Articles | Volume 22, issue 1
https://doi.org/10.5194/hess-22-871-2018
https://doi.org/10.5194/hess-22-871-2018
Research article
 | 
01 Feb 2018
Research article |  | 01 Feb 2018

State updating and calibration period selection to improve dynamic monthly streamflow forecasts for an environmental flow management application

Matthew S. Gibbs, David McInerney, Greer Humphrey, Mark A. Thyer, Holger R. Maier, Graeme C. Dandy, and Dmitri Kavetski

Related authors

Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023,https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
Seamless streamflow forecasting at daily to monthly scales: MuTHRE lets you have your cake and eat it too
David McInerney, Mark Thyer, Dmitri Kavetski, Richard Laugesen, Fitsum Woldemeskel, Narendra Tuteja, and George Kuczera
Hydrol. Earth Syst. Sci., 26, 5669–5683, https://doi.org/10.5194/hess-26-5669-2022,https://doi.org/10.5194/hess-26-5669-2022, 2022
Short summary
A virtual hydrological framework for evaluation of stochastic rainfall models
Bree Bennett, Mark Thyer, Michael Leonard, Martin Lambert, and Bryson Bates
Hydrol. Earth Syst. Sci., 23, 4783–4801, https://doi.org/10.5194/hess-23-4783-2019,https://doi.org/10.5194/hess-23-4783-2019, 2019
Short summary
Evaluating post-processing approaches for monthly and seasonal streamflow forecasts
Fitsum Woldemeskel, David McInerney, Julien Lerat, Mark Thyer, Dmitri Kavetski, Daehyok Shin, Narendra Tuteja, and George Kuczera
Hydrol. Earth Syst. Sci., 22, 6257–6278, https://doi.org/10.5194/hess-22-6257-2018,https://doi.org/10.5194/hess-22-6257-2018, 2018
Short summary
Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems
Jason M. Hunter, Holger R. Maier, Matthew S. Gibbs, Eloise R. Foale, Naomi A. Grosvenor, Nathan P. Harders, and Tahali C. Kikuchi-Miller
Hydrol. Earth Syst. Sci., 22, 2987–3006, https://doi.org/10.5194/hess-22-2987-2018,https://doi.org/10.5194/hess-22-2987-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023,https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
River hydraulic modeling with ICESat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023,https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023,https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Technical note: How physically based is hydrograph separation by recursive digital filtering?
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023,https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023,https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements, FAO, RomeFAO Irrigation and drainage paper 56, 300 pp., 1998. 
Andrews, F. T., Croke, B. F. W., and Jakeman, A. J.: An open software environment for hydrological model assessment and development, Environ. Modell. Softw., 26, 1171–1185, 2011. 
Avey, S. and Harvey, D.: How water scientists and lawyers can work together: A 'down under' solution to a water resource management problem, Journal of Water Law, 24, 25-61, 2014. 
Bennett, J. C., Wang, Q. J., Pokhrel, P., and Robertson, D. E.: The challenge of forecasting high streamflows 1–3 months in advance with lagged climate indices in southeast Australia, Nat. Hazards Earth Syst. Sci., 14, 219–233, https://doi.org/10.5194/nhess-14-219-2014, 2014. 
Berthet, L.: Prévision des crues au pas de temps horaire : pour une meilleure assimilation de l'information de débit dans un modèle hydrologique, AgroParisTech, 2010. 
Download
Short summary
This work developed models to predict how much water will be available in the next month to maximise environmental and social outcomes in southern Australia. Initialising the models with observed streamflow data, instead of warmed up by rainfall data, improved the results, even at a monthly lead time, making sure only data representative of the forecast period to develop the models were also important. If this step was ignored, and instead all data were used, poor predictions could be produced.