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Abstract. This study presents the stochastic Monte Carlo
simulation (MCS) to assess the uncertainty of flow and con-
servative transport in 3-D discrete fracture networks (DFNs).
The MCS modeling workflow involves a number of devel-
oped modules, including a DFN generator, a DFN mesh gen-
erator, and a finite element model for solving steady-state
flow and conservative transport in 3-D DFN realizations. The
verification of the transport model relies on the comparison
of transport solutions obtained from HYDROGEOCHEM
model and an analytical model. Based on 500 DFN realiza-
tions in the MCS, the study assesses the effects of fracture
intensities on the variation of equivalent hydraulic conduc-
tivity and the exhibited behaviors of concentration break-
through curves (BTCs) in fractured networks. Results of the
MCS show high variations in head and Darcy velocity near
the specified head boundaries. There is no clear stationary
region obtained for the head variance. However, the transi-
tion zones of nonstationarity for x-direction Darcy velocity
is obvious, and the length of the transition zone is found to
be close to the value of the mean fracture diameter for the
DFN realizations. The MCS for DFN transport indicates that
a small sampling volume in DFNs can lead to relatively high
values of mean BTCs and BTC variations.

1 Introduction

Successful characterizations of flow and contaminant trans-
port in fractured geologic formations depend on adequate
descriptions of complex geometrical structures, which com-

prise a wide variety of fractures and their connections
(Ahmed et al., 2015; Pichot et al., 2012; Weng et al., 2014).
The fracture characteristics can be quantified by using vari-
ous statistical parameters, including the fracture orientation,
length, shape, and permeability alongside the fracture in-
tensity and connectivity (Bonnet et al., 2001; Botros et al.,
2008; Bour et al., 2002; Koike et al., 2015; Stephens et al.,
2015). These commonly used parameters represent fracture
networks at sites of interest and bridge gaps between limited
field observations and flow and transport implementations for
site-specific issues.

Using the discrete fracture network (DFN) approach to
characterize the flow and transport in fractured media is a
challenging task for practical applications. Intensive research
over the past 3 decades has led to the development of numer-
ous models that are based on the DFN approach to model
the flow or transport in fractured formations (Cacas et al.,
1990a, b; de Dreuzy et al., 2013; Hyman et al., 2015a; Liu
and Neretnieks, 2006; Long et al., 1985; Pichot et al., 2012;
Xu and Dowd, 2010). Advanced 3-D DFN approaches typi-
cally include procedures of fracture generation, DFN mesh-
ing, flow and transport, or particle tracking (de Dreuzy et
al., 2013; Erhel et al., 2009; Hyman et al., 2014; Pichot et
al., 2012; Xu and Dowd, 2010; Zhang, 2015; Trinchero et
al., 2016; Fourno et al., 2019). Particle tracking algorithms
are usually preferred to simulate DFN transport and have
recently been widely implemented to evaluate the time re-
sistance of contaminants for fractured formations (Hyman et
al., 2015a, b; Makedonska et al., 2015; Painter et al., 2008;
Stalgorova and Babadagli, 2015; Wang and Cardenas, 2015).
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The objective of the Lagrangian approach is to avoid numer-
ical difficulties in solving the advection dispersion equation
(ADE) in complex DFN domains. Such DFN transport mod-
els use the released particles to represent the contaminant
with a specified mass or concentration. Many previous stud-
ies have discussed the issues in treating particle movement
in fracture networks (Hyman et al., 2015a, b; Johnson et al.,
2006; Makedonska et al., 2015; Painter et al., 2008; Park et
al., 2003; Wang and Cardenas, 2015; Zafarani and Detwiler,
2013).

Over the years, many studies have focused on develop-
ing flow and transport models and integrating DFN simu-
lation workflows for 3-D fracture networks (Hyman et al.,
2014, 2015a; Lee and Ni, 2015). Specifically, the DFN trans-
port was mainly modeled based on Lagrangian approaches
such as particle tracking and random walk algorithms (e.g.,
Makedonska et al., 2015; Painter et al., 2008; Stalgorova and
Babadagli, 2015; Wang and Cardenas, 2015). Numerical so-
lutions to the ADE based on the Eulerian approach have not
been widely implemented because of computational issues,
such as numerical dispersion and convergence in the model
for complex fracture connections (Odling, 1997; Berrone et
al., 2018).

With the advantages of computational technologies, the
stochastic modeling of flow and Eulerian-based transport in
3-D DFNs has become a feasible task. It is an important
issue to quantify flow and transport uncertainties based on
available DFN properties. The objectives of this study are
to develop and implement numerical models for stochastic
modeling of flow and conservative transport in 3-D DFNs.
The stochastic Monte Carlo simulation (MCS) is conducted
to assess the flow and transport uncertainty induced by the 3-
D DFNs. In this study, we first assess the developed ADE
model by comparing the solutions of simple porous frac-
tures with those from the HYDROGEOCHEM finite element
model (Yeh et al., 2004) and the analytical model developed
by Wexler (1992). Then, we use the MCS to evaluate the
equivalent hydraulic conductivity for specified DFN statisti-
cal parameters. The collected flow and transport realizations
enable the analyses of flow and transport uncertainties in the
fractured simulation domain. The simulation results are ex-
pected to provide general insight into the evaluations of flow
and transport uncertainty based on the available DFN geo-
metrical properties.

2 Mathematical formulas and numerical models

In this study, the fractures in a DFN are considered to be
porous media with impermeable surfaces that are connected
to the formation matrix. The two impermeable surfaces of a
fracture are considered to be two rough parallel plates that
enable fluids to pass through the fracture at a relatively high
velocity (e.g., Kwicklis and Healy, 1993; Lee and Ni, 2015;
Pruess and Tsang, 1990). The following presents the mathe-

matical formulas, a brief description of the mesh generation,
and the finite element models for simulating the 3-D DFN
flow and transport.

2.1 Flow and transport equations

The mathematical formulation for the DFN consists of flow
and transport in a set of 2-D porous fracture plates con-
nected in a 3-D domain. The coupling of flow and transport
in porous media has been widely investigated in fields that
are related to groundwater hydrology (Dagan, 1989; Hartley
and Joyce, 2013; Yeh et al., 2004; Zheng and Bennett, 2002).
Based on the concept of mass conservation and Darcy’s law,
the equations for solving the steady-state and depth-averaged
hydraulic head for 2-D porous fractures can be expressed as

∇ · [K(x)b(x)(∇h(x)] +Q(x)= 0, (1)

subject to the boundary conditions

h(x)|0D = hD, (2)

and

[K(x)∇h(x)] ·n|0N = qN, (3)

where h(x) is the hydraulic head, K(x) is the hydraulic con-
ductivity, and b(x) is the aperture for fractures. For saturated
flow, the locations of the fracture has been taken into account
in Eq. (1). We assumed that the flows in fractures were par-
allel to the fracture and the relatively small fracture apertures
insignificantly influenced the vertical flow in the 2-D frac-
tures. The notation Q(x) represents the sources or sinks ap-
plied to the 2-D porous fractures. The Cartesian coordinate
x (x = 1 and 2) represents the x and y directions in the hor-
izontal modeling domain of the fractures. Moreover, hD rep-
resents the prescribed head at the Dirichlet boundary 0D, and
qN is the specific flux at the Neumann boundary 0N. The no-
tation n is a unit vector that is normal to the boundary 0N. In
this study, we consider the DFNs to be fully saturated. The z
coordinates for fractures represent the elevation heads, which
have been considered in the calculations of hydraulic heads.
Therefore, the solutions of hydraulic heads in 2-D fractures
in the 3-D domain can be obtained from Eqs. (1) to (3).

Similar to the flow simulation, the depth-averaged con-
servative solute transport equation for saturated fractured
porous media is governed by the ADE and can be written
as (e.g., Dagan, 1989; Ni et al., 2009; Zheng and Bennett,
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2002)

∂c(x, t)

∂t
=−v(x)∇c(x, t)+∇ · [De(x)∇c(x, t)]

+Qc(x, t), (4)

subject to the initial and boundary conditions

c(x,0)|� = c0, (5)
c(x, t)|0D = cD, (6)

and

[De(x)∇c(x, t)] ·n|0N = qc, (7)

where c(x, t) is the volumetric solute concentration that is
measured in the liquid phase, and Qc(x, t) represents the
rate where the volumetric solute concentration is injected
(source) or extracted (sink) from the DFN. The notation
v(x)=−K(x)∇h(x)/n(x) is the seepage velocity, and n(x)
is the effective porosity in the porous fractures. Calculating
the seepage velocities at nodes relies on the obtained hy-
draulic heads at element centers in the DFN (i.e., the solution
of Eqs. 1 to 3). This study used an improved approach pro-
posed by Yeh (1981) to obtain the seepage velocity at nodes
to consider the global mass conservation of flow in the simu-
lation domain. In Eqs. (5) to (7), c0 represents the initial con-
centration in the entire modeling domain �, cD is the speci-
fied concentration at the Dirichlet boundary, and qc is the dis-
persive flux at the Neumann boundary. Moreover, De(x) in
Eq. (4) is considered the macro-dispersion coefficient, which
is evaluated based on the seepage velocity (Zheng and Ben-
nett, 2002)

De(x)=

[
αTδij + (αL−αT)

vivj

v2

]
v+D0(x),

i,j = 1,2, (8)

where δij is the Kronecker delta and αL = αL(x) is the lon-
gitudinal dispersivity in the principal flow direction. αT =

αT(x) represents the transverse dispersivity, which is perpen-
dicular to the longitudinal dispersivity. Notations vi and vj
are the seepage velocities in different directions in the porous
fractures, and v represents the magnitude of the seepage ve-
locity. In Eq. (8), D0(x) is the effective molecular diffusion
coefficient. In this study, D0(x) in our model is assumed to
be negligible, which implies that the dispersion is dominated
by advective transport and mechanical dispersion (Zheng and
Bennett, 2002; Bear and Cheng, 2010).

2.2 DFN connections and the unstructured mesh
generation

The information of fracture orientations enables the direct
simulation of flow and transport in a series of 2-D fractures
and the reproduction of the flow and transport behaviors for a

Figure 1. Definitions of fracture orientation for a fracture in a 3-D
DFNe. In this study, the positive trend and plunge angles were
clockwise from the north and downward from the horizontal plane,
respectively.

3-D DFN system. This study defines a DFN without isolated
fractures as an effective discrete fracture network (DFNe).
Figure 1 shows the definitions of the individual fracture in
a 3-D DFNe. Based on the long axis of an elliptical porous
fracture, the positive trend and plunge angles are defined as
clockwise from the north and downward from the horizon-
tal plane, respectively. In this study, the intersections of a
fracture and the simulation boundaries have to be identified
(Fig. 1) before the mesh generation is implemented. We gen-
erate the fracture length for the long and short axes of each
fracture in the 3-D DFN based on the uniform distribution.
The larger value of the two generated radii is used to obtain
the long axis of the elliptical fractures. In addition, isolated
fractures that are not connected to other fractures and simu-
lation boundaries are removed for computational efficiency.

Figure 2 shows an example of a DFNe connection for two
intersected fractures. Figure 2a shows the generated mesh in
the 3-D domain for two intersecting fractures. Mesh genera-
tion begins with the generation of initial fracture meshes for
each fracture plate (i.e., Fractures 1 and 2 in Fig. 2c and e, re-
spectively). Figure 2b displays two intersecting fractures that
were individually rotated back to the 2-D horizontal plane.
In Fig. 2b the plunge and trend values differ for each fracture
in a 3-D DFNe, so the fractures in a 2-D coordinate system
might not overlap. The intersections for each fracture are also
located in different areas (see Fig. 2b). However, the length
of the intersection should be identical to that of the inter-
secting fractures. The fracture intersections and simulation
boundaries are recorded for our unstructured mesh genera-
tion model.

The mesh generation starts with generating initial mesh
for each fracture. The mesh generator allows users to define
intervals of mesh boundary nodes. In this study, the Delau-
nay triangulation algorithm is used for generating the ini-

www.hydrol-earth-syst-sci.net/23/19/2019/ Hydrol. Earth Syst. Sci., 23, 19–34, 2019



22 I.-H. Lee et al.: Stochastic modeling of flow and conservative transport

Figure 2. Example of a generated mesh for two intersected fractures in (a) a 3-D DFNe, (b) a 2-D plane view of back rotated fractures based
on the individual fracture orientation, (c) the plane view of the mesh for Fracture 1 near the intersection, (d) the close view of the fracture
intersection in a 3-D DFNe, and (e) the plane view of the mesh for Fracture 2 near the intersection.

tial meshes. The special treatment of fracture intersections
rely on the boundary recovery algorithm. In the process of
boundary recovery for fracture intersections, we allow the
node interval be reduced with a defined ratio according to
the smallest node interval along the edges of the connected
fractures. The ratio can be 1/10 or a smaller value, depending
on the problem. The details of the mesh generation algorithm
for connected fractures are available in the study of Lee and
Ni (2015).

2.3 Numerical finite element solution to the DFNe

To solve the governing equations of flow and transport for
the DFNe framework, we employ the Galerkin finite element
method and the biconjugate gradient matrix solver to solve
Eqs. (1) and (4). The linear function for hydraulic heads and
the concentration at the nodes surrounding an element of the
triangular mesh system can be represented with

h(x)=

3∑
α=1

hαNα(x), (9)

and

c(x)=

3∑
α=1

cαNα(x), (10)

respectively, where the notation Nα(x) is the shape function
determined by the mesh in fractures in the 2-D porous frac-

ture plates in a 3-D DFNe, and the shape function has the
following formula:

Nα(x)= a0+

2∑
i=1

aixi, (11)

where a0 and ai are coefficients of the shape functions. In
this study, the coefficients were determined based on the fol-
lowing formulas as applied to nodes in a triangular element:

{a0} =
1
J


x12x23− x13x22
x13x21− x11x23
x11x22− x12x21

 , (12)

{a1} =
1
J


x22− x23
x23− x21
x21− x22

 , (13)

{a2} =
1
J


x13− x12
x11− x13
x12− x11

 , (14)

where J = 2× A, and A represents the area of an element.
Notation xij represents the coordinate value in the i direc-
tion at the j th node in a triangular element. In this study, the
solution to the DFNe followed similar processes to what are
used in classical finite element methods. However, the sys-
tem of equations to be solved in the DFNe is different and rel-
atively complex compared to a typical 2-D problem, because
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the nodes along the fracture intersections in the solution pro-
cesses could introduce additional terms in the coefficient ma-
trices for the system of equations. The roles of the additional
terms in the coefficient matrices are to build connections be-
tween fractures through the element nodes along the lines
of intersection. More intersections in the DFNe would yield
more complex coefficient matrices for the system of equa-
tions. Figure 2c–e also demonstrate an example for the con-
nection of nodes and elements along a fracture intersection.
Suppose that the Fractures 1 and 2 in Fig. 2c and e have a
line of intersection (dashed line). Elements 1 to 5 in Frac-
ture 1 and elements 6 to 10 in Fracture 2 share the same nodes
(nodes 48, 49, and 50) along the line of intersection. Let us
focus on the node 49. For all the elements in Fracture 1 and
Fracture 2 that are connected to the node 49, the calculation
of the coefficient matrix for node 49 must rely on integrating
weightings from shape functions of the connected elements
and the associated nodes. This inclusion of all nodal informa-
tion in the matrix system for heads could resolve the detailed
behavior of flow in elements that are connected to the frac-
ture intersections. The mass flux of concentration near the
intersections follow a similar procedure to build the coeffi-
cient matrices for the ADE solutions.

3 Transport model verification and numerical
examples

The features of the HYDROGEOCHEM model are not for
DFN flow and transport modeling. For simple cases such as a
single horizontal fracture plate or cross-shaped porous frac-
ture, it is possible to simulate a fracture and matrix system
using the HYDROGEOCHEM model if one can use small
mesh sizes to resolve the fracture apertures and matrix sys-
tem. In addition, the differences of the hydraulic conductiv-
ity between the fracture and matrix need to be large enough
to minimize the influence of the matrix. Because the HY-
DROGEOCHEM was developed based on the finite element
method, the numerical dispersion might be similar to the de-
veloped model in this study. This study further uses a two-
dimensional analytical solution proposed by Wexler (1992)
to conduct verification of the developed model. The compar-
ison is limited to the case with advection and dispersion in a
horizontal porous fracture plate.

Based on the verified DFN flow and transport model, we
then conducted 500 MCS realizations to assess the upscaled
flow behaviors with various fracture intensities for 2-D pro-
files (i.e., P21) and 3-D rock volumes (i.e., P32). P21 and
P32 are defined as the length of fracture traces per unit area
and the area of fractures per unit volume, respectively. The
MCS flow realizations are further used to assess the effects
of DFN properties on the flow and transport uncertainties. In
this study, statistical structures that are relevant to the distri-
butions of the fracture properties included Poisson and uni-
form distributions (Lee and Ni, 2015; Xu and Dowd, 2010).

3.1 Transport model verification by using
HYDROGEOCHEM model

This study employs two cases in a 2 m× 2 m× 2 m fractured
rock domain (Fig. 3), including a horizontal fracture plate
(Case 1) and a cross-shaped fracture network (Case 2), to
verify the developed transport model by using the HYDRO-
GEOCHEM model. The test cases represent fracture sizes
that are considerably larger than the controlled modeling do-
main. Local mesh refinements in the HYDROGEOCHEM
model are required to resolve fractures in a rock volume
to obtain fracture structures in HYDROGEOCHEM (see
Fig. 3a and c). However, the hydraulic conductivity values
are different to represent a horizontal fracture plate (Fig. 3a)
and a cross-shaped fracture network (Fig. 3c). For the two
test cases, we assume a uniform fracture aperture of 0.001 m.
The fracture hydraulic conductivity is 1.0 m d−1 for the frac-
ture plates in the developed model. This fracture hydraulic
conductivity value in HYDROGEOCHEM model is also ap-
plied to the elements that represent the fracture locations
(Fig. 3a and c). The matrix of hydraulic conductivity in the
HYDROGEOCHEM model is 10−5 m d−1 to create a high
variety of hydraulic conductivity values for the fractures and
rock matrix. In the test cases, the effective porosity for the
fractures is at a relatively large constant value of 0.43. A rel-
atively small isotropic dispersivity of 0.001 m is used to eval-
uate the advection-dominated transport. The boundary condi-
tions along the boundaries parallel to the flow direction are
specified to be no-flow boundary conditions, except for the
cross-shaped fracture network case, where a slightly upward
flow along the vertical fracture is introduced (Fig. 3c and d).
In Fig. 3c and d, the boundary conditions are the same as in
Fig. 3a and b, but a constant head of 9.01 m is specified on the
top side of the vertical fracture (x = 1.0 m and z= 1.0 m).
Such a constant head of 9.01 on the top side of the verti-
cal fracture can produce stress for upward flow in the ver-
tical fracture. The Neumann boundary condition is assigned
in these cases as the transport boundary condition. In the test
cases, we release an initial Gaussian distribution plume in the
horizontal fracture plate. The time step for the transport sim-
ulation is 0.1 days throughout the simulation time (5.0 days).
Similar to the transport solution in the developed model, the
ADE solution technique in the HYDROGEOCHEM model
is the Eulerian-based approach for comparison purposes. Ta-
ble 1 lists the flow and transport parameters for the test cases.

3.2 Transport model verification by using analytical
solution

The study of Wexler (1992) considers a horizontal two-
dimensional domain. The simulation domain is similar to the
first case in Sect. 3.1. However, the study of Wexler (1992)
considers an x-direction uniform flow and constant values
of longitudinal and transverse dispersion coefficients in the
simulation domain. The transport process in the solution of
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Figure 3. Conceptual model for the verification of a 2-D horizontal fracture plate and a cross-shaped fracture network: (a) the mesh of
HYDROGEOCHEM model for the horizontal fracture plate, (b) the DFN conceptual model for the horizontal porous fracture, (c) the mesh of
HYDROGEOCHEM model for the cross-shaped fracture network, and (d) the DFN conceptual model for the cross-shaped fracture network.
Note that the single fracture plate (i.e., a) and cross-shaped fracture network (i.e., c) in the HYDROGEOCHEM model are represented with
the relatively high hydraulic conductivity (i.e., 1.0 m d−1). However, the hydraulic conductivity for the matrix in HYDROGEOCHEM model
was assumed to be 10−5 m d−1.

Wexler (1992) also involves the first-order decay. The trans-
port equation has the following formula:

∂c(x, t)

∂t
=Dx

∂c(x, t)

∂x2 +Dy
∂c(x, t)

∂y2

− vx
∂c(x, t)

∂x
− λc(x, t), (15)

with initial and boundary conditions

c(x,0)|� = 0, (16)
c(x, t)|x=0, Y1≤y≤Y2 = cD, (17)
c(x, t)|x=0, y<Y1, Y2<y = 0, (18)

∂c(x, t)

∂x

∣∣∣∣
x=∞

= 0, (19)

and
∂c(x, t)

∂y

∣∣∣∣
y=±∞

= 0, (20)

where the c(x, t) is the concentration, andDx andDy are the
longitudinal and transverse dispersion coefficients. The vx is

the uniform seepage velocity in the x direction. Notation nλ
in Eq. (15) is the first-order decay coefficient for the model.
In the test example, the specified concentration cD is applied
along the inlet boundary (i.e., x = 0) in the interval of Y1 and
Y2. To fit the condition of the model in this study, we have
neglected the decay process for comparison purpose. This
approximation yields the closed-form solution:

c(x, t)=
cDx
√
πDx

exp
(

vxx

2−Dx

)
·

τ=t∫
τ=0

τ−
3
2 exp

[
−

(
v2
x

4Dx

)
τ −

x2

4Dxτ

]
·

{
erfc

[
Y1− y

2
√
Dyτ

]
− erfc

[
Y2− y

2
√
Dyτ

]}
dτ.

(21)

The calculation of Eq. (21) requires numerical approxima-
tions. The study of Wexler (1992) suggested the Gauss–
Legendre iteration algorithm to obtain the solution. However,
their results indicated that a small x value might lead to nu-
merical errors for the iterations.
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Table 1. The flow and transport parameters that were used for the transport verification cases.

Fracture parameter Case 1 and 2 Case 3

Western B.C. h= 9.1 m /∇c = 0a cD = 1.0 kg m−3(0.75≤ y ≤ 1.25)
cD = 0 kg m−3(y < Y1, y > Y2)

Eastern B.C. h= 9.0 m /∇c = 0 ∇c = 0
Northern B.C. ∇h= 0/∇c = 0 ∇c = 0
Southern B.C. ∇h= 0/∇c = 0 ∇c = 0
Top B.C. ∇h= 0/∇c = 0 n/a

h= 9.01 m (Case 2)b

Bottom B.C. ∇h= 0/∇c = 0 n/a
Fracture aperture (m) 0.001 n/a
K in fractures (m d−1) n/a
K in matrix (m d−1) 0.001 n/a
Effective porosity (–) 0.43 n/a
Seepage velocity (m day−1) Variablec vx = 0.1 m d−1 vy = 0.0 m d−1

Isotropic dispersivity (m) 0.001 0.05
Time step (day) 0.1 0.1
Simulation time (day) 5.0 15.0

a The specified boundary conditions for HYDROGEOCHEM and the developed model are applied to the intersection
between fractures and the western (or eastern) boundary of the simulation domain. b The specified boundary conditions
for HYDROGEOCHEM and the developed model are applied to the intersection between the vertical fracture and the
top boundary of the simulation domain. c The seepage velocity at each node is evaluated based on the Darcy flux
obtained at the node. n/a: not applicable.

In the test example (Case 3), the horizontal porous frac-
ture plate has the size of 2 m× 2 m. We follow the assump-
tions applied to the solution in the study of Wexler (1992).
The zero concentration is used as the initial condition, and
the concentration of 1.0 is specified in the interval between
Y1 = 0.75 and Y2 = 1.25 m along the inlet boundary (i.e.,
x = 0). The uniform seepage velocity in the x direction is
0.1 m d−1. The longitudinal and transverse dispersivities for
the case are 0.1 m. Note that this dispersivity value was de-
termined based on the study of scale-dependent dispersivity
proposed by Gelhar et al. (1992). The interested scale for the
study is on the order of 1 m. Therefore, the isotropic disper-
sivity of 0.1 m was specified for the transport simulation.

3.3 Flow upscaling behaviors

The equivalent hydraulic conductivity for a specified repre-
sentative elementary volume (REV) is the basis for conduct-
ing flow upscaling for practical problems that cover simula-
tion domains on the order of hundreds of meters to several
kilometers. Similar to the fractured rock volume in the test
case, we generate 500 DFN realizations to assess the flow
and upscaling behaviors for various fracture intensities and
the associated fracture properties (e.g., fracture locations,
plunges and trends, and sizes). Table 2 lists the parameters
for generating the DFN realizations. In this study, the P21
values for different DFN realizations are calculated based on
the downstream boundary profile at x = 2.0 m (Fig. 4). In the
numerical example, the criteria of the nodal spaces along the
fracture boundaries are fixed at 0.1 m, and the nodal spaces
for fracture intersections have a reduction rate of 1/10 for all

Figure 4. Conceptual model, a DFNe realization, and the associated
flow field for the numerical example.

the DFNe realizations. Figure 4 also shows the conceptual
model alongside one DFNe realization and the associated
head field as a numerical example. Table 3 lists the hydro-
geological parameters for the flow and transport simulations.

The calculation of the equivalent hydraulic conductivity
for a rock system considers the concept of mass conservation
applied to a REV. The flow passing through the 3-D control
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Table 2. Parameters that were used to generate 3-D DFNs for the
flow example.

Parameters Value

Xmin/Xmax 0.0/2.0 m
Ymin/Ymax 0.0/2.0 m
Zmin/Zmax 0.0/2.0 m
Mean fracture intensity 6.0 m−1

Trend(min/max) 96.0/140.0
Plunge(min/max) 16.0/90.0
Mean radius of ellipse 0.5 m

Table 3. Parameters that were used for the transport simulations in
the 3-D DFNe realizations.

Parameters Value

Fracture aperture 0.001 m
Fracture intensity 3 to 7 m−1

Fracture hydraulic conductivity 0.43 m d−1

Effective porosity 0.43
Isotropic dispersivity 0.1 m
Simulation time step 0.1 days
Total simulation time 50 days

volume can be represented by the following formula:

Qfrac =−Keq
1h

1L
·A, (22)

where Qfrac (L3/T ) is the net flow rate for a specified di-
rection of a DFNe in a defined rock control volume. The hy-
draulic head gradient of a control volume is defined as the
ratio of the head difference 1h (L) to the flow length 1L
(L) between two boundaries of the control volume. The no-
tation A (L2) represents the flow area for the control volume.
The equivalent hydraulic conductivityKeq can be determined
if the flow rate of a fractured rock is obtained from the DFNe
flow model.

3.4 Sampling volumes and flow and transport
uncertainties

In this numerical example, we investigate the effects of av-
eraging strategies (i.e., along vertical lines or on profiles
perpendicular to flows) on the observations of breakthrough
curves (BTCs) in fractured formations. This numerical exam-
ple involves using the random DFNe flow realizations from
the example in Sect. 3.3. Table 3 lists the parameters applied
to the transport simulations. Figure 5 shows the boundary
conditions for the transport simulations. Constant concentra-
tion values of 1.0 and 0.0 (kg m−3) are specified on bound-
aries at x = 0.0 and 2.0 (m), respectively. The constant con-
centration values of 0.0 (kg m−3) at the outflow can repre-
sent the scenario that a large water body was connected to
the fractured rock at the outflow boundary. The remaining

Figure 5. Conceptual model and the specified well and profile loca-
tions for the calculations of the flow and transport uncertainties.

boundaries are zero-concentration flux boundary conditions.
Each time step in the simulation produces 500 concentration
values at the computational nodes based on the 500 DFNe
realizations. Then, we collect the concentration values and
present the BTCs with means and standard deviations (SDs)
to provide the variation bandwidths.

The x and y coordinates for the vertical sampling lines
of concentration are (0.5, 1.0), (1.0, 1.0), and (1.5, 1.0). We
allow the vertical lines to have a fixed diameter to represent
wells in practical problems, and the wells are assumed to be
open in the rock volume (Fig. 5). The BTCs along the wells
are calculated by using the flux weighted concentration (i.e.,
v(x, t)c(x, t)) at nodes involved in the wells. In this study,
the well diameter is fixed to 4 in (0.102 m) to calculate the
mean BTCs and BTC uncertainties along the wells.

We further define four profiles to assess the flow and trans-
port uncertainties. The profiles can be considered as a se-
ries of wells installed along the profiles. The vertical pro-
file (y = 1.0 m) along the flow direction (see Fig. 5) is used
for assessing spatial variability in flow and transport. This
y = 1.0 m profile has the width of 4 in. along the profile. To
obtain the head and transport uncertainties along the vertical
profile at each x location, we average the solutions of flow
and transport along the z direction. The sampling x step is the
same as the profile width. Solutions of MCS at each x loca-
tion are collected based on the nodal heads and concentration
fluxes in the cuboid.

Three profiles perpendicular to the flow direction have the
same x locations as the sampling wells, i.e., x = 0.5, 1.0,
and 1.5 (m). In this study, we also consider the profiles to
have the same widths as the well diameter (4 in.) for com-
paring vertical line (i.e., the well) and profile (i.e., a series
of wells) sampling strategies. The representative heads and
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Figure 6. Comparison of the concentration distributions for the developed DFN model (dashed lines) and the HYDROGEOCHEM model
(solid lines) for a horizontal fracture plate.

Figure 7. Comparison of the concentration distributions for the
developed DFN model and the HYDROGEOCHEM model for
a cross-shaped fracture network: (a) top view of the horizontal
fracture at t = 3.0 day, (b) front view of the vertical fracture at
t = 3.0 day, (c) top view of the horizontal fracture at t = 5.0 day,
and (d) front view of the vertical fracture at t = 5.0 day.

BTCs of the profiles are calculated by averaging the fracture
nodal heads and concentrations in the profile volumes.

Figure 8. The comparison of solute transport for a continuous inlet
source in a 2-D horizontal porous fracture at (a) 5.0, (b) 7.5, (c)
10.0, and (d) 15 days.

4 Results and discussion

This study focused on a relatively small fractured rock vol-
ume that was 2 m× 2 m× 2 m in size for the model verifica-
tion and stochastic flow and transport modeling. The mod-
eling domain might not be limited to this size when imple-
menting this model. The following sections provide the re-
sults of the transport model verification and the uncertainties
obtained from realizations of MCS.
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Figure 9. Comparisons of the DFN properties and equivalent hydraulic conductivity for the 500 generated DFN realizations. The superscripts
e and t represent the effective and total fracture intensities.

4.1 Transport model verification

Figures 6 and 7 show a comparison of the concentration dis-
tributions for the horizontal fracture plate and cross-shaped
fractures. The results in Figs. 6 and 7 show that identical so-
lutions were obtained from both the developed DFN model
and the HYDROGEOCHEM model. All the temporal and
spatial variations in the plume were determined, and the so-
lutions from the developed and HYDROGEOCHEM models
were found to be identical. Figure 7 shows the concentra-
tion distributions after 3.0 days (Fig. 7a and b) and 5.0 days
(Fig. 7c and d) when using the HYDROGEOCHEM and de-
veloped models for a cross-shaped fracture system. With a
specified small upward flow applied to the vertical fracture,
portions of the concentrations moved upward near the frac-
ture line of intersection (Fig. 7b and d). This slightly upward
flow relied on the constant head of 9.01 m that was applied
on the top side of the vertical fracture. Again, the developed
and HYDROGEOCHEM models were found to be identical
for the cross-shaped fracture network.

Figure 8 shows the comparison of the solute concentration
obtained from analytical (dashed lines) and the developed
(solid lines) models. Figure 8a–d show the concentration dis-
tribution at time 5.0, 7.5, 10.0, and 15.0 days, respectively.
The concentration for the contour lines are for the relative
concentration (c/cD) of 0.1, 0.5, and 0.7. The continuous re-

lease of the concentration along the central portion of the
x = 0 boundary leads to a high concentration area near the
release location. In the test example the uniform flow was
assigned for the fracture plate. We set the uniform seepage
velocities in the x direction and y direction to be 0.1 and
0 m d−1 in all simulation domains. The uniform flow in the
x direction then leads to an isotropic dispersion for the sim-
ulation case. In summary, the results of the developed model
agree with those of the analytical model.

4.2 Flow upscaling behaviors

Figure 9 shows the results of the flow simulations when ap-
plied to the 500 DFN realizations. Figure 9a shows that the
number of fractures increased with the effective fracture in-
tensity P e32, where P e32 is the effective fracture intensity for
total fracture intensity P t32. The effective fracture intensity
represents the fracture intensity that is evaluated without the
isolated fractures in a rock volume. A higher number of frac-
tures could create greater variations in the 3-D fracture in-
tensity. However, such behavior was not valid for the 2-D
effective fracture intensity P e21 (see Fig. 9b). Similar num-
bers of fractures might vary in a wide range of P e21 values.
This is because of the P e21 calculation that relies on counting
the trace length (i.e., fracture intersections between fractures
and the rock volume boundary) on the downstream boundary
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Figure 10. A realization of the transport simulation based on the DFNe flow field in Fig. 4.

profile (i.e., x = 2.0 m) of the simulation domain. We found
that different sampling profiles at fixed x locations exhib-
ited similar patterns for the comparison of variables P e21 and
P e32. Figure 9c summarizes the variations in the equivalent
hydraulic conductivity with different fracture intensities. The
results revealed that the high fracture intensity generally cre-
ated a high equivalent hydraulic conductivity. The results in
Fig. 9c shows that the equivalent hydraulic conductivity val-
ues were 2 to 3 orders of magnitude lower than the specified
fracture hydraulic conductivity value. Figure 9c shows that
the P e32 and equivalent hydraulic conductivity is highly cor-
related, i.e., high values of P e32 can yield high equivalent hy-
draulic conductivity. Figure 9d further shows the comparison
of P e32 and P t32. The results indicated that small numbers of
fractures can result in large variations of P t32 when compared
to a known P e32. Such results implied that the fracture diam-
eter used in the DFN generations might be relatively small
so that many isolated fractures were removed for flow and
transport simulations. The behavior could also lead to high
variations of flow and transport simulations.

4.3 Sampling volumes and flow and transport
uncertainties

Figure 10 shows a realization of the transport simulation
based on the DFNe flow field in Fig. 4. These results re-
vealed that the continuous concentration released on the left
boundary gradually migrated along the connected fractures.
The spatial distributions of the concentration on the fracture
plates were highly variable. This finding validated the con-
cept that was proposed by Park et al. (2003), who stated that
local flow cells contribute less to flow and contaminant trans-
port in fracture formations.

Figure 11 shows the mean concentration BTCs (solid
lines) and the associated SD intervals (i.e., ±SD from the
means) at sampling wells (Fig. 11a to c) and along profiles
(Fig. 11d to f) at the locations x = 0.5, 1.0, and 1.5 m, respec-
tively. Comparisons of the means and±SD BTCs at the wells
and along the profiles are shown in Fig. 11g–i, where the
solid lines represent the mean concentrations along the wells
and the dashed lines are the average concentrations along the
profiles. We collected 500 BTC realizations (gray lines) from
the flow simulations and recursively estimated the means
and SD of the concentrations at different time steps. The re-
sults in Fig. 11 clearly show that the maximum mean con-
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Figure 11. Mean concentration BTCs (solid lines) and associated SD intervals (dashed lines) at the sampling wells for (a) x = 0.5, (b)
x = 1.0, and (c) x = 1.5 m, and the mean BTCs (dashed and dotted lines) and SD for the sampling profiles at (d) x = 0.5, (e) x = 1.0,
and (f) x = 1.5 m. The BTC statistics, which were based on different averaging strategies, are presented at (g) x = 0.5, (h) x = 1.0, and (i)
x = 1.5 m, where the solid lines in (g), (h), and (i) indicate the average BTCs along the wells, and the dashed and dotted lines represent the
average BTCs along the profiles.

centration BTCs for the different averaging strategies might
not reach the maximal concentration that is released on the
boundaries. The maximum concentrations of the mean BTCs
were 60 % to 80 % of the concentration at the maximum re-
leased source. A longer simulation time might be required
to obtain the maximum concentration. Similar results were
obtained with the same averaging strategy at different moni-
toring locations. In general, small sampling volumes (i.e., the
wells) obtain relatively large values of concentration means
for specified times. In addition, such small sampling volumes
can also lead to higher variations of BTCs (i.e., SD). In this
study, the differences between two sampling strategies were
insignificant.

The acceptable number of the MCS realizations was de-
cided based on the comparison of statistical moments for
different numbers of MC realizations. With the realization
numbers up to 500, the overall trends of head and velocity
variances were obvious, except for some variations along the
selected profiles. Figure 12 shows the distribution flow un-
certainties along the flow direction. Please note that the re-

sults were based on collections of vertical averaged heads
and Darcy velocities at each x location along y = 1.0 m. The
results in Fig. 12 showed the high nonstationarity of the head
and x-direction Darcy velocity. The distribution of the head
variance exhibited high variation at the inlet boundary, and
the head variance gradually decreased to a small value at the
outlet boundary (Fig. 12a and b). This was an interesting re-
sult, because the behavior was different from cases in hetero-
geneous porous media, which showed similar head variations
near inlet and outlet boundaries (Li et al., 2004; Ni and Li,
2005, 2006). We believed that the extremely high head vari-
ations near the DFN inlet boundary could be induced by the
generated DFN realizations. In the DFN flow simulation, the
constant head of the inlet boundary was applied to the frac-
tures that connect to the inlet boundary. The number of inter-
sections at boundary controlled the inlet flow for a generated
DFN. Therefore, the uncertainty of the head must involve the
uncertainty of fractures connected to the inlet boundary.

Figure 12c and d show the distribution of velocity variance
in x direction. In general, the highest value of the x-direction
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Figure 12. Comparison of flow uncertainties for vertical profile along the flow direction. (a), (c), (e), and (g) represent the distributions of
mean head and Darcy velocity and the associated SD about the means. (b), (d), (f), and (h) represent the distributions of the head and velocity
variances along flow direction. Note that the results were based on the vertical averaged head and Darcy velocities at each x location along
the y = 1.0 m profile. For each x location, the sampling volume was the same as the size of the specified sampling well.

velocity variance was 1 order of magnitude smaller than the
highest value of the head variance. The x-direction Darcy
velocity also showed high variations near inlet and outlet
boundaries. The variances of x-direction Darcy velocity at
boundaries relies on calculations of head gradients and frac-
ture connections at boundaries. These two parameters are not
deterministic for MCS. These integrated uncertainties from
head gradients and fracture connections therefore lead to the
increase of velocity uncertainties near the boundaries. Away
from the inlet and outlet boundaries, we found that the veloc-
ity variance along the x direction showed a relatively station-
ary zone. This behavior had been observed in groundwater
flow in porous media (Ni et al., 2010, 2011). The distance
of the variance transition zone was close to 0.5 m from the
boundaries. Such a value was close to the mean fracture di-
ameter used for generating DFN realizations.

Figure 12e–h show the means and variances of the Darcy
velocities in the y and z directions. The results indicated that
the velocity variations in the y and z directions were rela-
tively stationary. We found that the boundary-induced non-
stationarity was not obvious for velocity variations in y and
z directions. The stationary variances of the velocities in y
and z directions were similar to that of the x-direction veloc-

ity. In Fig. 12 the fluctuations of head and velocity variances
indicated that more DFN realizations can improve the distri-
butions of head and velocity variances.

Figure 13 shows the distributions of transport uncertainty
at different times along the centerline profile (y = 1.0 m).
This study specified a constant concentration on the inlet
boundary. Similar to the situation of the constant head con-
dition in flow simulations, transport results also showed high
nonstationarity near the inlet boundary. However, the vari-
ances can propagate to the downstream area with time. In
the transport simulations, we specified a constant concentra-
tion of 0 (kg m−3) on the outlet boundary. The uncertainty
of concentration at the outlet boundary increased with time
because of the arrivals of concentration fronts. Similar to the
condition on the inlet boundary, the number of fracture in-
tersections might influence the increase of the concentration
variation at the outlet boundary.

5 Conclusions

Numerical solutions to the ADE based on the Eulerian ap-
proach have not been widely implemented because of heavy
computational costs. This study developed and implemented
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Figure 13. Transport uncertainties for the vertical profile along the flow direction. (a), (c), (e), and (g) represent the distributions of mean
concentration and the associated SD about the means at different times. (b), (d), (f), and (h) represent the distributions of the concentration
variances along flow direction at different times. Note that the results were based on the vertical averaged concentration at each x location
along the y = 1.0 m line.

numerical models for stochastic modeling of flow and con-
servative transport in 3-D DFNs. The developed ADE model
was validated by comparing the solutions of simple porous
fractures with those from the HYDROGEOCHEM finite el-
ement model and an analytical model. When testing the
transport model, identical temporal and spatial solutions
were obtained from the developed model and the HYDRO-
GEOCHEM model based on a Gaussian-type initial plume
that was released in the porous fracture plate. For a simplified
case, an analytical 2-D transport solution exists. The devel-
oped model accurately produced the results of concentration
distributions in a horizontal fracture plate.

The MCS flow simulations showed that different fracture
intensities can result in variations in the equivalent hydraulic
conductivity that were 2 to 3 orders of magnitude lower than
the fracture hydraulic conductivity values.

Simulations of transport in 3-D DFNs revealed that the
maximum concentration of mean BTCs for different averag-
ing strategies might not have reached the concentration. The
sampling strategies along the wells and profiles yielded simi-
lar BTCs patterns. Based on the MCS, the means and SD for
the two sampling strategies were observed at different sam-
pling locations. MCS results showed that a smaller sampling

volume can lead to relatively large values of mean concen-
trations and concentrations of SD for specified times.

MCS flow and transport showed that the distribution of the
head variance exhibited high variations at the inlet boundary,
and the head variance gradually decreased to a small value at
the outlet boundary. The extremely high head variation near
the DFN inlet boundary could be induced by the generated
DFN realizations. No stationary zone for the head variance
was obtained based on collected MCS realizations. In the
study, the value of the highest x-direction velocity variance
was 1 order of magnitude smaller than the value of the high-
est head variance. The velocity variance along the x direc-
tion showed a relatively stationary zone away from the inlet
and outlet boundaries. The distance of the variance transition
zone was close to 0.5 m, which was the value of the mean
fracture diameter for DFN generations. Results of the veloc-
ity variations in the y and z directions appeared relatively
stationary along the flow direction. The boundary-induced
nonstationarity was not obvious for velocity variations in y
and z directions. The MCS of transport modeling showed
high nonstationarity of concentration variation near the inlet
boundary, and the variance can propagate downstream with
time. The simulation results can provide general insight into

Hydrol. Earth Syst. Sci., 23, 19–34, 2019 www.hydrol-earth-syst-sci.net/23/19/2019/



I.-H. Lee et al.: Stochastic modeling of flow and conservative transport 33

the evaluations of flow and transport uncertainty based on the
available DFN geometrical properties. One can employ the
fracture statistics to evaluate the possible flow paths or con-
taminant transport in fractured rocks. The insufficient data
from sites were represented by the uncertainty and can be
used for risk assessments or engineering designs.
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