Articles | Volume 22, issue 12
Hydrol. Earth Syst. Sci., 22, 6449–6472, 2018

Special issue: Integration of Earth observations and models for global water...

Hydrol. Earth Syst. Sci., 22, 6449–6472, 2018
Research article
13 Dec 2018
Research article | 13 Dec 2018

Application of an improved global-scale groundwater model for water table estimation across New Zealand

Rogier Westerhoff et al.

Related authors

Application of global models and satellite data for smaller-scale groundwater recharge studies
Rogier Westerhoff, Paul White, and Zara Rawlinson
Hydrol. Earth Syst. Sci. Discuss.,,, 2016
Manuscript not accepted for further review
Short summary
Automated global water mapping based on wide-swath orbital synthetic-aperture radar
R. S. Westerhoff, M. P. H. Kleuskens, H. C. Winsemius, H. J. Huizinga, G. R. Brakenridge, and C. Bishop
Hydrol. Earth Syst. Sci., 17, 651–663,,, 2013

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Exploring river–aquifer interactions and hydrological system response using baseflow separation, impulse response modeling, and time series analysis in three temperate lowland catchments
Min Lu, Bart Rogiers, Koen Beerten, Matej Gedeon, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 26, 3629–3649,,, 2022
Short summary
Experimental study of non-Darcy flow characteristics in permeable stones
Zhongxia Li, Junwei Wan, Tao Xiong, Hongbin Zhan, Linqing He, and Kun Huang
Hydrol. Earth Syst. Sci., 26, 3359–3375,,, 2022
Short summary
Karst spring discharge modeling based on deep learning using spatially distributed input data
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430,,, 2022
Short summary
HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling”
Brian Berkowitz
Hydrol. Earth Syst. Sci., 26, 2161–2180,,, 2022
Short summary
Spatiotemporal variations in water sources and mixing spots in a riparian zone
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905,,, 2022
Short summary

Cited articles

Ahnert, F.: Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins, Am. J. Sci., 268, 243–263,, 1970. a
Arnold, J., Muttiah, R., Srinivasan, R., and Allen, P.: Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin, J. Hydrol., 227, 21–40,, 2000. a
Bandaragoda, C., Tarboton, D. G., and Woods, R.: Application of TOPNET in the distributed model intercomparison project, J. Hydrol., 298, 178–201,, 2004. a
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modéle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrolog. Sci. Bull., 24, 43–69,, 1979. a
Brown, L.: Canterbury, in: Groundwaters of New Zealand, edited by: Rosen, M. R. and White, P. A., New Zealand Hydrological Society, Wellington, New Zealand, 441–459, 2001. a
Short summary
Our study improved a global-scale groundwater model to build the first nationwide estimate of the water table surface in New Zealand. By identifying the main alluvial aquifers with high spatial detail, we showed that this model can help better delineate aquifer boundaries. In catchment studies we demonstrated excellent correlation with ground observations and provided water table estimates where data were sparse and across regions, which could help solve trans-boundary issues between catchments.