Articles | Volume 22, issue 1
https://doi.org/10.5194/hess-22-709-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-22-709-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climate-driven disturbances in the San Juan River sub-basin of the Colorado River
Earth and Environmental Sciences, Los Alamos National Lab, Los Alamos, NM 87545, USA
Theodore J. Bohn
Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ 85287, USA
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
Kurt Solander
Earth and Environmental Sciences, Los Alamos National Lab, Los Alamos, NM 87545, USA
Nathan G. McDowell
Earth and Environmental Sciences, Los Alamos National Lab, Los Alamos, NM 87545, USA
current address: Pacific Northwest National Laboratory, Richland, WA 99354, USA
Chonggang Xu
Earth and Environmental Sciences, Los Alamos National Lab, Los Alamos, NM 87545, USA
Enrique Vivoni
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
Richard S. Middleton
Earth and Environmental Sciences, Los Alamos National Lab, Los Alamos, NM 87545, USA
Related authors
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2024-2249, https://doi.org/10.5194/egusphere-2024-2249, 2024
Short summary
Short summary
Temporally continuous snow depth estimates are vital for understanding changing snow patterns and impacts on permafrost in the Arctic. In this work, we develop an approach to predict snow depth from variability in snow-ground interface temperature using small temperature sensors that are cheap and easy-to-deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that was not previously possible.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Xiang Huang, Charles J. Abolt, and Katrina E. Bennett
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-8, https://doi.org/10.5194/tc-2023-8, 2023
Manuscript not accepted for further review
Short summary
Short summary
Near-surface humidity is a sensitive parameter for predicting snow depth. Greater values of the relative humidity are obtained if the saturation vapor pressure was calculated with over-ice correction compared to without during the winter. During the summer thawing period, the choice of whether or not to employ an over-ice correction corresponds to significant variability in simulated thaw depths.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021, https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
Short summary
Polygon-shaped landforms present in relatively flat Arctic tundra result in complex landscape-scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons, providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
Katrina E. Bennett, Jessica E. Cherry, Ben Balk, and Scott Lindsey
Hydrol. Earth Syst. Sci., 23, 2439–2459, https://doi.org/10.5194/hess-23-2439-2019, https://doi.org/10.5194/hess-23-2439-2019, 2019
Short summary
Short summary
Remotely sensed snow observations may improve operational streamflow forecasting in remote regions, such as Alaska. In this study, we insert remotely sensed observations of snow extent into the operational framework employed by the US National Weather Service’s Alaska Pacific River Forecast Center. Our work indicates that the snow observations can improve snow estimates and streamflow forecasting. This work provides direction for forecasters to implement remote sensing in their operations.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Kavya Sivaraj, Kurt Solander, Charles Abolt, and Elizabeth Hunke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3315, https://doi.org/10.5194/egusphere-2024-3315, 2024
Short summary
Short summary
Melt ponds are seasonal water bodies whose presence affect the rate of Arctic sea ice loss by increasing the absorption of solar radiation. Despite their importance, large-scale observational datasets of Melt Pond Fraction (MPF) are inadequate due to low-resolution sensors and spectral misclassifications caused by different ice types. Our novel ML-based workflow overcomes these limitations by leveraging morphological operators, resulting in an improved Sentinel-2-based mean MPF of 11% from 20%.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2024-2249, https://doi.org/10.5194/egusphere-2024-2249, 2024
Short summary
Short summary
Temporally continuous snow depth estimates are vital for understanding changing snow patterns and impacts on permafrost in the Arctic. In this work, we develop an approach to predict snow depth from variability in snow-ground interface temperature using small temperature sensors that are cheap and easy-to-deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that was not previously possible.
Mingjie Shi, Nate McDowell, Huilin Huang, Faria Zahura, Lingcheng Li, and Xingyuan Chen
EGUsphere, https://doi.org/10.22541/au.171053013.30286044/v2, https://doi.org/10.22541/au.171053013.30286044/v2, 2024
Short summary
Short summary
Using Moderate Resolution Imaging Spectroradiometer data products, we quantitatively estimate the resistance and resilience of ecosystem functions to wildfires that occurred in the Columbia River Basin in 2015. Carbon state exhibits lower resistance and resilience than the ecosystem fluxes. The random forest feature importance analysis indicates that burn severity plays a minor role in the resilience of grassland, while it has a relatively major role in the resilience of forest and savanna.
James Stegen, Amy Burgin, Michelle Busch, Joshua Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian Deines, Julia Guimond, Peter Regier, Kenton Rod, Edward Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon Sweetman, Jianqiu Zheng, Daniel Allen, Elizabeth Herndon, Beth Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad Patel
EGUsphere, https://doi.org/10.5194/egusphere-2024-98, https://doi.org/10.5194/egusphere-2024-98, 2024
Short summary
Short summary
The loss and gain of surface water (variable inundation) is a common process across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billdesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Gharun Mana, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2024-165, https://doi.org/10.5194/egusphere-2024-165, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the earth surface to the atmosphere, or flux, is an important process to understand that impacts all of our lives. Here we outline a method to estimate global water and CO2 fluxes based on direct measurements from site around the world called FLUXCOM-X. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Xiang Huang, Charles J. Abolt, and Katrina E. Bennett
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-8, https://doi.org/10.5194/tc-2023-8, 2023
Manuscript not accepted for further review
Short summary
Short summary
Near-surface humidity is a sensitive parameter for predicting snow depth. Greater values of the relative humidity are obtained if the saturation vapor pressure was calculated with over-ice correction compared to without during the winter. During the summer thawing period, the choice of whether or not to employ an over-ice correction corresponds to significant variability in simulated thaw depths.
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646, https://doi.org/10.5194/hess-26-5627-2022, https://doi.org/10.5194/hess-26-5627-2022, 2022
Short summary
Short summary
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. Here, we demonstrate the value of Earth observing satellites to improve and build confidence in the spatiotemporal simulations from regional hydrologic models for assessing the sensitivity of the Colorado River to climate change and supporting regional water managers.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021, https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
Short summary
Polygon-shaped landforms present in relatively flat Arctic tundra result in complex landscape-scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons, providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Charles D. Koven, Ryan G. Knox, Rosie A. Fisher, Jeffrey Q. Chambers, Bradley O. Christoffersen, Stuart J. Davies, Matteo Detto, Michael C. Dietze, Boris Faybishenko, Jennifer Holm, Maoyi Huang, Marlies Kovenock, Lara M. Kueppers, Gregory Lemieux, Elias Massoud, Nathan G. McDowell, Helene C. Muller-Landau, Jessica F. Needham, Richard J. Norby, Thomas Powell, Alistair Rogers, Shawn P. Serbin, Jacquelyn K. Shuman, Abigail L. S. Swann, Charuleka Varadharajan, Anthony P. Walker, S. Joseph Wright, and Chonggang Xu
Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, https://doi.org/10.5194/bg-17-3017-2020, 2020
Short summary
Short summary
Tropical forests play a crucial role in governing climate feedbacks, and are incredibly diverse ecosystems, yet most Earth system models do not take into account the diversity of plant traits in these forests and how this diversity may govern feedbacks. We present an approach to represent diverse competing plant types within Earth system models, test this approach at a tropical forest site, and explore how the representation of disturbance and competition governs traits of the forest community.
Kurt C. Solander, Brent D. Newman, Alessandro Carioca de Araujo, Holly R. Barnard, Z. Carter Berry, Damien Bonal, Mario Bretfeld, Benoit Burban, Luiz Antonio Candido, Rolando Célleri, Jeffery Q. Chambers, Bradley O. Christoffersen, Matteo Detto, Wouter A. Dorigo, Brent E. Ewers, Savio José Filgueiras Ferreira, Alexander Knohl, L. Ruby Leung, Nate G. McDowell, Gretchen R. Miller, Maria Terezinha Ferreira Monteiro, Georgianne W. Moore, Robinson Negron-Juarez, Scott R. Saleska, Christian Stiegler, Javier Tomasella, and Chonggang Xu
Hydrol. Earth Syst. Sci., 24, 2303–2322, https://doi.org/10.5194/hess-24-2303-2020, https://doi.org/10.5194/hess-24-2303-2020, 2020
Short summary
Short summary
We evaluate the soil moisture response in the humid tropics to El Niño during the three most recent super El Niño events. Our estimates are compared to in situ soil moisture estimates that span five continents. We find the strongest and most consistent soil moisture decreases in the Amazon and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. Our results can be used to improve estimates of soil moisture in tropical ecohydrology models at multiple scales.
Stephanie C. Pennington, Nate G. McDowell, J. Patrick Megonigal, James C. Stegen, and Ben Bond-Lamberty
Biogeosciences, 17, 771–780, https://doi.org/10.5194/bg-17-771-2020, https://doi.org/10.5194/bg-17-771-2020, 2020
Short summary
Short summary
Soil respiration (Rs) is the flow of CO2 from the soil surface to the atmosphere and is one of the largest carbon fluxes on land. This study examined the effect of local basal area (tree area) on Rs in a coastal forest in eastern Maryland, USA. Rs measurements were taken as well as distance from soil collar, diameter, and species of each tree within a 15 m radius. We found that trees within 5 m of our sampling points had a positive effect on how sensitive soil respiration was to temperature.
Naika Meili, Gabriele Manoli, Paolo Burlando, Elie Bou-Zeid, Winston T. L. Chow, Andrew M. Coutts, Edoardo Daly, Kerry A. Nice, Matthias Roth, Nigel J. Tapper, Erik Velasco, Enrique R. Vivoni, and Simone Fatichi
Geosci. Model Dev., 13, 335–362, https://doi.org/10.5194/gmd-13-335-2020, https://doi.org/10.5194/gmd-13-335-2020, 2020
Short summary
Short summary
We developed a novel urban ecohydrological model (UT&C v1.0) that is able to account for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements in three cities in different climates (Singapore, Melbourne, Phoenix) and can be used to assess urban climate mitigation strategies that aim at increasing or changing urban green cover.
Elias C. Massoud, Chonggang Xu, Rosie A. Fisher, Ryan G. Knox, Anthony P. Walker, Shawn P. Serbin, Bradley O. Christoffersen, Jennifer A. Holm, Lara M. Kueppers, Daniel M. Ricciuto, Liang Wei, Daniel J. Johnson, Jeffrey Q. Chambers, Charlie D. Koven, Nate G. McDowell, and Jasper A. Vrugt
Geosci. Model Dev., 12, 4133–4164, https://doi.org/10.5194/gmd-12-4133-2019, https://doi.org/10.5194/gmd-12-4133-2019, 2019
Short summary
Short summary
We conducted a comprehensive sensitivity analysis to understand behaviors of a demographic vegetation model within a land surface model. By running the model 5000 times with changing input parameter values, we found that (1) the photosynthetic capacity controls carbon fluxes, (2) the allometry is important for tree growth, and (3) the targeted carbon storage is important for tree survival. These results can provide guidance on improved model parameterization for a better fit to observations.
Katrina E. Bennett, Jessica E. Cherry, Ben Balk, and Scott Lindsey
Hydrol. Earth Syst. Sci., 23, 2439–2459, https://doi.org/10.5194/hess-23-2439-2019, https://doi.org/10.5194/hess-23-2439-2019, 2019
Short summary
Short summary
Remotely sensed snow observations may improve operational streamflow forecasting in remote regions, such as Alaska. In this study, we insert remotely sensed observations of snow extent into the operational framework employed by the US National Weather Service’s Alaska Pacific River Forecast Center. Our work indicates that the snow observations can improve snow estimates and streamflow forecasting. This work provides direction for forecasters to implement remote sensing in their operations.
Ashehad A. Ali, Yuanchao Fan, Marife D. Corre, Martyna M. Kotowska, Evelyn Hassler, Fernando E. Moyano, Christian Stiegler, Alexander Röll, Ana Meijide, Andre Ringeler, Christoph Leuschner, Tania June, Suria Tarigan, Holger Kreft, Dirk Hölscher, Chonggang Xu, Charles D. Koven, Rosie Fisher, Edzo Veldkamp, and Alexander Knohl
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-236, https://doi.org/10.5194/gmd-2018-236, 2018
Revised manuscript not accepted
Short summary
Short summary
We used carbon-use and water-use related datasets of small-holder rubber plantations from Jambi province, Indonesia to develop and calibrate a rubber plant functional type for the Community Land Model (CLM-rubber). Increased sensitivity of stomata to soil water stress and enhanced respiration costs enabled the model to capture the magnitude of transpiration and leaf area index. Including temporal variations in leaf life span enabled the model to better capture the seasonality of leaf litterfall.
Joseph J. Hamman, Bart Nijssen, Theodore J. Bohn, Diana R. Gergel, and Yixin Mao
Geosci. Model Dev., 11, 3481–3496, https://doi.org/10.5194/gmd-11-3481-2018, https://doi.org/10.5194/gmd-11-3481-2018, 2018
Short summary
Short summary
Variable Infiltration Capacity (VIC) is a widely used hydrologic model. This paper documents the development of VIC version 5, which includes a reconfiguration of the model source code to support a wider range of modeling applications. It also represents a significant step forward for the VIC user community in terms of support for a range of modeling applications, reproducibility, and scientific robustness.
Enrica Perra, Monica Piras, Roberto Deidda, Claudio Paniconi, Giuseppe Mascaro, Enrique R. Vivoni, Pierluigi Cau, Pier Andrea Marras, Ralf Ludwig, and Swen Meyer
Hydrol. Earth Syst. Sci., 22, 4125–4143, https://doi.org/10.5194/hess-22-4125-2018, https://doi.org/10.5194/hess-22-4125-2018, 2018
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
S. Peng, P. Ciais, G. Krinner, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, B. Decharme, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, C. Delire, T. Hajima, D. Ji, D. P. Lettenmaier, P. A. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
The Cryosphere, 10, 179–192, https://doi.org/10.5194/tc-10-179-2016, https://doi.org/10.5194/tc-10-179-2016, 2016
Short summary
Short summary
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine process-based ecosystem models with permafrost processes, a large spread of soil temperature trends across the models. Air temperature and longwave downward radiation are the main drivers of soil temperature trends. Based on an emerging observation constraint method, the total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000.
A. P. Schreiner-McGraw, E. R. Vivoni, G. Mascaro, and T. E. Franz
Hydrol. Earth Syst. Sci., 20, 329–345, https://doi.org/10.5194/hess-20-329-2016, https://doi.org/10.5194/hess-20-329-2016, 2016
Short summary
Short summary
Soil moisture estimates from a novel method were evaluated in two semiarid watersheds. We found good agreements between the technique and estimates derived from watershed instruments designed to close the water balance. We then investigated local hydrologic processes and link between evapotranspiration and soil moisture obtained from the novel measurements.
R. A. Fisher, S. Muszala, M. Verteinstein, P. Lawrence, C. Xu, N. G. McDowell, R. G. Knox, C. Koven, J. Holm, B. M. Rogers, A. Spessa, D. Lawrence, and G. Bonan
Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, https://doi.org/10.5194/gmd-8-3593-2015, 2015
Short summary
Short summary
Predicting the distribution of vegetation under novel climates is important, both to understand how climate change will impact ecosystem services, but also to understand how vegetation changes might affect the carbon, energy and water cycles. Historically, predictions have been heavily dependent upon observations of existing vegetation boundaries. In this paper, we attempt to predict ecosystem boundaries from the ``bottom up'', and illustrate the complexities and promise of this approach.
X. Chen, T. J. Bohn, and D. P. Lettenmaier
Biogeosciences, 12, 6259–6277, https://doi.org/10.5194/bg-12-6259-2015, https://doi.org/10.5194/bg-12-6259-2015, 2015
Short summary
Short summary
We used a process-based model to investigate the sensitivities of pan-Arctic wetland methane emissions to climate factors, as a function of climate. Over the period 1960-2006, temperature was the dominant driver of trends in emissions. Wetlands north of 60N were temperature-limited, and wetlands south of 60N latitude were water-limited. Projected future warming will cause water-limited wetlands to expand northward over the next century, lessening the role of temperature in the future.
T. J. Bohn, J. R. Melton, A. Ito, T. Kleinen, R. Spahni, B. D. Stocker, B. Zhang, X. Zhu, R. Schroeder, M. V. Glagolev, S. Maksyutov, V. Brovkin, G. Chen, S. N. Denisov, A. V. Eliseev, A. Gallego-Sala, K. C. McDonald, M.A. Rawlins, W. J. Riley, Z. M. Subin, H. Tian, Q. Zhuang, and J. O. Kaplan
Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015, https://doi.org/10.5194/bg-12-3321-2015, 2015
Short summary
Short summary
We evaluated 21 forward models and 5 inversions over western Siberia in terms of CH4 emissions and simulated wetland areas and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite inundation products. In addition to assembling a definitive collection of methane emissions estimates for the region, we were able to identify the types of wetland maps and model features necessary for accurate simulations of high-latitude wetlands.
M. Piras, G. Mascaro, R. Deidda, and E. R. Vivoni
Hydrol. Earth Syst. Sci., 18, 5201–5217, https://doi.org/10.5194/hess-18-5201-2014, https://doi.org/10.5194/hess-18-5201-2014, 2014
Short summary
Short summary
We quantified the hydrologic impacts of climate change in the Rio Mannu basin (472.5 km2), Sardinia, Italy.
We created high-resolution climate forcings for a physically based distributed hydrologic model by combining four climate models with two statistical downscaling tools of precipitation and potential evapotranspiration. A significant diminution of mean annual runoff at the basin outlet (mean of -32%), and a reduction of soil water content and actual evapotranspiration are expected.
G. Mascaro, M. Piras, R. Deidda, and E. R. Vivoni
Hydrol. Earth Syst. Sci., 17, 4143–4158, https://doi.org/10.5194/hess-17-4143-2013, https://doi.org/10.5194/hess-17-4143-2013, 2013
T. J. Bohn and D. P. Lettenmaier
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-16329-2013, https://doi.org/10.5194/bgd-10-16329-2013, 2013
Preprint withdrawn
T. J. Bohn, E. Podest, R. Schroeder, N. Pinto, K. C. McDonald, M. Glagolev, I. Filippov, S. Maksyutov, M. Heimann, X. Chen, and D. P. Lettenmaier
Biogeosciences, 10, 6559–6576, https://doi.org/10.5194/bg-10-6559-2013, https://doi.org/10.5194/bg-10-6559-2013, 2013
R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan
Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, https://doi.org/10.5194/gmd-6-617-2013, 2013
J. R. Melton, R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, D. J. Beerling, G. Chen, A. V. Eliseev, S. N. Denisov, P. O. Hopcroft, D. P. Lettenmaier, W. J. Riley, J. S. Singarayer, Z. M. Subin, H. Tian, S. Zürcher, V. Brovkin, P. M. van Bodegom, T. Kleinen, Z. C. Yu, and J. O. Kaplan
Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, https://doi.org/10.5194/bg-10-753-2013, 2013
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests
Machine learning and global vegetation: random forests for downscaling and gap filling
Unraveling phenological and stomatal responses to flash drought and implications for water and carbon budgets
Ecohydrological responses to solar radiation changes
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Technical assessment combined with extended cost-benefit analysis for groundwater ecosystem services restoration – An application for Grand Bahama
Technical note: Seamless extraction and analysis of river networks in R
Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California
Improving regional climate simulations based on a hybrid data assimilation and machine learning method
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Impacts of different types of El Niño events on water quality over the Corn Belt, United States
Leveraging sap flow data in a catchment-scale hybrid model to improve soil moisture and transpiration estimates
Coupled modelling of hydrological processes and grassland production in two contrasting climates
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling
How does water yield respond to mountain pine beetle infestation in a semiarid forest?
Daily soil temperature modeling improved by integrating observed snow cover and estimated soil moisture in the USA Great Plains
Plant hydraulic transport controls transpiration sensitivity to soil water stress
Drought onset and propagation into soil moisture and grassland vegetation responses during the 2012–2019 major drought in Southern California
Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects
Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion
Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models
Quantification of ecohydrological sensitivities and their influencing factors at the seasonal scale
Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis
Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites
Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor
Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies
Calibration of hydrological models for ecologically relevant streamflow predictions: a trade-off between fitting well to data and estimating consistent parameter sets?
Spatial variability of mean daily estimates of actual evaporation from remotely sensed imagery and surface reference data
Quantification of soil water balance components based on continuous soil moisture measurement and the Richards equation in an irrigated agricultural field of a desert oasis
Mapping the suitability of groundwater-dependent vegetation in a semi-arid Mediterranean area
Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach
The 18O ecohydrology of a grassland ecosystem – predictions and observations
A comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions
Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river
Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data
Testing an optimality-based model of rooting zone water storage capacity in temperate forests
A regional-scale ecological risk framework for environmental flow evaluations
Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space
Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States
Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI
Importance of considering riparian vegetation requirements for the long-term efficiency of environmental flows in aquatic microhabitats
Jesús Sánchez-Dávila, Miquel De Cáceres, Jordi Vayreda, and Javier Retana
Hydrol. Earth Syst. Sci., 28, 3037–3050, https://doi.org/10.5194/hess-28-3037-2024, https://doi.org/10.5194/hess-28-3037-2024, 2024
Short summary
Short summary
Forest blue water is determined by the climate, functional traits, and stand structure variables. The leaf area index (LAI) is the main driver of the trade-off between the blue and green water. Blue water is concentrated in the autumn–winter season, and deciduous trees can increase the relative blue water. The leaf phenology and seasonal distribution are determinants for the relative blue water.
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024, https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Short summary
Drought often manifests itself in vegetation; however, obtaining high-resolution remote-sensing products that are spatially and temporally consistent is difficult. In this study, we show that machine learning (ML) can fill data gaps in existing products. We also demonstrate that ML can be used as a downscaling tool. By relying on ML for gap filling and downscaling, we can obtain a more holistic view of the impacts of drought on vegetation.
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024, https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Short summary
We simulate how dynamic vegetation interacts with the atmosphere during extreme drought events known as flash droughts. We find that plants nearly halt water and carbon exchanges and limit their growth during flash drought. This work has implications for how to account for changes in vegetation state during extreme drought events when making predictions under future climate scenarios.
Yiran Wang, Naika Meili, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2024-768, https://doi.org/10.5194/egusphere-2024-768, 2024
Short summary
Short summary
Our study uses climate model simulations and process-based ecohydrological modeling to assess the direct and climate feedback induced effects of solar radiation changes on hydrological variables. Results show that solar radiation without climate feedback primarily affects sensible heat with limited effects on hydrology and vegetation. However, climate feedback exacerbates the effects of radiation changes on evapotranspiration and affects vegetation productivity.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Anne Imig, Francesca Perosa, Carolina Iwane Hotta, Sophia Klausner, Kristen Welsh, and Arno Rein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-236, https://doi.org/10.5194/hess-2023-236, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
In 2019, Hurricane Dorian led to salinization of groundwater resources on the island of Grand Bahama. We assessed the feasibility of managed aquifer recharge (MAR) for restoring fresh groundwater. Furthermore, we applied a financial and an extended cost-benefit analysis for assessing ecosystem services supported by MAR and reforestation. As a first estimate, MAR could only provide a small contribution to the water demand. Reforestation measures were assessed as financially profitable.
Luca Carraro
Hydrol. Earth Syst. Sci., 27, 3733–3742, https://doi.org/10.5194/hess-27-3733-2023, https://doi.org/10.5194/hess-27-3733-2023, 2023
Short summary
Short summary
Mathematical models are key to the study of environmental processes in rivers. Such models often require information on river morphology from geographic information system (GIS) software, which hinders the use of replicable workflows. Here I present rivnet, an R package for simple, robust, GIS-free extraction and analysis of river networks. The package is designed so as to require minimal user input and is oriented towards ecohydrological, ecological and biogeochemical modeling.
Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein
Hydrol. Earth Syst. Sci., 27, 3021–3039, https://doi.org/10.5194/hess-27-3021-2023, https://doi.org/10.5194/hess-27-3021-2023, 2023
Short summary
Short summary
Managing streams for environmental flows involves prioritizing healthy stream ecosystems while distributing water resources. Classifying streams of similar types is a useful step in developing environmental flows. Environmental flows are often developed on data-poor streams that must be modeled. This paper has developed a new method of classification that prioritizes model accuracy. The new method advances environmental streamflow management and modeling of data-poor watersheds.
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023, https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Short summary
This study attempts to provide a framework for direct integration of soil moisture observations collected from soil sensors and satellite imagery into process-based crop models for improving the representation of agricultural systems. The performance of this framework was evaluated across 19 sites times years for crop yield, normalized difference vegetation index (NDVI), soil moisture, tile flow drainage, and nitrate leaching.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Don A. White, Shiqi Ren, Daniel S. Mendham, Francisco Balocchi-Contreras, Richard P. Silberstein, Dean Meason, Andrés Iroumé, and Pablo Ramirez de Arellano
Hydrol. Earth Syst. Sci., 26, 5357–5371, https://doi.org/10.5194/hess-26-5357-2022, https://doi.org/10.5194/hess-26-5357-2022, 2022
Short summary
Short summary
Of all the planting options for wood production and carbon storage, Eucalyptus species provoke the greatest concern about their effect on water resources. We compared Eucalyptus and Pinus species (the two most widely planted genera) by fitting a simple model to the published estimates of their annual water use. There was no significant difference between the two genera. This has important implications for the global debate around Eucalyptus and is an option for carbon forests.
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314, https://doi.org/10.5194/hess-26-5291-2022, https://doi.org/10.5194/hess-26-5291-2022, 2022
Short summary
Short summary
Variable infiltration capacity simulation considering dynamic vegetation types and structural parameters is able to better capture the effect of temporally explicit vegetation change and climate variation in hydrological regimes. Vegetation greening including interannual LAI and intra-annual LAI temporal pattern change induced by large-scale ecological restoration and non-vegetation underlying surface change played dominant roles in the natural streamflow reduction of the Yellow River basin.
Pan Chen, Wenhong Li, and Keqi He
Hydrol. Earth Syst. Sci., 26, 4875–4892, https://doi.org/10.5194/hess-26-4875-2022, https://doi.org/10.5194/hess-26-4875-2022, 2022
Short summary
Short summary
The study assessed changes in total nitrogen (TN) and total phosphorus (TP) loads in response to eastern Pacific (EP) and central Pacific (CP) El Niño events over the Corn Belt, USA, using the SWAT model. Results showed that EP (CP) El Niño events improved (exacerbated) water quality in the region. Furthermore, EP El Niño had a much broader and longer impact on water quality at the outlets, but CP El Niño could lead to similar increases in TN/TP loads as EP El Niño at the specific watersheds.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022, https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Short summary
Most models that simulate water and carbon exchanges with the atmosphere rely on information about vegetation, but optimality models predict vegetation properties based on general principles. Here, we use the Vegetation Optimality Model (VOM) to predict vegetation behaviour at five savanna sites. The VOM overpredicted vegetation cover and carbon uptake during the wet seasons but also performed similarly to conventional models, showing that vegetation optimality is a promising approach.
Hongyu Li, Yi Luo, Lin Sun, Xiangdong Li, Changkun Ma, Xiaolei Wang, Ting Jiang, and Haoyang Zhu
Hydrol. Earth Syst. Sci., 26, 17–34, https://doi.org/10.5194/hess-26-17-2022, https://doi.org/10.5194/hess-26-17-2022, 2022
Short summary
Short summary
Drying soil layers (DSLs) have been extensively reported in artificial forestland in the Loess Plateau, China, which has limited water resources and deep loess. To address this issue relating to plant root–soil water interactions, this study developed a root growth model that simulates both the dynamic rooting depth and fine-root distribution. Evaluation vs. field data proved a positive performance. Long-term simulation reproduced the evolution process of the DSLs and revealed their mechanisms.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021, https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary
Short summary
To quantify how vegetation greening impacts the capacity of water supply, we built a hybrid model and conducted a case study using the upper Han River basin (UHRB) that serves as the water source area to the world’s largest water diversion project. Vegetation greening in the UHRB during 2001–2018 induced annual water yield (WY) greatly decreased. Vegetation greening also increased the possibility of drought and reduced a quarter of WY on average during drought periods.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou
Hydrol. Earth Syst. Sci., 25, 4681–4699, https://doi.org/10.5194/hess-25-4681-2021, https://doi.org/10.5194/hess-25-4681-2021, 2021
Short summary
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.
Haidong Zhao, Gretchen F. Sassenrath, Mary Beth Kirkham, Nenghan Wan, and Xiaomao Lin
Hydrol. Earth Syst. Sci., 25, 4357–4372, https://doi.org/10.5194/hess-25-4357-2021, https://doi.org/10.5194/hess-25-4357-2021, 2021
Short summary
Short summary
This study was done to develop an improved soil temperature model for the USA Great Plains by using common weather station variables as inputs. After incorporating knowledge of estimated soil moisture and observed daily snow depth, the improved model showed a near 50 % gain in performance compared to the original model. We conclude that our improved model can better estimate soil temperature at the surface soil layer where most hydrological and biological processes occur.
Brandon P. Sloan, Sally E. Thompson, and Xue Feng
Hydrol. Earth Syst. Sci., 25, 4259–4274, https://doi.org/10.5194/hess-25-4259-2021, https://doi.org/10.5194/hess-25-4259-2021, 2021
Short summary
Short summary
Plants affect the global water and carbon cycles by modifying their water use and carbon intake in response to soil moisture. Global climate models represent this response with either simple empirical models or complex physical models. We reveal that the latter improves predictions in plants with large flow resistance; however, adding dependence on atmospheric moisture demand to the former matches performance of the latter, leading to a new tool for improving carbon and water cycle predictions.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Yanlan Liu, Nataniel M. Holtzman, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 25, 2399–2417, https://doi.org/10.5194/hess-25-2399-2021, https://doi.org/10.5194/hess-25-2399-2021, 2021
Short summary
Short summary
The flow of water through plants varies with species-specific traits. To determine how they vary across the world, we mapped the traits that best allowed a model to match microwave satellite data. We also defined average values across a few clusters of trait behavior. These form a tractable solution for use in large-scale models. Transpiration estimates using these clusters were more accurate than if using plant functional types. We expect our maps to improve transpiration forecasts.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Yiping Hou, Mingfang Zhang, Xiaohua Wei, Shirong Liu, Qiang Li, Tijiu Cai, Wenfei Liu, Runqi Zhao, and Xiangzhuo Liu
Hydrol. Earth Syst. Sci., 25, 1447–1466, https://doi.org/10.5194/hess-25-1447-2021, https://doi.org/10.5194/hess-25-1447-2021, 2021
Short summary
Short summary
Ecohydrological sensitivity, defined as the response intensity of streamflow to vegetation change, indicates the hydrological sensitivity to vegetation change. The study revealed seasonal ecohydrological sensitivities were highly variable, depending on climate condition and watershed attributes. Dry season ecohydrological sensitivity was mostly determined by topography, soil and vegetation, while wet season ecohydrological sensitivity was mainly controlled by soil, landscape and vegetation.
Xiangyu Luan and Giulia Vico
Hydrol. Earth Syst. Sci., 25, 1411–1423, https://doi.org/10.5194/hess-25-1411-2021, https://doi.org/10.5194/hess-25-1411-2021, 2021
Short summary
Short summary
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the joint effects of (unpredictable) air temperature and soil water availability on crop heat stress via a mechanistic model. Larger but more infrequent precipitation increased crop canopy temperatures. Keeping crops well watered via irrigation could reduce canopy temperature but not enough to always exclude heat damage. Thus, irrigation is only a partial solution to adapt to warmer and drier climates.
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020, https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Short summary
There is a growing interest globally in the spatial distribution and temporal dynamics of intermittently flowing streams and rivers. We developed an approach to quantify catchment-wide flow intermittency over long time frames. Modelled patterns of flow intermittency in eastern Australia revealed highly dynamic behaviour in space and time. The developed approach is transferable to other parts of the world and can inform hydro-ecological understanding and management of intermittent streams.
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020, https://doi.org/10.5194/hess-24-5203-2020, 2020
Yusen Yuan, Taisheng Du, Honglang Wang, and Lixin Wang
Hydrol. Earth Syst. Sci., 24, 4491–4501, https://doi.org/10.5194/hess-24-4491-2020, https://doi.org/10.5194/hess-24-4491-2020, 2020
Short summary
Short summary
The isotopic composition of ambient water vapor is an important source of atmospheric water vapor and has not been able to be estimated to date using the Keeling plot approach. Here we proposed two new methods to estimate the isotopic composition of ambient water vapor: one using the intersection point method and another relying on the intermediate value theorem.
Valentin Couvreur, Youri Rothfuss, Félicien Meunier, Thierry Bariac, Philippe Biron, Jean-Louis Durand, Patricia Richard, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020, https://doi.org/10.5194/hess-24-3057-2020, 2020
Short summary
Short summary
Isotopic labeling of soil water is a broadly used tool for tracing the origin of water extracted by plants and computing root water uptake (RWU) profiles with multisource mixing models. In this study, we show how a method such as this may misconstrue time series of xylem water isotopic composition as the temporal dynamics of RWU by simulating data collected during a tall fescue rhizotron experiment with an isotope-enabled physical soil–root model accounting for variability in root traits.
Thibault Hallouin, Michael Bruen, and Fiachra E. O'Loughlin
Hydrol. Earth Syst. Sci., 24, 1031–1054, https://doi.org/10.5194/hess-24-1031-2020, https://doi.org/10.5194/hess-24-1031-2020, 2020
Short summary
Short summary
A hydrological model was used to compare different parameterisation strategies in view of predicting ecologically relevant streamflow indices in 33 Irish catchments. Compared for 14 different periods, a strategy fitting simulated and observed streamflow indices yielded better performance than fitting simulated and observed streamflow, but it also yielded a less consistent ensemble of parameter sets, suggesting that these indices may not be hydrologically relevant for model parameterisation.
Robert N. Armstrong, John W. Pomeroy, and Lawrence W. Martz
Hydrol. Earth Syst. Sci., 23, 4891–4907, https://doi.org/10.5194/hess-23-4891-2019, https://doi.org/10.5194/hess-23-4891-2019, 2019
Short summary
Short summary
Digital and thermal images taken near midday were used to scale daily point observations of key factors driving actual-evaporation estimates across a complex Canadian Prairie landscape. Point estimates of actual evaporation agreed well with observed values via eddy covariance. Impacts of spatial variations on areal estimates were minor, and no covariance was found between model parameters driving the energy term. The methods can be applied further to improve land surface parameterisations.
Zhongkai Li, Hu Liu, Wenzhi Zhao, Qiyue Yang, Rong Yang, and Jintao Liu
Hydrol. Earth Syst. Sci., 23, 4685–4706, https://doi.org/10.5194/hess-23-4685-2019, https://doi.org/10.5194/hess-23-4685-2019, 2019
Short summary
Short summary
A database of soil moisture measurements from the middle Heihe River basin of China was used to test the potential of a soil moisture database in estimating the soil water balance components (SWBCs). We determined SWBCs using a method that combined the soil water balance method and the inverse Richards equation. This work confirmed that relatively reasonable estimations of the SWBCs in coarse-textured sandy soils can be derived using soil moisture measurements.
Inês Gomes Marques, João Nascimento, Rita M. Cardoso, Filipe Miguéns, Maria Teresa Condesso de Melo, Pedro M. M. Soares, Célia M. Gouveia, and Cathy Kurz Besson
Hydrol. Earth Syst. Sci., 23, 3525–3552, https://doi.org/10.5194/hess-23-3525-2019, https://doi.org/10.5194/hess-23-3525-2019, 2019
Short summary
Short summary
Mediterranean cork woodlands are very particular agroforestry systems present in a confined area of the Mediterranean Basin. They are of great importance due to their high socioeconomic value; however, a decrease in water availability has put this system in danger. In this paper we build a model that explains this system's tree-species distribution in southern Portugal from environmental variables. This could help predict their future distribution under changing climatic conditions.
Samuli Launiainen, Mingfu Guan, Aura Salmivaara, and Antti-Jussi Kieloaho
Hydrol. Earth Syst. Sci., 23, 3457–3480, https://doi.org/10.5194/hess-23-3457-2019, https://doi.org/10.5194/hess-23-3457-2019, 2019
Short summary
Short summary
Boreal forest evapotranspiration and water cycle is modeled at stand and catchment scale using physiological and physical principles, open GIS data and daily weather data. The approach can predict daily evapotranspiration well across Nordic coniferous-dominated stands and successfully reproduces daily streamflow and annual evapotranspiration across boreal headwater catchments in Finland. The model is modular and simple and designed for practical applications over large areas using open data.
Regina T. Hirl, Hans Schnyder, Ulrike Ostler, Rudi Schäufele, Inga Schleip, Sylvia H. Vetter, Karl Auerswald, Juan C. Baca Cabrera, Lisa Wingate, Margaret M. Barbour, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2581–2600, https://doi.org/10.5194/hess-23-2581-2019, https://doi.org/10.5194/hess-23-2581-2019, 2019
Short summary
Short summary
We evaluated the system-scale understanding of the propagation of the oxygen isotope signal (δ18O) of rain through soil and xylem to leaf water in a temperate drought-prone grassland. Biweekly δ18O observations of the water pools made during seven growing seasons were accurately reproduced by the 18O-enabled process-based model MuSICA. While water uptake occurred from shallow soil depths throughout dry and wet periods, leaf water 18O enrichment responded to both soil and atmospheric moisture.
Christoph Schürz, Brigitta Hollosi, Christoph Matulla, Alexander Pressl, Thomas Ertl, Karsten Schulz, and Bano Mehdi
Hydrol. Earth Syst. Sci., 23, 1211–1244, https://doi.org/10.5194/hess-23-1211-2019, https://doi.org/10.5194/hess-23-1211-2019, 2019
Short summary
Short summary
For two Austrian catchments we simulated discharge and nitrate-nitrogen (NO3-N) considering future changes of climate, land use, and point source emissions together with the impact of different setups and parametrizations of the implemented eco-hydrological model. In a comprehensive analysis we identified the dominant sources of uncertainty for the simulation of discharge and NO3-N and further examined how specific properties of the model inputs control the future simulation results.
Yu-Ting Shih, Pei-Hao Chen, Li-Chin Lee, Chien-Sen Liao, Shih-Hao Jien, Fuh-Kwo Shiah, Tsung-Yu Lee, Thomas Hein, Franz Zehetner, Chung-Te Chang, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 22, 6579–6590, https://doi.org/10.5194/hess-22-6579-2018, https://doi.org/10.5194/hess-22-6579-2018, 2018
Short summary
Short summary
DOC and DIC export in Taiwan shows that the annual DOC and DIC fluxes were 2.7–4.8 and 48.4–54.3 ton C km2 yr1, respectively, which were approximately 2 and 20 times higher than the global means of 1.4 and 2.6 ton C km2 yr1, respectively.
Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, Dan Zhu, Fabienne Maignan, Shushi Peng, Shilong Piao, Jan Polcher, Feng Zhou, Hyungjun Kim, and other China-Trend-Stream project members
Hydrol. Earth Syst. Sci., 22, 5463–5484, https://doi.org/10.5194/hess-22-5463-2018, https://doi.org/10.5194/hess-22-5463-2018, 2018
Short summary
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Matthias J. R. Speich, Heike Lischke, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4097–4124, https://doi.org/10.5194/hess-22-4097-2018, https://doi.org/10.5194/hess-22-4097-2018, 2018
Short summary
Short summary
To simulate the water balance of, e.g., a forest plot, it is important to estimate the maximum volume of water available to plants. This depends on soil properties and the average depth of roots. Rooting depth has proven challenging to estimate. Here, we applied a model assuming that plants dimension their roots to optimize their carbon budget. We compared its results with values obtained by calibrating a dynamic water balance model. In most cases, there is good agreement between both methods.
Gordon C. O'Brien, Chris Dickens, Eleanor Hines, Victor Wepener, Retha Stassen, Leo Quayle, Kelly Fouchy, James MacKenzie, P. Mark Graham, and Wayne G. Landis
Hydrol. Earth Syst. Sci., 22, 957–975, https://doi.org/10.5194/hess-22-957-2018, https://doi.org/10.5194/hess-22-957-2018, 2018
Short summary
Short summary
In global water resource allocation, robust tools are required to establish environmental flows. In addition, tools should characterize past, present and future consequences of altered flows and non-flow variables to social and ecological management objectives. PROBFLO is a risk assessment method designed to meet best practice principles for regional-scale holistic E-flow assessments. The approach has been developed in Africa and applied across the continent.
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary
Short summary
Which is the dominant effect on evapotranspiration in northern forests, an increase by recent forests expansion or a decrease by the water use response due to increasing CO2 concentrations? We determined the dominant effect during the period 1961–2012 in 65 Swedish basins. We used the Budyko framework to study the hydroclimatic movements in Budyko space. Our findings suggest that forest expansion is the dominant driver of long-term and large-scale evapotranspiration changes.
Jie Zhu, Ge Sun, Wenhong Li, Yu Zhang, Guofang Miao, Asko Noormets, Steve G. McNulty, John S. King, Mukesh Kumar, and Xuan Wang
Hydrol. Earth Syst. Sci., 21, 6289–6305, https://doi.org/10.5194/hess-21-6289-2017, https://doi.org/10.5194/hess-21-6289-2017, 2017
Short summary
Short summary
Forested wetlands provide myriad ecosystem services threatened by climate change. This study develops empirical hydrologic models by synthesizing hydrometeorological data across the southeastern US. We used global climate projections to model hydrological changes for five wetlands. We found all wetlands are predicted to become drier by the end of this century. This study suggests that climate change may substantially affect wetland biogeochemical cycles and other functions in the future.
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary
Short summary
Plants are shaping the landscape and controlling the hydrological cycle, particularly in arid and semi-arid ecosystems. Remote sensing data appears as an appealing source of information for vegetation monitoring, in particular in areas with a limited amount of available field data. Here, we present an example of how remote sensing data can be exploited in a data-scarce basin. We propose a mathematical methodology that can be used as a springboard for future applications.
Rui Rivaes, Isabel Boavida, José M. Santos, António N. Pinheiro, and Teresa Ferreira
Hydrol. Earth Syst. Sci., 21, 5763–5780, https://doi.org/10.5194/hess-21-5763-2017, https://doi.org/10.5194/hess-21-5763-2017, 2017
Short summary
Short summary
We analyzed the influence of considering riparian requirements for the long-term efficiency of environmental flows. After a decade, environmental flows disregarding riparian requirements promoted riparian degradation and consequently the change in the hydraulic characteristics of the river channel and the modification of the available habitat area for fish species. Environmental flows regarding riparian vegetation requirements were able to sustain the fish habitat close to the natural condition.
Cited articles
Abatzoglou, J. T. and Brown, T. J.: A comparison of statistical
downscaling methods suited for wildfire applications, Int. J.
Climatol., 32, 772–780, 2012.
Abatzoglou, J.: Multivariate Adaptive Constructed Analogs (MACA) dataset, available at: https://climate.northwestknowledge.net/MACA/, last access: 24 January 2018.
Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M., Hale,
V. C., Smith, A., and Huxman, T. E.: Ecohydrological consequences of
drought- and infestation-triggered tree die-off: insights and hypotheses,
Ecohydrology, 5, 145–159, 2012.
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N.,
Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., and Hogg, E.
T.: A global overview of drought and heat-induced tree mortality reveals
emerging climate change risks for forests, Forest Ecol. Manage.,
259, 660–684, 2010.
Allen, C. D., Breshears, D. D., and McDowell, N. G.: On underestimation of
global vulnerability to tree mortality and forest die-off from hotter
drought in the Anthropocene, Ecosphere, 6, 1–55, 2015.
Anderegg, W. R. L., Kane, J. M., and Anderegg, L. D. L.: Consequences of
widespread tree mortality triggered by drought and temperature stress,
Nature Clim. Change, 3, 30–36, 2013.
Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J.,
Bentz, B., Hood, S., Lichstein, J. W., Macalady, A. K., McDowell, N., Pan,
Y., Raffa, K., Sala, A., Shaw, J. D., Stephenson, N. L., Tague, C., and
Zeppel, M.: Tree mortality from drought, insects, and their interactions in
a changing climate, New Phytologist, 208, 674–683, https://doi.org/10.1111/nph.13477, 2015.
Anderson, H. W., Hoover, M. D., and Reinhart, K. G.: Forests and water:
effects of forest management on floods, sedimentation, and water supply.
General Technical Report PSW-018, USDA Forest Service Berkeley CA, 115,
1976.
Arora, V.: Modeling vegetation as a dynamic component in
soil-vegetation-atmosphere transfer schemes and hydrological models,
Rev. Geophys., 40, 3-1–3-26, 2002.
Atchley, A. L., Kinoshita, A. M., Lopez, S., Trader, L., and Middleton, R.
S.: Simulating surface and subsurface water balance changes due to fire
severity at the hillslope scale, J. Hydrol., in review, 2018.
Bearup, L. A., Maxwell, R. M., Clow, D. W., and McCray, J. E.: Hydrological
effects of forest transpiration loss in bark beetle-impacted watersheds,
Nature Clim. Change, 4, 481–486, https://doi.org/10.1038/nclimate2198, 2014.
Bearup, L. A., Maxwell, R. M., and McCray, J. E.: Hillslope response to
insect-induced land-cover change: an integrated model of end-member mixing,
Ecohydrology, 9, 195–203, https://doi.org/10.1002/eco.1729, 2016.
Bennett, K. E., Werner, A. T., and Schnorbus, M.: Uncertainties in hydrologic
and climate change impact analyses in headwater basins of British Columbia, J. Climate, 25, 5711–5730, https://doi.org/10.1175/JCLI-D-11-00417.1, 2012.
Bennett, K. E., Cannon, A. J., and Hinzman, L.: Historical trends and
extremes in boreal Alaska river basins, J. Hydrol., 527, 590–607, 2015.
Bennett, K. E., Urrego Blanco, J., Jonko, A., Bohn, T. J., Atchley, A. L.,
Urban, N. M., and Middleton, R. S.: Global sensitivity of simulated water
balance indicators under future climate change in the Colorado Basin, Water
Resour. Res., 54, published online, https://doi.org/10.1002/2017WR020471, 2017.
Bewley, D., Alila, Y., and Varhola, A.: Variability of snow water equivalent
and snow energetics across a large catchment subject to Mountain Pine Beetle
infestation and rapid salvage logging, J. Hydrol., 388, 464–479,
2010.
Biederman, J., Harpold, A., Gochis, D., Ewers, B., Reed, D., Papuga, S., and
Brooks, P.: Increased evaporation following widespread tree mortality limits
streamflow response, Water Resour. Res., 50, 5395–5409, 2014.
Biederman, J. A., Somor, A. J., Harpold, A. A., Gutmann, E. D., Breshears,
D. D., Troch, P. A., Gochis, D. J., Scott, R. L., Meddens, A. J., and
Brooks, P. D.: Recent tree die-off has little effect on streamflow in
contrast to expected increases from historical studies, Water Resour.
Res., 51, 9775–9789, 2015.
Bohn, T. J. and Vivoni, E. R.: Process-based characterization of
evapotranspiration sources over the North American monsoon region, Water
Resour. Res., 52, 358–384, https://doi.org/10.1002/2015WR017934, 2016.
Bohn, T. J., Livneh, B., Oyler, J. W., Running, S. W., Nijssen, B., and
Lettenmaier, D. P.: Global evaluation of MTCLIM and related algorithms for
forcing of ecological and hydrological models, Agric. Forest
Meteorol., 176, 38–49, 2013.
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the
Climate Benefits of Forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008.
Boon, S.: Snow accumulation and ablation in a beetle-killed pine stand in
Northern Interior British Columbia, J. Ecosyst. Manage., 8, 1–13,
2007.
Boon, S.: Snow ablation energy balance in a dead forest stand, Hydrol.
Process., 23, 2600–2610, 2009.
Brekke, L., Thrasher, B. L., Maurer, E. P., and Pruitt, T.: Downscaled CMIP3
and CMIP5 Climate and Hydrology Projections: Release of Downscaled CMIP5
Climate Projections, Comparison with preceding Information, and Summary of
User Needs, U.S. Department of the Interior, Bureau of Reclamation,
Technical Services Center, Denver, Colorado, 47, 2013.
Brovkin, V., Boysen, L., Arora, V., Boisier, J., Cadule, P., Chini, L.,
Claussen, M., Friedlingstein, P., Gayler, V., and Van Den Hurk, B.: Effect
of anthropogenic land-use and land-cover changes on climate and land carbon
storage in CMIP5 projections for the twenty-first century, J.
Climate, 26, 6859–6881, 2013a.
Brovkin, V., Boysen, L., Raddatz, T., Gayler, V., Loew, A., and Claussen,
M.: Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5
simulations, J. Adv. Model. Earth Syst., 5, 48–57,
https://doi.org/10.1029/2012MS000169, 2013b.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R.
A.: A review of paired catchment studies for determining changes in water
yield resulting from alterations in vegetation, J. Hydrol., 310,
28–61, 2005.
Brown, M. G., Black, T. A., Nesic, Z., Foord, V. N., Spittlehouse, D. L.,
Fredeen, A. L., Bowler, R., Grant, N. J., Burton, P. J., and Trofymow, J.:
Evapotranspiration and canopy characteristics of two lodgepole pine stands
following mountain pine beetle attack, Hydrol. Process., 28,
3326–3340, 2014.
Brown, R., Derksen, C., and Wang, L.: A multi-data set analysis of
variability and change in Arctic spring snow cover extent, 1967–2008,
J. Geophys. Res.-Atmos., 115, D16111,
https://doi.org/10.1029/2010jd013975, 2010.
Buma, B. and Livneh, B.: Potential Effects of Forest Disturbances and
Management on Water Resources in a Warmer Climate, Forest Sci., 61,
895–903, 2015.
Buma, B. and Livneh, B.: Key landscape and biotic indicators of watersheds
sensitivity to forest disturbance identified using remote sensing and
historical hydrography data, Environ. Res. Lett., 12, 074028, 2017.
Buono, R. M. and Eckstein, G.: Minute 319: a cooperative approach to
Mexico–US hydro-relations on the Colorado River, Water Int., 39,
263–276, 2014.
Bureau of Reclamation: West-Wide Climate Risk Assessments: Bias-Corrected and
Spatially Downscaled Surface Water Projections. Technical Memorandum No.
86-68210-2011-01, U.S. Department of the Interior, Bureau of Reclamation,
Technical Services Center, Denver, Colorado, 138, 2011.
Burles, K. and Boon, S.: Snowmelt energy balance in a burned forest plot,
Crowsnest Pass, Alberta, Canada, Hydrol. Process., 25, 3012–3029,
https://doi.org/10.1002/hyp.8067, 2011.
Caldwell, P. V., Miniat, C. F., Elliott, K. J., Swank, W. T., Brantley, S.
T., and Laseter, S. H.: Declining water yield from forested mountain
watersheds in response to climate change and forest mesophication, Glob.
Change Biol., 2016.
Carroll, R. W. H., Huntington, J. L., Snyder, K. A., Niswonger, R. G.,
Morton, C., and Stringham, T. K.: Evaluating mountain meadow groundwater
response to Pinyon-Juniper and temperature in a great basin watershed,
Ecohydrology, 10, e1792, https://doi.org/10.1002/eco.1792, 2017.
Christensen, N. S. and Lettenmaier, D. P.: Effects of climate change on the
hydrology and water resource of the Colorado River basin, Department of
Civil and Environmental Engineering, University of Washington, Seattle, WA,
2002.
Christensen, N. S. and Lettenmaier, D. P.: A multimodel ensemble approach to
assessment of climate change impacts on the hydrology and water resources of
the Colorado River Basin, Hydrol. Earth Syst. Sci., 11, 1417–1434, https://doi.org/10.5194/hess-11-1417-2007, 2007.
Cohen, M., Christian-Smith, J., and Berggren, J.: Water to supply the land:
Irrigated agriculture in the Colorado River basin, Pacific Institute,
Oakland, CA, 2013.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P.,
Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F.,
Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A.,
and Woodward, S.: Development and evaluation of an Earth-System model –
HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Computational Hydrology Group, Department of Civil and Environmental Engineering, University of Washington:
The Variable Infiltration Capacity Model, available at: https://github.com/UW-Hydro/VIC, last access: 24 January 2018.
Cox, P. M.: Description of the TRIFFID dynamic global vegetation model,
Technical Note 24, Hadley Centre, United Kingdom Meteorological Office,
Bracknell, UK, 2001.
Dale, V. H., Joyce, L. A., McNulty, S., Neilson, R. P., Ayres, M. P.,
Flannigan, M. D., Hanson, P. J., Irland, L. C., Lugo, A. E., Peterson, C.
J., Simberloff, D., Swanson, F. J., Stocks, B. J., and Wotton, B. M.:
Climate change and forest disturbances, BioScience, 51, 723–734, 2001.
Dawadi, S. and Ahmad, S.: Changing climatic conditions in the Colorado
River Basin: Implications for water resources management, J.
Hydrol., 430–431, 127–141, https://doi.org/10.1016/j.jhydrol.2012.02.010, 2012.
Ducoudré, N. I., Laval, K., and Perrier, A.: SECHIBA, a new set of
parameterizations of the hydrologic exchanges at the land-atmosphere
interface within the LMD atmospheric general circulation model, J.
Climate, 6, 248–273, 1993.
FAO: United Nations Food and Agriculture Organization. Digital Soil Map of
the World and Derived Soil Properties, Land Water, Digital Media Ser., 1
(CD-ROM), Rome, Italy, 1998.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C.,
McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A.,
Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a
dynamic vegetation model without climate
envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Franchini, M. and Pacciani, M.: Comparative analysis of several conceptual
rainfall-runoff models, J. Hydrol., 122, 161–219, 1991.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens.
Environ., 114, 168–182, 2010.
Gangopadhyay, S., Pruitt, T., Brekke, L., and Raff, D.: Hydrologic
projections for the western United States, Eos, Transactions American
Geophysical Union, 92, 441–442, 2011.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., and Fieg, K.: Climate
and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the
Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Syst., 5, 572–597, 2013.
Gould, G. K., Liu, M., Barber, M. E., Cherkauer, K. A., Robichaud, P. R.,
and Adam, J. C.: The effects of climate change and extreme wildfire events
on runoff erosion over a mountain watershed, J. Hydrol., 536,
74–91, 2016.
Guardiola-Claramonte, M., Troch, P. A., Breshears, D. D., Huxman, T. E.,
Switanek, M. B., Durcik, M., and Cobb, N. S.: Decreased streamflow in
semi-arid basins following drought-induced tree die-off: a counter-intuitive
and indirect climate impact on hydrology, J. Hydrol., 406,
225–233, 2011.
Harpold, A. A., Biederman, J. A., Condon, K., Merino, M., Korgaonkar, Y.,
Nan, T., Sloat, L. L., Ross, M., and Brooks, P. D.: Changes in snow
accumulation and ablation following the Las Conchas Forest Fire, New Mexico,
USA, Ecohydrology, 7, 440–452, https://doi.org/10.1002/eco.1363, 2014.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213, 2002.
Kang, S., Kimball, J. S., and Running, S. W.: Simulating effects of fire
disturbance and climate change on boreal forest productivity and
evapotranspiration, Sci. Total Environ., 362, 85–102,
https://doi.org/10.1016/j.scitotenv.2005.11.014, 2006.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cycles, 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res., 99,
14415–14428, 1994.
Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture
parameterization of the VIC-2L model: Evaluation and modification, Global
Planet. Change, 13, 195–206, 1996.
Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B.,
Vose, R., Cayan, D. R., and Brekke, L.: A spatially comprehensive,
hydrometeorological data set for Mexico, the U.S., and Southern Canada
1950–2013, Scientific Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42, 2015a.
Livneh, B., Deems, J. S., Buma, B., Barsugli, J. J., Schneider, D., Molotch,
N. P., Wolter, K., and Wessman, C. A.: Catchment response to bark beetle
outbreak and dust-on-snow in the Colorado Rocky Mountains, J.
Hydrol., 523, 196–210, https://doi.org/10.1016/j.jhydrol.2015.01.039, 2015b.
Livneh, B.: Daily gridded Hhdrometeorological data set for Mexico, the conterminous U.S.,
and southern Canada, ftp://gdo-dcp.ucllnl.org/pub/dcp/archive/OBS/livneh2014.1_16deg/, last access: 24 January 2018.
McCabe, G. J. and Wolock, D. M.: Warming may create substantial water
supply shortages in the Colorado River basin, Geophys. Res. Lett.,
34, L22708, https://doi.org/10.1029/2007GL031764, 2007.
McDowell, N. G. and Allen, C. D.: Darcy's law predicts widespread forest
mortality under climate warming, Nature Clim. Change, 5, 669–672, 2015.
McDowell, N. G., Beerling, D. J., Breshears, D. D., Fisher, R. A., Raffa, K.
F., and Stitt, M.: The interdependence of mechanisms underlying
climate-driven vegetation mortality, Trends Ecol. Evol., 26,
523–532, 2011.
McDowell, N. G., Williams, A. P., Xu, C., Pockman, W. T., Dickman, L. T.,
Sevanto, S., Pangle, R., Limousin, J., Plaut, J., Mackay, D. S., Ogee, J.,
Domec, J. C., Allen, C. D., Fisher, R. A., Jiang, X., Muss, J. D.,
Breshears, D. D., Rauscher, S. A., and Koven, C.: Multi-scale predictions of
massive conifer mortality due to chronic temperature rise, Nature Clim.
Change, 6, 295–300, https://doi.org/10.1038/nclimate2873, 2016.
McDowell, N. G., Michaletz, S., Bennett, K. E., Solander, K., Xu, C.,
Maxwell, R. M., Allen, C. D., and Middleton, R. S.: Predicting Chronic
Climate-Driven Disturbances and Their Mitigation, Trends Ecol.
Evol., 33, 15–27, https://doi.org/10.1016/j.tree.2017.10.002, 2018.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J.,
Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl,
M., Morisette, J. T., Votava, P., Nemani, R. R., and Running, S. W.: Global
products of vegetation leaf area and fraction absorbed PAR from year one of
MODIS data, Remote Sens. Environ., 83, 214–231, https://doi.org/10.1016/S0034-4257(02)00074-3, 2002.
Nash, L. L. and Gleick, P. H.: Sensitivity of streamflow in the Colorado
basin to climatic changes, J. Hydrol., 125, 221–241, 1991.
Penn, C. A., Bearup, L. A., Maxwell, R. M., and Clow, D. W.: Numerical
experiments to explain multiscale hydrological responses to mountain pine
beetle tree mortality in a headwater watershed, Water Resour. Res.,
52, 3143–3161, https://doi.org/10.1002/2015WR018300, 2016.
Pomeroy, J. W., Parviainen, J., Hedstrom, N., and Gray, D. M.: Coupled
modelling of forest snow interception and sublimation, Hydrol.
Process., 12, 2317–2337, https://doi.org/10.1002/(SICI)1099-1085(199812)12:15<2317::AID-HYP799>3.0.CO;2-X, 1998.
Pribulick, C. E., Foster, L. M., Bearup, L. A., Navarre-Sitchler, A. K.,
Williams, K. H., Carroll, R. W., and Maxwell, R. M.: Contrasting the
hydrologic response due to land cover and climate change in a mountain
headwaters system, Ecohydrology, 9, 1431–1438, 2016.
Pugh, E. and Gordon, E.: A conceptual model of water yield effects from
beetle-induced tree death in snow-dominated lodgepole pine forests,
Hydrol. Process., 27, 2048–2060, https://doi.org/10.1002/hyp.9312, 2013.
Rasmussen, R., Ikeda, K., Liu, C., Gochis, D., Clark, M., Dai, A., Gutmann,
E., Dudhia, J., Chen, F., and Barlage, M.: Climate change impacts on the
water balance of the Colorado Headwaters: High-resolution regional climate
model simulations, J. Hydrometeor., 15, 1091–1116, 2014.
Reick, C., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J. Adv.
Model. Earth Syst., 5, 459–482, 2013.
Rother, M. T., Veblen, T. T., and Furman, L. G.: A field experiment informs
expected patterns of conifer regeneration after disturbance under changing
climate conditions, Can. J. Forest Res., 45, 1607–1616,
2015.
Royer, P. D., Cobb, N. S., Clifford, M. J., Huang, C. Y., Breshears, D. D.,
Adams, H. D., and Villegas, J. C.: Extreme climatic event-triggered
overstorey vegetation loss increases understorey solar input regionally:
primary and secondary ecological implications, J. Ecol., 99,
714–723, 2011.
Sato, H., Itoh, A., and Kohyama, T.: SEIB–DGVM: A new Dynamic Global
Vegetation Model using a spatially explicit individual-based approach,
Ecol. Model., 200, 279–307, https://doi.org/10.1016/j.ecolmodel.2006.09.006, 2007.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T.,
Strugnell, N. C., Zhang, X., Jin, Y., and Muller, J.-P.: First operational
BRDF, albedo nadir reflectance products from MODIS, Remote Sens.
Environ., 83, 135–148, 2002.
Scheller, R. M. and Mladenoff, D. J.: An ecological classification of
forest landscape simulation models: tools and strategies for understanding
broad-scale forested ecosystems, Landscape Ecol., 22, 491–505, 2007.
Schnorbus, M., Bennett, K. E., and Werner, A. T.: Quantifying the Water
Resources Impacts of Mountain Pine Beetle and Associated Salvage Harvest
Operations Across a Range of Watershed Scales: Hydrologic Modelling of the
Fraser River Basin. Information Report BC-X-423, Canadian Forest Service,
Pacific Forestry Centre, Victoria, 64, 2010.
Solander, K. C., Bennett, K. E., and Middleton, R. S.: Historical shifts in
streamflow extremes in the Colorado River Basin, J. Hydrol.-Regional Studies, 12, 363–377,
https://doi.org/10.1016/j.ejrh.2017.05.004, 2017.
Somor, A. J.: Quantifying streamflow change following bark beetle outbreak
in multiple central Colorado catchments, The University of Arizona, 2010.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93,
485–498, 2012.
Thompson, S. E., Harman, C. J., Troch, P. A., Brooks, P. D., and Sivapalan,
M.: Spatial scale dependence of ecohydrologically mediated water balance
partitioning: A synthesis framework for catchment ecohydrology, Water
Resour. Res., 47, W00J03, https://doi.org/10.1029/2010WR009998, 2011.
Troch, P. A., Martinez, G. F., Pauwels, V. R. N., Durcik, M., Sivapalan, M.,
Harman, C., Brooks, P. D., Gupta, H., and Huxman, T.: Climate and vegetation
water use efficiency at catchment scales, Hydrol. Process., 23,
2409–2414, https://doi.org/10.1002/hyp.7358, 2009.
U.S. Bureau of Reclamation: Colorado River Basin Natural Flow, 1906–2015, available at: https://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html, last access: 24 January 2018.
Van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D.,
Franklin, J. F., Fulé, P. Z., Harmon, M. E., Larson, A. J., Smith, J.
M., and Taylor, A. H.: Widespread increase of tree mortality rates in the
western United States, Science, 323, 521–524, 2009.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A.,
Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., and Lamarque, J.-F.: The
representative concentration pathways: an overview, Clim. Change, 109,
5–31, 2011.
Varhola, A., Coops, N. C., Bater, C. W., Teti, P., Boon, S., and Weiler, M.:
The influence of ground-and lidar-derived forest structure metrics on snow
accumulation and ablation in disturbed forests, Can. J. Forest
Res., 40, 812–821, 2010.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H.,
Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E.,
Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description
and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C.
A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., and
Grissino-Mayer, H. D.: Temperature as a potent driver of regional forest
drought stress and tree mortality, Nature Clim. Change, 3, 292–297, 2013.
Winkler, R., Boon, S., Zimonick, B., and Baleshta, K.: Assessing the effects
of post-pine beetle forest litter on snow albedo, Hydrol. Process.,
24, 803–812, 2010.
Winkler, R., Boon, S., Zimonick, B., and Spittlehouse, D.: Snow accumulation
and ablation response to changes in forest structure and snow surface albedo
after attack by mountain pine beetle, Hydrol. Process., 28, 197–209,
2014.
Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Multi-objective global
optimization for hydrologic models, J. Hydrol., 204, 83–97,
1998.
Zhang, L., Podlasly, C., Ren, Y., Feger, K.-H., Wang, Y., and Schwärzel,
K.: Separating the effects of changes in land management and climatic
conditions on long-term streamflow trends analyzed for a small catchment in
the Loess Plateau region, NW China, Hydrol. Process., 28, 1284–1293,
https://doi.org/10.1002/hyp.9663, 2014.
Zou, C. B., Ffolliott, P. F., and Wine, M.: Streamflow responses to
vegetation manipulations along a gradient of precipitation in the Colorado
River Basin, Forest Ecol. Manage., 259, 1268–1276, 2010.
Short summary
We applied the Variable Infiltration Capacity hydrologic model to examine scenarios of change under climate and landscape disturbances in the San Juan River basin, a major sub-watershed of the Colorado River basin. Climate change coupled with landscape disturbance leads to reduced streamflow in the San Juan River basin. Disturbances are expected to be widespread in this region. Therefore, accounting for these changes within the context of climate change is imperative for water resource planning.
We applied the Variable Infiltration Capacity hydrologic model to examine scenarios of change...