Articles | Volume 22, issue 1
https://doi.org/10.5194/hess-22-871-2018
https://doi.org/10.5194/hess-22-871-2018
Research article
 | 
01 Feb 2018
Research article |  | 01 Feb 2018

State updating and calibration period selection to improve dynamic monthly streamflow forecasts for an environmental flow management application

Matthew S. Gibbs, David McInerney, Greer Humphrey, Mark A. Thyer, Holger R. Maier, Graeme C. Dandy, and Dmitri Kavetski

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (04 Oct 2017) by Maria-Helena Ramos
AR by Matthew Gibbs on behalf of the Authors (17 Nov 2017)  Author's response   Manuscript 
ED: Publish subject to technical corrections (11 Dec 2017) by Maria-Helena Ramos
AR by Matthew Gibbs on behalf of the Authors (18 Dec 2017)  Author's response   Manuscript 
Download
Short summary
This work developed models to predict how much water will be available in the next month to maximise environmental and social outcomes in southern Australia. Initialising the models with observed streamflow data, instead of warmed up by rainfall data, improved the results, even at a monthly lead time, making sure only data representative of the forecast period to develop the models were also important. If this step was ignored, and instead all data were used, poor predictions could be produced.