Articles | Volume 23, issue 1
https://doi.org/10.5194/hess-23-19-2019
https://doi.org/10.5194/hess-23-19-2019
Research article
 | 
02 Jan 2019
Research article |  | 02 Jan 2019

Stochastic modeling of flow and conservative transport in three-dimensional discrete fracture networks

I-Hsien Lee, Chuen-Fa Ni, Fang-Pang Lin, Chi-Ping Lin, and Chien-Chung Ke

Related authors

Technical note: Quantification of flow field variability using intrinsic random function theory
Ching-Min Chang, Chuen-Fa Ni, Chi-Ping Lin, and I-Hsian Lee
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-161,https://doi.org/10.5194/hess-2023-161, 2023
Manuscript not accepted for further review
Short summary
Technical note: Displacement variance of a solute particle in heterogeneous confined aquifers with random aquifer thickness fields
Ching-Min Chang, Chuen-Fa Ni, Chi-Ping Lin, and I-Hsien Lee
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-298,https://doi.org/10.5194/hess-2022-298, 2022
Manuscript not accepted for further review
Short summary
Technical note: Discharge response of a confined aquifer with variable thickness to temporal, nonstationary, random recharge processes
Ching-Min Chang, Chuen-Fa Ni, We-Ci Li, Chi-Ping Lin, and I-Hsien Lee
Hydrol. Earth Syst. Sci., 25, 2387–2397, https://doi.org/10.5194/hess-25-2387-2021,https://doi.org/10.5194/hess-25-2387-2021, 2021
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024,https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024,https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024,https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary

Cited articles

Ahmed, R., Edwards, M. G., Lamine, S., Huisman, B. A. H., and Pal, M.: Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model, J. Comput. Phys., 284, 462–489, 2015. 
Bear, J. and Cheng, A. H. D.: Modeling groundwater flow and contaminant transport, Springer, New York, 2010. 
Berrone, S., Fidelibus, C., Pieraccini, S., Scialò, S., and Vicini, F.: Unsteady advection-diffusion simulations in complex Discrete Fracture Networks with an optimization approach, J. Hydrol., 566, 332–345, 2018. 
Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B.: Scaling of fracture systems in geological media, Rev. Geophys., 39, 347–383, 2001. 
Botros, F. E., Hassan, A. E., Reeves, D. M., and Pohll, G.: On mapping fracture networks onto continuum, Water Resour. Res., 44, W08435, https://doi.org/10.1029/2007WR006092, 2008. 
Download
Short summary
Few studies focused on the direct solution of the ADE for 3-D DFNs. The study is the first to solve the ADE and focus on assessing the velocity uncertainty in 3-D DFNs. The velocity uncertainty shows a limited range of influence close to the mean diameter of a fracture. The information is useful for engineering designs at sites with fractured rocks. We quantified that the tracer test in wells might lead to the overestimation of mean concentration and induce high uncertainty in fractured media.