli et al., 2004, 2008). A clear separation in
the sensitivity-analysis literature is between local methods,
in which parameters are varied about a fixed point, and global
methods, which aim to explore sensitivities of the param-
eters across the full parameter space. The two approaches
lead to identical results only when the dependence of the
model outcome on the parameter values is linear. For hydro-
logical purposes, the recent reviews of Mishra et al. (2009),
Song et al. (2015) and Pianosi et al. (2016) provide struc-
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tured overviews and selection suggestions for the choice of
an appropriate sensitivity-analysis method. A large collection
of different global sensitivity-analysis methods exists. Song
et al. (2015) divides them into screening methods, regression
methods, variance-based methods, meta-modeling methods,
regionalized sensitivity analysis and entropy-based methods,
each of which containing multiple implementation variants.
The popular method of Sobol (1993) indices is a typical ex-
ample of a variance-based method.

A global sensitivity approach that does not directly fit into
any of the categories listed above but has recently gained in-
creased attention is the active-subspace method (e.g., Con-
stantine et al., 2014; Constantine and Diaz, 2017). The aim
of the subspace method is to find the most influential direc-
tions in parameter space. An active subspace is defined by
active variables, which are linear combinations of the in-
vestigated parameters. Along the active variables, the ob-
servation changes more, on average, than along any other
direction in the parameter space. The method has mainly
been applied to engineering-related models (e.g., Constan-
tine et al., 2015a, b; Constantine and Doostan, 2017; Hu
et al., 2016, 2017; Glaws et al., 2017; Grey and Constantine,
2018; Li et al., 2019); however, recently it has also success-
fully been applied to coupled surface–subsurface-flow simu-
lations. Jefferson et al. (2015) used the coupled subsurface–
land-surface model ParFlow-CLM to study the sensitivity
of energy fluxes to vegetation and land-surface parameters.
Apart from deriving sensitivities, they showed that an ac-
tive subspace for a model including subsurface flow existed.
Jefferson et al. (2017) applied the active-subspace method
to the same model (ParFlow-CLM) to study the sensitivity
of transpiration and stomatal resistance on photosynthesis-
related parameters. Actively considering the deeper sub-
surface (i.e., groundwater flow), Gilbert et al. (2016) used
ParFlow in combination with active subspaces to study the
effect of three-dimensional hydraulic-conductivity variations
on cumulative runoff. They showed that the method of
active subspaces can successfully be applied to complex
subsurface-flow models. However, they also showed that an
active subspace may not be well defined under unsaturated
conditions and Hortonian flow.

A general problem when performing any type of global
sensitivity analysis is the choice of how to sample the pa-
rameters. Apart from defining ranges and distributions of sin-
gle parameters, which are unique to the problem at hand and
can often be addressed by experts in the field, questions re-
lated to unfavorable parameter combinations are harder to
deal with a priori. Unfavorable parameter combinations may
lead to model behavior that is not observed in reality, such
as severe floods or strong droughts. In regionalized (also
known as generalized) sensitivity analysis, such parameter
sets are classified as non-behavioral, and statistical differ-
ences between the behavior and non-behavioral parameter
sets are sought (Spear and Hornberger, 1980; Beven and Bin-
ley, 1992; Saltelli et al., 2004). Another way of approaching

the problem consists of discarding the non-behavioral pa-
rameter sets as unrealistic (or unphysical or model failures),
hence performing some type of rejection sampling. The con-
tinuing analysis is then done on the remaining sets, i.e., using
samples from a constrained joint parameter distribution. The
clear drawback of this approach is that many potentially ex-
pensive model simulations may be performed and then dis-
carded.

Recognizing that a sufficiently large set of model runs is
needed for a reliable stochastic analysis, Song et al. (2015)
discussed the use of meta-models in hydrological sciences.
The underlying basic idea is to calibrate a computation-
ally inexpensive model, denoted by a meta-model, surrogate
model, emulator model or proxy model, to the input and
output data from a small set of complete model runs. The
sensitivity analysis is then performed using the meta-model
rather then the original model (Ratto et al., 2012). Razavi
et al. (2012) have reviewed different types of meta-models,
such as polynomials, multivariate adaptive regression, artifi-
cial neural networks, support-vector regression and Gaussian
processes, among others. When using the active-subspace
method, a benefit is that a low-dimensional response surface
(i.e., a meta-model), relating the simulated target quantity to
the derived active variables, can be fitted to the data (see Li
et al., 2019). A good fit of the response surface to the data
is a good active-subspace decomposition and a good param-
eterization of the response surface. Apart from being easy to
visualize (in case of one or two dimensions), the surface is
also trivial to fit if, for example, simple polynomials are con-
sidered. However, a problem of meta-modeling is that any
analysis done with the meta-model is only as good as the
meta-model itself, and parameter sensitivities derived with
the meta-model may be biased by the simplified input–output
relationship.

In this paper, we use a meta-model, derived by the active-
subspace method, to pre-determine presumably behavioral
parameter sets and perform the global sensitivity analysis
with the full model using the pre-selected parameter sets.
By this we aim at reducing the number of discarded simu-
lations using the full model. We use two-dimensional active
subspaces to derive both multiple meta-models and sensitiv-
ity patterns for an integrated surface–subsurface-flow model.
The rest of the paper is structured as follows: Sect. 2 gives
a general description of the methods applied in this study,
Sect. 3 introduces the test case to which the methods are ap-
plied, and Sect. 4 presents and discusses the result of both
adaptive sampling and sensitivity analysis. The paper closes
with general discussions and conclusions in Sect. 5.
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2 Methods

2.1 Governing equations and simulation code used

Flow in the subsurface is computed using the software Hy-
droGeoSphere (Aquanty Inc., 2015). Although HydroGeo-
Sphere can simulate the entire terrestrial portion of the wa-
ter cycle, we focus in this work on subsurface features. Hy-
droGeoSphere provides a finite element solution of the 3-D
Richards equation, here presented in a general form without
explicit consideration of boundary conditions, with the pur-
pose of facilitating the discussion of parameters later on:

SsSw(h)
∂h

∂t
+ Sw(h)θS

∂Sw(h)

∂t
=∇ · (Kskr(h)∇(h+ z))+Q,

(1)

in which h (L) is the pressure head (i.e., the hydraulic head
minus the geodetic height z – L), Sw (–) is the water
saturation, θS (–) is the effective porosity, Ss (1/L) is the
specific storativity, Ks (L T−1) is the saturated hydraulic-
conductivity tensor, kr (–) is the relative permeability,
and Q (1/T) represents sources and sinks. The retention
and relative-permeability functions are computed using the
standard Mualem–van Genuchten model (Mualem, 1976;
Van Genuchten, 1980):

Se =

{
[1+ (α[h|)n]−m if h < 0,
1 otherwise, (2)

kr =
[
1−

(
1− S1/m

e

)m]2
S0.5

e , (3)

in which Se (–) is the effective saturation, which relates to
water saturation by Se = (Sw− Sr)/(1− Sr), where Sr (–)
is the residual saturation. Furthermore, α (1/L), n (–) and
m= 1−1/n (–) are shape parameters. In terms of parameter
values, this work focuses mainly on the two shape parame-
ters, the saturated hydraulic conductivity and specific stora-
tivity.

2.2 Derivation of the active subspaces

In this section we consider a general function f generating
a scalar output and requiring an input parameter vector x. In
this paper, computing f involves running HydroGeoSphere
and extracting a wanted (scalar) output.

The basic idea of the active-subspace decomposition is to
find primary directions in the original parameter space, com-
posed of linear combinations of the parameters, along which
the solution f (x) changes on average more than in other
directions. To avoid effects related to different dimensions
and magnitudes of parameters, all parameters are shifted and
scaled to the range (−1, 1) prior to the following calculations:

x̃i = 2
xi − xi,min

xi,max− xi,min
− 1, (4)

in which xi,min and xi,max are the lower and upper bounds of
parameter xi , and x̃i is the scaled parameter.

An active subspace of f is then defined by the eigenvectors
of the matrix (Constantine et al., 2014),

C=
∫
∇f (̃x)⊗∇f (̃x)ρ(̃x)d, (5)

with its eigendecomposition,

C=W3W−1, (6)

in which ⊗ denotes the matrix product, ρ is the probability
density function of the scaled parameters x̃, the integration is
performed over the entire parameter space, W is the matrix
of eigenvectors and 3 is the diagonal matrix of the corre-
sponding eigenvalues. Because C is symmetric and real, the
eigenvectors contained in W are orthogonal to each other,
W can be interpreted as a rotation matrix in parameter space,
and the inverse W−1 is identical to the transpose WT. We per-
form the integration in Eq. (5) using the Monte Carlo method
(Constantine et al., 2016; Constantine and Diaz, 2017):

C≈
1
M

M∑
i=1
∇f (̃xi)⊗∇f (̃xi) , (7)

in which M is the number of samples used and x̃i values are
independently drawn samples of x̃. Now the aim is to find a
subset of n eigenvectors that sufficiently describe the relation
between x̃ and f to create a decent low-order approximation
f (̃x)≈ g(WT

n x̃). Here, Wn is the m× n matrix containing
the eigenvectors with the n largest eigenvalues. In our appli-
cation, we choose n= 2.

For assessing the global sensitivity of each parameter in x,
we use the metric of Constantine and Diaz (2017), denoted
by the activity score ai :

ai =

n∑
j=1

λjw
2
i,j , (8)

in which i is the parameter index, λj is the j th eigenvalue
and wi,j is the value for parameter i in the j th eigenvector.
Since the unit of the eigenvalues, and hence also of the ac-
tivity score, is the square of the unit of the observation, we
present in this work the square root of the activity score rather
than the activity score itself.

A major issue with computing an active subspace for a
subsurface-flow model is that it requires the gradient of the
target quantity f with respect to all scaled parameters x̃i at all
parameter values accessed, which is not readily available. A
common workaround is to derive the gradients from a simple
polynomial model between the model parameters and output.
As our standard approach, similar to Grey and Constantine
(2018), we fit a second-order polynomial to the data (gradient
fit 1), but we also test a second-order polynomial without
cross terms (gradient fit 2) and a linear model (gradient fit 3):
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gradient fit 1 : f̂ (̃x)= b0+

m∑
i=1

bi x̃i +

m∑
i=1

m∑
j=i

bij x̃i x̃j , (9)

gradient fit 2 : f̂ (̃x)= b0+

m∑
i=1

bi x̃i +

m∑
i=1

bii x̃
2
i , (10)

gradient fit 3 : f̂ (̃x)= b0+

m∑
i=1

bi x̃i, (11)

in which m is the number of parameters. We determine the b
coefficients by standard multiple regression from an ensem-
ble of model runs. The gradient fit 1 requiresm2/2+3m/2+1
b coefficients, the gradient fit 2 requires 2m+ 1 coefficients
and the gradient fit 3 requires only m+ 1.

Our standard fit is the second-order polynomial with cross
terms. If the set of model runs is smaller than about twice
the number of required coefficients, we use the gradient fit 2,
excluding the second-order cross terms. The linear fit 3 im-
plies that the gradient∇f (̃x) is independent of the parameter
values, and the summation in Eq. (7) would become unnec-
essary. It can be shown that under these conditions the num-
ber of active-subspace dimensions reduces to one, and the
associated eigenvector is the gradient itself. A benefit of us-
ing higher-order polynomial expressions to obtain the gradi-
ents is that multiple subspace dimensions can be calculated,
which we utilize and show to be beneficial in the present
work.

In theory, also higher-order polynomials could be used to
approximate the local gradient vectors. In practice, however,
we are limited by the number of regression coefficients we
need to estimate. With the 32 parameters considered in this
work, we require a rather large ensemble of full-model runs
to obtain the 561 b coefficients, and therefore we refrain from
considering polynomials above the third order.

2.3 Definition of a meta-model using active subspaces

With a functional active-subspace decomposition, we may
construct a low-order approximation of the observation
(f (x)≈ g(WT

n x̃)). In this work we consider a third-order
polynomial surface fitted to our two active variables. This
surface is later used as a meta-model in the adaptive sam-
pling scheme presented in the next section.

To this end, we construct the vector ξ of reduced param-
eters (active variables) from the matrix of eigenvectors Wn

associated to the n largest eigenvalues of C,

ξ =WT
n x̃, (12)

and fit the full solution to a third-order polynomial:

g(ξ)= β0+

n∑
i=1

βiξi +

n∑
i=1

n∑
j=i

βij ξiξj

+

n∑
i=1

n∑
j=i

n∑
k=j

βijkξiξj ξk, (13)

which involves 10 β coefficients for n= 2. We judge the
quality of the third-order polynomial meta-model by the
Nash–Sutcliffe efficiency (NSE):

NSE= 1−

M∑
i=1

(
g
(
ξ i
)
− f (xi)

)2
M∑
i=1

(
f (xi)− f (x)

)2
, (14)

in which M is the number of samples, f (x) is the result of

the HydroGeoSphere simulation and f (x)=M−1
M∑
j=1

f (xj )

is the ensemble mean. In principle, the NSE ranges from−∞
to 1, with values close to unity marking better fitting models.
An NSE value smaller than zero would imply that taking the
mean of the full-model calculations performs better than the
meta-model; such behavior is excluded when performing a
polynomial fit to the data. A variety of other quantification
metrics can be found in the supplementary material.

In summary, the construction of an active subspace con-
tains two strong approximations which both give rise to er-
rors: (1) the active-subspace decomposition itself (dimension
reduction) and (2) the gradient approximation. As these two
errors can be strongly correlated, it is difficult to show the
effect of the dimension reduction when the gradient approxi-
mation is still uncertain. However, in Sect. 4.3 we attempt to
show the effect on the total error when altering the accuracy
of the gradient approximation.

2.4 Adaptive sampling using active subspaces

A key difficulty in running complex models with random pa-
rameters drawn from wide prior distributions is that a signif-
icant number of the resulting model simulations may show
behavior that is contradictory to the prior knowledge of the
modeled system. Such non-behavioral runs should be dis-
carded in subsequent analyses, which implies that running
them was a waste of computational resources.

An approach to limit the number of non-behavioral model
runs could be adaptive sampling, in which a meta-model
(i.e., a simplified, fast-running low-order approximation of
the true model) is used first to predict whether a parameter-
set is behavioral. In this study we utilize the ability of an
active subspace to construct low-order meta-models between
our unknown parameters, represented as active variables, and
the chosen observations whose behavior we wish to control.
In our application, we use the third-order polynomials of
the active subspaces, explicated in Eq. (13), as meta-models
and judge the goodness of the meta-model by the NSE in
Eq. (14). Part of the reason for choosing to work with a poly-
nomial meta-model based on the active subspace, rather than
a more complex meta-model based directly on the parame-
ters, is its ease of use. The derivations are simple, the meta-
model and its fitting are standard procedures, and, above all,
visualization, and hence intuitive understanding of the result,
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is trivial. This makes it an attractive approach also for practi-
tioners and others less interested in meta-modeling theory.

The setup of an adaptive sampler using active subspaces
consists of the following seven steps.

1. Run a first set of flow models with random parameters
drawn from a wide distribution of plausible values. In
this work we use 500 as our initial sample size and apply
Latin hypercube sampling.

2. For every unique observation type related to a behav-
ioral target, construct a sufficiently detailed active sub-
space. If the gradient computation allows it, several sub-
space dimensions would be better than one. Here we
use two active-subspace dimensions (i.e., two active
variables), and, hence, our meta-model is a surface in
the two-dimensional space of active variables. For each
meta-model, an NSE value larger than 0.7 is required
to be considered for pre-assessing the behavior of new
parameter sets in the following steps.

3. A new candidate of the full parameter vector is now
drawn from the same initial distribution as that used in
step 1. This parameter vector is projected onto the active
subspace(s), and the meta-model is used to approximate
the behavior of all target predictions.

4. The new candidate will be accepted at stage one if any
of the following criteria are met:

a. All approximated behavioral targets are on the per-
mitted side of their limits.

b. While a target is on the non-behavioral side of the
limit, it is within a reasonable distance of the lim-
its. In practice, this is implemented as a linear de-
cay function from 1 at the limit to 0 at an outer (user
specified) point. If the decay function value is larger
than a random number drawn from a uniform distri-
bution, the candidate is accepted at stage one. This
criterion is implemented to construct a soft region
around the limits that accounts for the imperfection
of the meta-model. The outlined approach is sim-
ilar to the classical Metropolis–Hastings sampling
(Metropolis et al., 1953; Hastings, 1970).

c. With a 10 % probability, a candidate is accepted
at stage one independent of its predicted perfor-
mance. This criterion is included to make sure that
we maintain a sufficiently good sample of the full
parameter space so that the recalculation of the ac-
tive subspace (see below) still sees the unwanted
regions.

If the candidate is stage-one rejected, repeat steps three
through four until a successful candidate is drawn.

5. For each stage-one-accepted candidate, we run the full
flow model to obtain the prediction of the real model
(stage two).

6. After performing a predefined number (in our case 100)
of flow simulations, recalculate the active subspaces us-
ing all flow-simulation outputs obtained so far.

7. Repeat steps two through six until the sample size is
large enough for the purpose of the stochastic model-
ing. This is a model-purpose-specific choice and can be
done both on hard limits to the (stage-two) simulated
data or on the number of flow-model runs. Here, we re-
quire 10 000 runs of the flow model (i.e., 9500 stage-one
acceptances plus 500 initial samples, which are per se
stage-one accepted).

It is important to note that all post-sampling sensitivity
analyses performed in this work are done on the subset of
the sampled parameter sets that are deemed behavioral af-
ter running the full HydroGeoSphere flow model (stage-two
accepted). Hence, we use the meta-model only as a pre-
selection tool to avoid sampling those regions of the param-
eter space that will clearly generate non-behavioral runs. As
we aim to sample 10 000 parameter sets (which are stage-
one accepted), the analyses will be performed on a notably
smaller number of parameter sets.

In this work, we have chosen to construct the meta-model
using two active variables. Although more active variables
could potentially lead to higher accuracy of the meta-model,
we saw no major improvement when increasing the num-
ber of subspace dimensions beyond two. Along the same
line of thought, model outcomes in two subspace dimensions
can easily be visualized, thus facilitating an intuitive judge-
ment of the goodness of the meta-model. In this light, we re-
frain from going beyond two active-subspace dimensions in
the current work. Other application may require considering
more active dimensions.

It should be noted that applying the active-subspace sam-
pling does not necessarily restrict the sensitivity analysis to
calculating the activity score (Eq. 8). As discussed in the
introduction, there are many global sensitivity methods, all
with their own strengths and weaknesses, and any method
based on a random sample could be applied. In this work,
we utilize the fact that we have already computed the active-
subspace decomposition so that the post-sampling calcula-
tion of the activity score is easy and very cost-effective.

3 Application to a virtual test case

3.1 Description of the domain

The test bed used in this paper is a steady-state flow model
setup and run in HydroGeoSphere. It draws its main features
from the catchment of the stream Käsbach in the Ammer
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valley in southwestern Germany (Selle et al., 2013); how-
ever, the model has some simplified features. That is, the
simulated domain is not meant to be an exact representation
of the Käsbach catchment but contains enough details to be
considered a realistic test for the proposed global sensitivity-
analysis method.

As illustrated in Fig. 1, the subsurface model consists
of five geological layers, representing the major lithostrati-
graphic units in the region. From the bottom to the top, these
are (1) the Middle Triassic Upper Muschelkalk formation,
made of fractured–karstified limestone, (2) the lower Up-
per Triassic Lettenkeuper (Erfurt formation), made of clay-
rich mudstones and carbonate-rock layers, (3) the unweath-
ered middle Upper Triassic Gipskeuper (Grabfeld forma-
tion), made of mudstones and gypsum-bearing layers, (4) a
weathering zone of the latter formation, and (5) Quater-
nary valley fills of unconsolidated sediments. A fault passes
through the domain in the north–south direction, leading to
offsets in the geological units. The geological base model
resembles the regional model of D’Affonseca et al. (2018).
Each layer is modeled as a homogeneous unit.

The model domain measures about 4 km× 6 km at the
widest places. It is discretized by 1 001 760 prism elements
using 523 083 nodes and features a single main stream with
four possible tributaries. The model is set up and run in
transient mode with constant forcings until the steady state
is reached. Only the final time step (here after simulating
1010 s) is considered in the analysis.

The boundary conditions, set up to allow water to leave the
domain both through the surface and the subsurface, are as
follows. The bottom of the model features a Dirichlet bound-
ary with values read in from a larger-scale model of the re-
gion (D’Affonseca et al., 2018) but is limited such that no
hydraulic head at the bottom face can be higher than 5 m
below the model top. Streams in the model are modeled as
drains, meaning that water can flow out of the domain when
the hydraulic head at the assigned stream nodes exceeds a
value 1 cm above the surface elevation. This implies that all
streams are either inactive or gaining, whereas losing con-
ditions are excluded. A similar drain boundary, but with a
much higher exit head (fixed at 0.2 m above land surface for
all simulations), is also considered on all non-stream nodes
in the uppermost layer to allow water to leave the domain in
case of flooding. The last outflow boundary in the model is a
Cauchy boundary at the southern vertical wall of the model.

To avoid long runtimes and complications of complex top-
soils (including plant–atmosphere interactions), which are
unimportant once the steady state is reached, the top of
the HydroGeoSphere model is 1 m below the land surface.
Flow across the top boundary is only incoming and mod-
eled as a Neumann boundary, corresponding to the steady-
state groundwater recharge. The recharge varies with land
use, split into three categories: cropland, grassland and for-
est, in which urban areas are treated as grassland. It should
be noted that starting the model at 1 m below surface still al-

lows for a notable unsaturated zone to develop in the model
domain; only the uppermost meter is missing. Also, the out-
going drain fluxes described above are applied to this top
boundary that is 1 m below the surface, hence requiring that
the exit pressure head is 1 m larger than the ponding pres-
sure head described above. Technically, this does not apply
to stream nodes, which are considered to be the real top of
the porous medium (that is, there is no unsaturated zone on
top of a stream).

3.2 Virtual observations

For the evaluation of the model sensitivities, we consider four
observation quantities: (1) the discharge almost at the out-
let of the catchment (gauge C in Fig. 1), (2) the net sum
of the fluxes across the bottom and side subsurface bound-
aries, (3) the groundwater table of the uppermost aquifer,
measured in 199 observation wells throughout the catchment,
and (4) the groundwater residence time in the major geologi-
cal layers. The last quantity is representative of transport and
differs in its sensitivity from hydraulic heads (e.g., Cirpka
and Kitanidis, 2000). The time that a solute parcel stays in
a particular geological formations may be indicative of re-
active transport (e.g., Sanz-Prat et al., 2016; Loschko et al.,
2016; Kolbe et al., 2019).

We computed the geological-unit-specific residence time
using the visualization software TecPlot360, considering
199 particles that each start in an observation well, 5 m be-
low the groundwater table. We separated the discrete particle
tracks into the segment spent in each geological layer and
computed the total residence time per layer as the mean over
all 199 particles. It should be noted that this way of com-
puting travel times is slightly imprecise, as the velocity-field
output of HydroGeoSphere is non-conforming and Tecplot
particle tracking is not primarily designed for quantitative
outputs. However, the purpose of the residence-time calcu-
lation is not an exact prediction of exposure times in the
real Käsbach catchment but rather a qualitative transport in-
dicator. As we used the same method with the same numer-
ical parameters on the same grid in all model runs of our
stochastic ensemble, we believe that the associated variabil-
ity in computed residence times is good enough for the inter-
comparison between different stochastic runs.

3.3 Stochastic treatment of the geological and
hydraulic parameters

In the setup used in this paper, 32 parameters related di-
rectly to the flow model are randomized. All parameters are
sampled from a uniform distribution. Table 1 lists the corre-
sponding parameter bounds. For each of the geological lay-
ers, the uncertain parameters are the horizontal saturated hy-
draulic conductivity, the anisotropy ratio of horizontal to ver-
tical conductivity (except for the Muschelkalk limestone and
the Quaternary fillings), the two van Genuchten parameters α
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Figure 1. Illustration of the modeled catchment, including important features and being surrounded by an explicit view on the different
geological features.

and n, and the specific storativity. Further, the bottom Dirich-
let boundary, the reference head at the Cauchy boundary, and
the head at the stream drain boundaries are drawn from uni-
form distributions.

Besides these material properties of the lithostratigraphic
units and boundary conditions, also the exact subsurface
structure is uncertain. To address this uncertainty, we drew
three parameters controlling the size of the main geological
layers from uniform distributions: the vertical offset of the
fault running north–south through the domain (see Fig. 1),
the thickness of the Lettenkeuper (expressed as a difference
to the base value in Table 1), and the thickness of the weath-
ering zone in the Gipskeuper, in which this zone has the
thickness of the Gipskeuper itself as an upper bound. An
example of the variability in the subsurface can be seen in
Fig. 2, where six realizations of the Lettenkeuper layer are
shown. Please note that Fig. 2 shows different realizations
than Fig. 1. Finally, also the recharge fluxes are random-
ized. For each of the three different land-use types discussed
above, we draw random values of groundwater recharge in
each sample that are based on a large collection of 1-D simu-
lations of the missing first meter of the subsurface, using dif-
ferent soil structures, plants parameters and top boundaries.
The resulting ranges are shown in Table 1.

The stochastic engine for HydroGeoSphere is set up in
and controlled by MATLAB. The full stochastic suite is run
on a midrange cluster with 20 nodes, each featuring two In-
tel Xeon L5530 eight-core 2.4 GHz processors with 72 GB
RAM. The 10 000 samples discussed later took on this setup
about 96 000 CPU hours (∼ 11 CPU years), corresponding
to 300 wall-clock hours (∼ 12 d).

3.4 Definition of behavioral targets

In the present work, we define five behavioral targets that are
all based on expert knowledge about the modeled catchment.
In the following, we specify the behavioral target values and
the point of maximum deviation from that target for which
we may probabilistically accept a simulation run, denoted the
“outer point”:

Limited flooding. Flooding, here viewed as water leaving
the domain through the top drain at the surface at
places outside of the streams, occurs in the model at
a hydraulic head of 0.2 m above the land surface. The
total flooding in the domain should not exceed 2×
10−3 m3 s−1 (outer point 4×10−3 m3 s−1). Some flood-
ing is seen as acceptable, as it may occur in lowland ar-
eas next to the streams, which we do not model in great
detail.
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Table 1. Sampling ranges for of stochastic parameters considered.

Parameter Conductivity Anisotropy ratio α n Ss
(m s−1) (–) (1/m) (–) (1/m)

Layer Min Max Min Max Min Max Min Max Min Max

mo 10−7 10−5 1 1 0.5 5 1.5 9 10−6 10−4

ku 10−8 10−5 1 50 0.5 5 1.5 9 10−6 10−4

km1 10−9 10−7 1 50 0.5 5 1.5 9 10−6 10−4

km1-w 10−7 5× 10−5 1 50 0.5 5 1.5 9 10−6 10−4

Q 10−7 10−5 1 1 0.5 5 1.5 9 10−6 10−4

Parameter Min Max Parameter Min Max

Bottom head offset (m) −5 5 Riverbed thickness (m) 0.005 0.2
Fault offset (m) 0 100 Recharge grass (mm yr−1) 80 130
Contact offset ku-km1 (m) −20 20 Recharge crop (mm yr−1) 100 150
km1-w thickness (m) 5 50 Recharge forest (mm yr−1) 100 150
Cauchy boundary head (m) 335 355

mo: Upper Muschelkalk. ku: Lettenkeuper. km1: Gipskeuper. km1-w: weathered Gipskeuper. Q: Quaternary fillings.

Figure 2. Six examples of distinctively different realizations of the geological layer Lettenkeuper. Color shows the natural logarithm of the
saturated hydraulic conductivity.

Hydrol. Earth Syst. Sci., 23, 3787–3805, 2019 www.hydrol-earth-syst-sci.net/23/3787/2019/



D. Erdal and O. A. Cirpka: Global sensitivity analysis using active subspaces 3795

Minimum flow in the main stream. At measurement
gauge C (Fig. 1), the stream should be fully devel-
oped, which we define as a discharge larger than
5× 10−3 m3 s−1 (outer point 3× 10−3 m3 s−1). This
reference value is picked based on experience with the
model domain and the known range of annual mean
recharge.

Minimum flow in stream B. Knowing that stream B pro-
duces flow, a minimum flow is set to 1.0× 10−6 m3 s−1

(outer point 5.0× 10−7 m3 s−1).

Maximum flow in stream A. The stream residing on the
steep eastern side of the hill is known to only produce
flow under extreme conditions. Hence, at the steady
state the flow in stream A should be minimal. The max-
imum accepted flow is therefore set to 1× 10−3 m3 s−1

(outer point 2× 10−3 m3 s−1). A small flow is consid-
ered acceptable, since it may occur in the regions close
to the main stream and hence be a reflection of model
discretization rather than subsurface setup.

Ratio of total stream discharge to total incoming recharge.
It is known that the catchment in question loses a no-
table amount of its water to the subsurface. A rough
estimate is that, in the real catchment, the stream flow
amounts to ≈ 40 % of the incoming groundwater.
Based on this, we require that an acceptable model have
between 25 % and 60 % (outer points 20 % and 75 %)
of its net recharge reaching the streams.

In a preliminary test of a model very similar to the one
used here, and with the same randomized parameters, we
performed Monte Carlo simulations of the full model with-
out pre-selecting presumably behavioral parameter sets. Here
about 75 % of a total of 10 000 runs had to be discarded only
due to severe flooding. This highlights that it is highly bene-
ficial if the sampling is targeted only to simulations that show
a response that is, within reason, representative of the mod-
eled domain. In the case of flooding in the domain, it is not a
single parameter that controls this behavior but a complex re-
lation between many parameters, deeming a priori decisions
about behavioral parameter ranges unfeasible. As all targets
are based on knowledge about the real catchment on which
the current model is based, all model outputs produced by a
stage-two-accepted model will be in line with what we would
expect to be realistic in the catchment. However, it is impor-
tant to note that even though it would be possible to point
out a location in the active subspace which corresponds to
a real observation, the active variables themselves are non-
unique with respect to the flow parameters so that a simple
back transformation from the active subspace to flow-model
parameter space is not possible.

4 Results

To allow the reader to better see the 3-D structure in the re-
sults presented here, the main results can be viewed in a plug-
and-play app designed for MATLAB, denoted the “Active
Subspace Pilot”, which is available as supplementary infor-
mation to this publication.

4.1 Adaptive sampling

The effect of using the active subspaces as a sampling strat-
egy for the flow simulations can be seen in Fig. 3, showing
the marginal distributions of the nine parameters that were
most influenced by the sampling strategy. The blue bars are
histograms of all parameter sets selected for full-model runs,
whereas the brown bars are histograms of the behavioral pa-
rameter sets.

The blue bars of Fig. 3 clearly show that already the pre-
selection using the meta-model avoids certain regions of
the parameter space. In particular, the two parameters re-
lated to the weathering zone of the Gipskeuper (conductivity
and thickness of km1-w in Fig. 3) show a preferential sam-
pling for a thick and highly conductive layer. Similar pref-
erences are seen in the Lettenkeuper and the Gipskeuper (ku
and km1). This is contrasted by the deeper subsurface, where
the Muschelkalk (mo) shows a preference towards low con-
ductivity and the offset of the fault is preferably sampled
at smaller values (which decreases the size and connectiv-
ity of the Muschelkalk layer). By selecting high conductivity
values in the Quaternary and weathered Gipskeuper layers,
chances of floods are reduced. Further, the highly conductive
near-surface and middle-depth layers serve to transport wa-
ter towards the streams. The smaller and less conductive deep
subsurface in combination with higher bottom pressures, on
the other hand, serves to inhibit exiting water through the bot-
tom. Hence, the posterior sample shows exactly the behaviors
required by the targets. This suggests that the sampling strat-
egy has been successful.

The red bars in Fig. 3 show the marginal posterior distri-
bution of parameters used for the sensitivity analysis (stage-
two-accepted parameter sets). This corresponds to a selection
of simulations that are strictly better than the mean of the tar-
gets and their outer point (see above). Hence, this selection
is deterministic with a hard limit. It is obvious that the pre-
selection (stage-one acceptance) and final selection (stage-
two acceptance) of parameters are similar, but the stricter
sample used in the sensitivity analysis has fewer members.
The blue bars in Fig. 3 comprise 10 000 samples (stage-
one acceptance), while the red bars comprise a subset of
4533 samples (stage-two acceptance). Part of the reason for
this rather larger difference is that the active-subspace sam-
pler is only an approximation. More so, we have deliberately
relaxed the criterion for accepting a parameter set by includ-
ing a range around the target and for the full run to include
10 % pre-acceptance independent of the meta-model predic-
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Figure 3. Marginal posterior distributions of the parameters influenced by the adaptive sampling. Blue bars show the sampled posterior, and
red bars show the constrained posterior sample used in the sensitivity analysis.

Figure 4. Two-dimensional active subspaces for three of the behavioral targets: top drain (limited flooding – target 1), ratio (target 5) and
flow in stream A (target 4). The observed values are illustrated by the color. (a–c) shows the initial 500 samples, (d–f) the first 1000 samples
and (g–i) all 10 000 samples. NSE values in the titles correspond to fitting the third-order meta-model according to Eq. (13) to the data.

Hydrol. Earth Syst. Sci., 23, 3787–3805, 2019 www.hydrol-earth-syst-sci.net/23/3787/2019/



D. Erdal and O. A. Cirpka: Global sensitivity analysis using active subspaces 3797

tion. In a comparable setup, we sampled 10 000 parameter-
sets using a pure Monte Carlo sampling scheme (i.e. with-
out any kind of meta-model or pre-selection), and out of
those, only 588 were acceptable with the strict criteria used
here (i.e., stage-two accepted, although in the case of a pure
Monte Carlo sampling, no stage-one acceptance is tested).
Hence, the improvement when using the active-subspace
sampler is clearly notable.

Figure 4 shows the performance and development of the
active subspaces for three representative targets. Here, the
x and y positions of the markers are the values of the two
active variables, respectively, while the color indicates the
magnitude of the corresponding observation. Each of the two
active variables (Eq. 12) is a linear combination of the flow-
model parameters, weighted by their respective influence on
the specific subspace dimension. Due to its construction, the
active variable itself is hard to interpret. However, the ac-
tivity score (Eq. 8), used in this work to judge the impor-
tance of the physical parameters, effectively shows the com-
ponents of the active variable and is therefore the preferred
way to interpret the parameter-related results. Figure 4a–c
show the initial sample of 500 model runs, Fig. 4d–f the first
1000 runs and Fig. 4g–i the final ensemble of 10 000 runs.
In all scatterplots the target observation varies significantly
along the first active variable (x axis), but there is also no-
table dependence on the second active variable (y axis). The
latter suggests that it is appropriate to consider more than one
active variable in the sampling procedure. Further, as indi-
cated in the title of the subplots, the NSE for fitting the meta-
models (Sect. 2.3) relating the active variables and the data is
high, indicating that the active-subspace decomposition has
worked well. This is also exemplified in Fig. 5, which shows
the flooding observation and the fitted meta-model together
with the corresponding error.

Figure 4 also shows notable differences between the active
subspace constructed on the initial 500 runs (Fig. 4a–c) and
that after adding 500 actively sampled runs (Fig. 4d–f). For
example, for the ratio target (Fig. 4b, e and h), the orienta-
tion of the subspace changes, which is indicative of changes
of weights within the active variable. We also see that the
third-order meta-model used for the active-subspace sampler
fits the data better after extending the ensemble to 1000 mem-
bers, as indicated by the NSE values. By contrast, extending
1000 to 10 000 pre-selected runs (Fig. 4d–i) neither changes
the subspaces nor the surfaces of the meta-models in a sig-
nificant manner, implying that the ensemble with 1000 runs
(500 initial plus 500 based on active-subspace sampling) al-
ready does a good job.

4.2 Global sensitivity analysis using active subspaces

In this section, we use the active-subspace method to analyze
parameter sensitivities. In this analysis we only consider the
behavioral parameter sets. That is, the red bars in Fig. 3 de-
fine the probability density ρ considered in Eq. (5).

The aim of a sensitivity analysis is to identify how in-
fluential the individual parameters of a model are on (a set
of) observations. In global sensitivity analysis, this is eval-
uated over the entire parameter space. We start the discus-
sion with the least influential parameters in our application.
None of the observations considered depend on the two van
Genuchten parameters α and n or the specific storativity of
any lithostratigraphic unit to a significant extent. The specific
storativity is known not to affect steady-state flow at all. Also
the van Genuchten parameters are most important in transient
flow in the unsaturated zone or when there is a significant lat-
eral flow component therein. Neither is the case in our appli-
cation. That is, these results were to be expected. Similarly,
the sensitivity to the horizontal-to-vertical anisotropy ratio in
all formations was small throughout the tests.

We now consider the significant parameters. Figure 6
shows the dependence of the targets on the two subspaces
considered and the activity scores of all parameters for the
discharge observation at gauge C and the net flow across the
subsurface boundaries. As can be seen from the NSE value
in the titles, the active-subspace decomposition works well
for two active variables. We can also see that the sensitiv-
ity patterns for the two observations are rather similar: the
hydraulic-conductivity values of the uppermost and lowest
geological units (km1-w and mo respectively) are the most
influential parameters. This is likely so because they decide
the partitioning of the water between the surface streams and
the subsurface boundaries. Interesting to note is that the ap-
plied strength of recharge does not show a high importance
for the discharge in the streams, implying that the partition-
ing of the water is more important than the actual net input
when it comes to determining steady-state flow in this model.

Figure 7 shows the activity scores for the hydraulic head
in the uppermost aquifer in the 199 observation wells. Here
we see that the sensitivity patterns differ among the differ-
ent wells. However, we can classify the observation wells
into three clusters: (1) those with a high sensitivity for the
fault offset and the hydraulic conductivities in the Lettenke-
uper (ku) and Muschelkalk (mo; marked in black), (2) those
with high sensitivities to parameters related to the Gipskeu-
per and its weathering zone (marked in blue), and (3) those
for which no particular sensitivities were found (marked in
red). While the separation is not perfect, Fig. 7 shows that
there are only few overlaps. When plotting the spatial lo-
cation of the different wells and their respective category
(Fig. 7b), a clear pattern emerges. Almost all blue wells with
high sensitivity to Gipskeuper-related parameters are placed
in regions with Gipskeuper being present (north and east in
the catchment), and, similarly, the black wells sensitive to
Lettenkeuper are located where we would expect the ground-
water table to be found in this geological formation (western
part of the catchment). The non-sensitive red wells are all
placed close to the stream, where the hydraulic head is con-
trolled by the stream stage rather than the properties of the
geological layers. All in all, we can state that the method of
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Figure 5. An example of the performance of the adaptive sampler for the top drain observation (limited flooding target). (a) shows the data;
(b) the third-order polynomial meta-model fitted to the 10 000 observations in (a). (c) shows the error between the true observations and the
meta-model fit.

Figure 6. Active subspaces and square root of activity scores for the observations “stream discharge at gauge C” and “net flow across
subsurface boundaries”. Please note that the plot is limited to the seven most important parameters.

active subspaces generates plausible results for groundwater
observations in a complex geological setting.

As a last observation, we consider the total residence time
in the geological layers of the aquifer, which may be a rel-
evant proxy for applications to reactive transport. Figure 8
shows the associated dependence of the targets on the two
subspaces considered and the activity scores of all param-
eters. For the total residence time in the Lettenkeuper (ku)
and Gipskeuper (km1), the corresponding meta-models us-
ing two active subspaces performed fairly well, as can be
seen in the NSE metric. This is not the case for the total res-
idence time in the weathering zone, where the cubic meta-
model with two active variables achieved a very low NSE
of 0.3 (Fig. 8b). Because of the bad fit of this observation,
we do not show the associated activity-score plot. For the
travel time through the other two layers, it is not so surpris-
ing that the hydraulic conductivity of the actual layer together
with the parameters controlling the thickness of the layers,
i.e., the fault offset for the Lettenkeuper and the thickness of
the weathering zone for the Gipskeuper, are the controlling
parameters. More interesting is that the hydraulic conduc-
tivity of the weathering zone also plays a major role in the
travel time through the non-weathered Gipskeuper (Fig. 8e).
Hence, a good prediction of how long a water parcel stays
within the unweathered Gipskeuper requires a good under-

standing of its weathered layer. This may be understood by
the partitioning of water through the weathered and unweath-
ered parts of the Gipskeuper. Increasing the hydraulic con-
ductivity of the weathering zone leads to smaller volumetric
fluxes through the unweathered Gipskeuper and thus lower
velocities and larger residence times within this unit.

4.3 Gradient approximation in the derivation of the
active subspaces

In contrast to previous works with active subspaces in sub-
surface flow, we approximate the gradient ∇f (̃x) from a
second-order polynomial fit of f (̃x) rather than a linear one.
To test the effect of this approach, we compare the activ-
ity scores as well as the NSE of the associated meta-models
using the three different polynomial fits to obtain the gradi-
ents discussed in Sect. 2.2: (1) the full second-order model,
(2) second-order approximation without cross terms and (3) a
linear approximation.

To test the consistency of the results, we drew 2500 sam-
ples in 1000 repetitions using classic bootstrap sampling
without replacement from the original sample (4533 mem-
bers). In each repetition, we computed the activity scores and
NSE of the meta-models based on the three gradient approx-
imations. Figure 9 (left) shows the activity scores of the pa-
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Figure 7. Square root of activity score for 199 wells (a) and their placement in the catchment (b). Please note that the activity score plot is
limited to the 12 most important parameters.

Figure 8. Two-dimensional active subspaces (a–c) and square root of activity scores (d, e) for residence time (years) in three geological
units. Please note that the activity-score plots are limited to the four most important parameters and that due to the poor active-subspace
decomposition, this plot is not shown for the last column.

rameters, applying the gradient approximations for the dis-
charge at gauge C. Clear differences in the rankings among
the different gradient approaches are obvious. The differ-
ences are the strongest between the linear approximation
(which also reduces the number of possible active subspaces
to one) and the two second-order approximations. Including
the cross terms in the second-order approximation increases
all relevant scores, with the biggest relative effect on the rele-
vance of the hydraulic conductivity of the Lettenkeuper (ku).

To evaluate the goodness of each approximation, Fig. 9
(right) shows the NSE resulting from fitting a third-order
polynomial between the active variable(s) and the original
data. It is obvious that the higher-order polynomial gradi-
ent approximations are doing much better. It is important to

keep in mind that we use the gradient fit only to approxi-
mate the gradients in Eq. (5), while the actual meta-model
requires a second polynomial fit. The higher NSE values of
the more complex gradient fits thus indicate that they lead
to active subspaces that are more indicative. As the linear
gradient fit allows only the computation of a single active
subspace, the meta-model is indeed simpler. Including the
second-order cross terms seems to enrich the variability in
the gradients over the parameter space, causing a separation
of active subspaces that cover a wider range of parameter
values. The results shown in Fig. 9 give confidence that more
complex gradient models are better if the data set is large
enough to constrain all coefficients of such a model. Very

www.hydrol-earth-syst-sci.net/23/3787/2019/ Hydrol. Earth Syst. Sci., 23, 3787–3805, 2019



3800 D. Erdal and O. A. Cirpka: Global sensitivity analysis using active subspaces

Figure 9. Square root of activity score and corresponding NSE for flow at gauge C using different approximations to compute the gradients.
Each approximation is used to compute 1000 active subspaces based on a bootstrap resampling with 2500 samples from the original 4533.
Only the seven most important parameters are shown in the activity-score plot.

similar results are found for all other behavioral targets, and
the corresponding figures can be found in Appendix A.

5 Discussion and conclusions

In this work we have applied the method of active subspaces
to an integrated hydrological model of a small catchment
with focus on subsurface flow. We used active subspaces to
construct meta-models with two active subspaces rather than
32 uncertain parameters. The meta-model was used to con-
strain the stochastic sampling of the parameter space to five
behavioral conditions. The active subspaces of the accepted
full-model runs were used to compute the global sensitivity
of four modeled observations to the parameters. The sensi-
tivity analysis showed that not only hydraulic-conductivity
values of the major layers but also their physical extent are
important. However, depending on the location and type of
observations, different sensitivities were found. This high-
lights the well-known fact that multiple dissimilar observa-
tions are needed to constrain uncertain variables of a catch-
ment model. In the adaptive sampling we learned that certain
combinations of unfavorable parameter values were clearly
avoided. Most of the non-behavioral parameter combina-
tions were not obvious beforehand but could be identified by
applying the meta-model, which significantly improved the
sampling efficiency.

The choice of meta-model used in this work (third-order
polynomial of the first two active-subspace dimensions) was
somewhat arbitrary. The number of different meta-models
applied to hydrological problems is large (Razavi et al.,
2012). Our guiding principles in selecting the meta-model
were the good fit to the data, the ease in application and the
comprehensibility for more practice-oriented users. While
many state-of-the-art meta-models can be rather compli-
cated, a surface depending on two dimensions is easy to un-
derstand, trivial to visualize and, hence, also allows quali-
tative judgements by the user. We also performed prelimi-

nary tests using support-vector machines (results not shown),
leading to results very similar to those of the active sub-
spaces, but the method is more complicated to comprehend.

Choosing a low-order polynomial as a meta-model implies
smoothness, and, hence, the meta-model does not exactly fit
all model runs. Razavi et al. (2012) argued that meta-models
for computer simulations should always be exact because the
computer simulations themselves are deterministic. We pre-
fer the inexact model nonetheless because our meta-model
is based on a limited number of active-subspace dimensions.
We explicitly ignore the other dimensions. If the considered
subspace is well determined, the ignored dimensions will
still be present, but their effect can then be interpreted as
noise. Hence, a smooth meta-model depending on a reduced-
dimension parameter set is applicable even though the com-
puter simulations themselves are deterministic.

Even though the efficiency of the active-subspace sampler
is higher than a rejection sampler without pre-selection, the
rejection rate of ≈ 55 % is still rather high. This could of
course be strongly decreased by setting the allowed soft tar-
gets to become harder. Such an approach would be appro-
priate if the main aim is to obtain as many behavioral pa-
rameter sets with the least effort, but we deliberately wanted
to explore the behavioral boundaries of the parameter space,
which requires stepping across that boundary. The choice of
tuning parameters made in this work was made ad hoc and
based on experience with the model domain and a qualitative
assessment of the resulting surfaces. Better heuristic statistics
could be implemented, which could possibly further increase
the efficiency of the sampler.

Overall, we draw the following conclusions from this
work:

1. The method of active subspaces can be applied with lit-
tle effort and good results to complex subsurface flow
and transport problems. This holds not only when sub-
surface properties are uncertain but also for the geome-
tries of geological units and boundary conditions.
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2. The two-stage rejection sampling using a meta-model
based on the active subspaces can drastically decrease
the number of simulations needed to obtain a certain
number of behavioral simulations. An additional posi-
tive aspect for the application by practitioners is the ease
of visualization and intuitive understanding when using
a one- or two-dimensional active subspace.

3. Using a quadratic rather than linear fit to estimate the
gradients in the construction of the active subspace re-
sulted in a much improved subspace decomposition. It is
also a prerequisite to construct more than one subspace
dimension.

Code and data availability. The Supplement includes the MAT-
LAB R2019a code Active Subspace Pilot to visualize the active
subspaces and scores for all model runs. This code is written as
a MATLAB app and also includes the data.
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Appendix A: Performance of different gradient
approximations

This Appendix contains additional plots showing the perfor-
mance of the different gradient approximations for the four
behavioral targets not presented in the main article. Each ap-
proximation is used to compute 1000 active subspaces based
on a bootstrap resampling with 2500 samples from the origi-
nal 4533 ensemble members. This holds for all observations
apart from those for the flow across the top boundary, where
the full ensemble is used to draw samples from. Only the
seven most important parameters are shown in each activity-
score plot.

Figure A1. Square root of activity score and corresponding NSE for flooding flow across the top boundary using different approximations to
compute the gradients. In this case, the bootstrap sample is drawn from the full sample population of 10 000.

Figure A2. Square root of activity score and corresponding NSE for flow in stream A (see Fig. 1) using different approximations to compute
the gradients.
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Figure A3. Square root of activity score and corresponding NSE for unwanted flow in stream B (see Fig. 1) using different approximations
to compute the gradients.

Figure A4. Square root of activity score and corresponding NSE for
the ratio of stream discharge to incoming recharge using different
approximations to compute the gradients.
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Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-23-3787-2019-supplement.
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