Articles | Volume 22, issue 8
https://doi.org/10.5194/hess-22-4213-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-22-4213-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling the changes in water balance components of the highly irrigated western part of Bangladesh
A. T. M. Sakiur Rahman
CORRESPONDING AUTHOR
Hydrology Lab, Department of Earth and Environmental Sciences, Graduate
School of Science and Technology, Kumamoto University, 2-40-1 Kurokami, Kumamoto, Japan
M. Shakil Ahmed
Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
Hasnat Mohammad Adnan
Department of Geology and Mining, University of Rajshahi, Rajshahi 6205, Bangladesh
Mohammad Kamruzzaman
Institute of Bangladesh Studies, University of Rajshahi, Rajshahi 6205, Bangladesh
M. Abdul Khalek
Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
Quamrul Hasan Mazumder
Department of Geology and Mining, University of Rajshahi, Rajshahi 6205, Bangladesh
Chowdhury Sarwar Jahan
Department of Geology and Mining, University of Rajshahi, Rajshahi 6205, Bangladesh
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Scientific logic and spatio-temporal dependence in analyzing extreme-precipitation frequency: negligible or neglected?
Assessing downscaling techniques for frequency analysis, total precipitation and rainy day estimation in CMIP6 simulations over hydrological years
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Synoptic weather patterns conducive to compound extreme rainfall–wave events in the NW Mediterranean
Exploring the joint probability of precipitation and soil moisture over Europe using copulas
Water cycle changes in Czechia: a multi-source water budget perspective
A statistical–dynamical approach for probabilistic prediction of sub-seasonal precipitation anomalies over 17 hydroclimatic regions in China
A gridded multi-site precipitation generator for complex terrain: an evaluation in the Austrian Alps
Technical note: A stochastic framework for identification and evaluation of flash drought
Stochastic simulation of reference rainfall scenarios for hydrological applications using a universal multi-fractal approach
Atmospheric conditions favouring extreme precipitation and flash floods in temperate regions of Europe
A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance
Probabilistic subseasonal precipitation forecasts using preceding atmospheric intraseasonal signals in a Bayesian perspective
Stochastic daily rainfall generation on tropical islands with complex topography
Modeling seasonal variations of extreme rainfall on different timescales in Germany
Compound flood potential from storm surge and heavy precipitation in coastal China: dependence, drivers, and impacts
Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the Amazon basin
Conditional simulation of spatial rainfall fields using random mixing: a study that implements full control over the stochastic process
Comparison of statistical downscaling methods for climate change impact analysis on precipitation-driven drought
Technical Note: Temporal disaggregation of spatial rainfall fields with generative adversarial networks
A standardized index for assessing sub-monthly compound dry and hot conditions with application in China
Assessment of meteorological extremes using a synoptic weather generator and a downscaling model based on analogues
A new discrete multiplicative random cascade model for downscaling intermittent rainfall fields
Modelling rainfall with a Bartlett–Lewis process: new developments
Nonstationary stochastic rain type generation: accounting for climate drivers
Conditional simulation of surface rainfall fields using modified phase annealing
Climate influences on flood probabilities across Europe
Flood-related extreme precipitation in southwestern Germany: development of a two-dimensional stochastic precipitation model
A hybrid stochastic rainfall model that reproduces some important rainfall characteristics at hourly to yearly timescales
Mapping rainfall hazard based on rain gauge data: an objective cross-validation framework for model selection
On the skill of raw and post-processed ensemble seasonal meteorological forecasts in Denmark
Estimating radar precipitation in cold climates: the role of air temperature within a non-parametric framework
Dealing with non-stationarity in sub-daily stochastic rainfall models
Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?
Design water demand of irrigation for a large region using a high-dimensional Gaussian copula
A classification algorithm for selective dynamical downscaling of precipitation extremes
Seasonal streamflow forecasts in the Ahlergaarde catchment, Denmark: the effect of preprocessing and post-processing on skill and statistical consistency
Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment
A nonparametric statistical technique for combining global precipitation datasets: development and hydrological evaluation over the Iberian Peninsula
Censored rainfall modelling for estimation of fine-scale extremes
An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France
Precipitation extremes on multiple timescales – Bartlett–Lewis rectangular pulse model and intensity–duration–frequency curves
Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves?
A non-stationary stochastic ensemble generator for radar rainfall fields based on the short-space Fourier transform
Regionalizing nonparametric models of precipitation amounts on different temporal scales
A combined statistical bias correction and stochastic downscaling method for precipitation
Can local climate variability be explained by weather patterns? A multi-station evaluation for the Rhine basin
Precipitation ensembles conforming to natural variations derived from a regional climate model using a new bias correction scheme
Technical Note: The impact of spatial scale in bias correction of climate model output for hydrologic impact studies
Nonstationarity of low flows and their timing in the eastern United States
Francesco Serinaldi
Hydrol. Earth Syst. Sci., 28, 3191–3218, https://doi.org/10.5194/hess-28-3191-2024, https://doi.org/10.5194/hess-28-3191-2024, 2024
Short summary
Short summary
Neglecting the scientific rationale behind statistical inference leads to logical fallacies and misinterpretations. This study contrasts a model-based approach, rooted in statistical logic, with a test-based approach, widely used in hydro-climatology but problematic. It reveals the impact of dependence in extreme-precipitation analysis and shows that trends in the frequency of extreme events over the past century in various geographic regions can be consistent with the stationary assumption.
David A. Jimenez, Andrea Menapace, Ariele Zanfei, Eber José de Andrade Pinto, and Bruno Brentan
Hydrol. Earth Syst. Sci., 28, 1981–1997, https://doi.org/10.5194/hess-28-1981-2024, https://doi.org/10.5194/hess-28-1981-2024, 2024
Short summary
Short summary
Most studies that aim to identify the impacts of climate change employ general circulation models. However, due to their low spatial resolution, it is necessary to apply downscaling techniques. This work assesses the performance of three methodologies in developing frequency analyses and estimating the number of rainy days and total precipitation per year. Quantile mapping and regression trees excelled in frequency analysis, and the delta method best estimated multiyear total precipitation.
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024, https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Short summary
High-resolution precipitation data are often a “must” as input for hydrological and hydraulic models (i.e. urban drainage modelling). However, station or climate projection data usually do not provide the required (e.g. sub-hourly) resolution. In the work, we present two new statistical models of different types to disaggregate precipitation from a daily to a 10 min scale. Both models were validated using radar data and then applied to climate models for 10 stations in Germany and South Korea.
Marc Sanuy, Juan C. Peña, Sotiris Assimenidis, and José A. Jiménez
Hydrol. Earth Syst. Sci., 28, 283–302, https://doi.org/10.5194/hess-28-283-2024, https://doi.org/10.5194/hess-28-283-2024, 2024
Short summary
Short summary
The work presents the first classification of weather types associated to compound events of extreme rainfall and coastal storms. These are found to be characterized by upper-level lows and troughs in conjunction with Mediterranean cyclones, resulting in severe to extreme coastal storms combined with convective systems. We used objective classification methods coupled with a Bayesian Network, testing different variables, domains and number of weather types.
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024, https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary
Short summary
Precipitation and soil moisture have the potential to be jointly used for the modeling of drought conditions. In this research, we analysed how their statistical inter-relationship varies across Europe. We found some clear spatial patterns, especially in the so-called tail dependence (which measures the strength of the relationship for the extreme values). The results suggest that the tail dependence needs to be accounted for to correctly assess the value of joint modeling for drought.
Mijael Rodrigo Vargas Godoy, Yannis Markonis, Oldrich Rakovec, Michal Jenicek, Riya Dutta, Rajani Kumar Pradhan, Zuzana Bešťáková, Jan Kyselý, Roman Juras, Simon Michael Papalexiou, and Martin Hanel
Hydrol. Earth Syst. Sci., 28, 1–19, https://doi.org/10.5194/hess-28-1-2024, https://doi.org/10.5194/hess-28-1-2024, 2024
Short summary
Short summary
The study introduces a novel benchmarking method based on the water cycle budget for hydroclimate data fusion. Using this method and multiple state-of-the-art datasets to assess the spatiotemporal patterns of water cycle changes in Czechia, we found that differences in water availability distribution are dominated by evapotranspiration. Furthermore, while the most significant temporal changes in Czechia occur during spring, the median spatial patterns stem from summer changes in the water cycle.
Yuan Li, Kangning Xü, Zhiyong Wu, Zhiwei Zhu, and Quan J. Wang
Hydrol. Earth Syst. Sci., 27, 4187–4203, https://doi.org/10.5194/hess-27-4187-2023, https://doi.org/10.5194/hess-27-4187-2023, 2023
Short summary
Short summary
A spatial–temporal projection-based calibration, bridging, and merging (STP-CBaM) method is proposed. The calibration model is built by post-processing ECMWF raw forecasts, while the bridging models are built using atmospheric intraseasonal signals as predictors. The calibration model and bridging models are merged through a Bayesian modelling averaging (BMA) method. The results indicate that the newly developed method can generate skilful and reliable sub-seasonal precipitation forecasts.
Hetal P. Dabhi, Mathias W. Rotach, and Michael Oberguggenberger
Hydrol. Earth Syst. Sci., 27, 2123–2147, https://doi.org/10.5194/hess-27-2123-2023, https://doi.org/10.5194/hess-27-2123-2023, 2023
Short summary
Short summary
Spatiotemporally consistent high-resolution precipitation data on climate are needed for climate change impact assessments, but obtaining these data is challenging for areas with complex topography. We present a model that generates synthetic gridded daily precipitation data at a 1 km spatial resolution using observed meteorological station data as input, thereby providing data where historical observations are unavailable. We evaluate this model for a mountainous region in the European Alps.
Yuxin Li, Sisi Chen, Jun Yin, and Xing Yuan
Hydrol. Earth Syst. Sci., 27, 1077–1087, https://doi.org/10.5194/hess-27-1077-2023, https://doi.org/10.5194/hess-27-1077-2023, 2023
Short summary
Short summary
Flash drought is referred to the rapid development of drought events with a fast decline of soil moisture, which has serious impacts on agriculture, the ecosystem, human health, and society. While flash droughts have received much research attention, there is no consensus on its definition. Here we used a stochastic water balance framework to quantify the timing of soil moisture crossing different thresholds, providing an efficient tool for diagnosing and monitoring flash droughts.
Arun Ramanathan, Pierre-Antoine Versini, Daniel Schertzer, Remi Perrin, Lionel Sindt, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 26, 6477–6491, https://doi.org/10.5194/hess-26-6477-2022, https://doi.org/10.5194/hess-26-6477-2022, 2022
Short summary
Short summary
Reference rainfall scenarios are indispensable for hydrological applications such as designing storm-water management infrastructure, including green roofs. Therefore, a new method is suggested for simulating rainfall scenarios of specified intensity, duration, and frequency, with realistic intermittency. Furthermore, novel comparison metrics are proposed to quantify the effectiveness of the presented simulation procedure.
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022, https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
Yuan Liu and Daniel B. Wright
Hydrol. Earth Syst. Sci., 26, 5241–5267, https://doi.org/10.5194/hess-26-5241-2022, https://doi.org/10.5194/hess-26-5241-2022, 2022
Short summary
Short summary
We present a new approach to estimate extreme rainfall probability and severity using the atmospheric water balance, where precipitation is the sum of water vapor components moving in and out of a storm. We apply our method to the Mississippi Basin and its five major subbasins. Our approach achieves a good fit to reference precipitation, indicating that the rainfall probability estimation can benefit from additional information from physical processes that control rainfall.
Yuan Li, Zhiyong Wu, Hai He, and Hao Yin
Hydrol. Earth Syst. Sci., 26, 4975–4994, https://doi.org/10.5194/hess-26-4975-2022, https://doi.org/10.5194/hess-26-4975-2022, 2022
Short summary
Short summary
The relationship between atmospheric intraseasonal signals and precipitation is highly uncertain and depends on the region and lead time. In this study, we develop a spatiotemporal projection, based on a Bayesian hierarchical model (STP-BHM), to address the above challenge. The results suggest that the STP-BHM model is skillful and reliable for probabilistic subseasonal precipitation forecasts over China during the boreal summer monsoon season.
Lionel Benoit, Lydie Sichoix, Alison D. Nugent, Matthew P. Lucas, and Thomas W. Giambelluca
Hydrol. Earth Syst. Sci., 26, 2113–2129, https://doi.org/10.5194/hess-26-2113-2022, https://doi.org/10.5194/hess-26-2113-2022, 2022
Short summary
Short summary
This study presents a probabilistic model able to reproduce the spatial patterns of rainfall on tropical islands with complex topography. It sheds new light on rainfall variability at the island scale, and explores the links between rainfall patterns and atmospheric circulation. The proposed model has been tested on two islands of the tropical Pacific, and demonstrates good skills in simulating both site-specific and island-scale rain behavior.
Jana Ulrich, Felix S. Fauer, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6133–6149, https://doi.org/10.5194/hess-25-6133-2021, https://doi.org/10.5194/hess-25-6133-2021, 2021
Short summary
Short summary
The characteristics of extreme precipitation on different timescales as well as in different seasons are relevant information, e.g., for designing hydrological structures or managing water supplies. Therefore, our aim is to describe these characteristics simultaneously within one model. We find similar characteristics for short extreme precipitation at all considered stations in Germany but pronounced regional differences with respect to the seasonality of long-lasting extreme events.
Jiayi Fang, Thomas Wahl, Jian Fang, Xun Sun, Feng Kong, and Min Liu
Hydrol. Earth Syst. Sci., 25, 4403–4416, https://doi.org/10.5194/hess-25-4403-2021, https://doi.org/10.5194/hess-25-4403-2021, 2021
Short summary
Short summary
A comprehensive assessment of compound flooding potential is missing for China. We investigate dependence, drivers, and impacts of storm surge and precipitation for coastal China. Strong dependence exists between driver combinations, with variations of seasons and thresholds. Sea level rise escalates compound flood potential. Meteorology patterns are pronounced for low and high compound flood potential. Joint impacts from surge and precipitation were much higher than from each individually.
Jamie Towner, Andrea Ficchí, Hannah L. Cloke, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 25, 3875–3895, https://doi.org/10.5194/hess-25-3875-2021, https://doi.org/10.5194/hess-25-3875-2021, 2021
Short summary
Short summary
We examine whether several climate indices alter the magnitude, timing and duration of floods in the Amazon. We find significant changes in both flood magnitude and duration, particularly in the north-eastern Amazon for negative SST years in the central Pacific Ocean. This response is not repeated when the negative anomaly is positioned further east. These results have important implications for both social and physical sectors working towards the improvement of flood early warning systems.
Jieru Yan, Fei Li, András Bárdossy, and Tao Tao
Hydrol. Earth Syst. Sci., 25, 3819–3835, https://doi.org/10.5194/hess-25-3819-2021, https://doi.org/10.5194/hess-25-3819-2021, 2021
Short summary
Short summary
Accurate spatial precipitation estimates are important in various fields. An approach to simulate spatial rainfall fields conditioned on radar and rain gauge data is proposed. Unlike the commonly used Kriging methods, which provide a Kriged mean field, the output of the proposed approach is an ensemble of estimates that represents the estimation uncertainty. The approach is robust to nonlinear error in radar estimates and is shown to have some advantages, especially when estimating the extremes.
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, https://doi.org/10.5194/hess-25-3493-2021, 2021
Sebastian Scher and Stefanie Peßenteiner
Hydrol. Earth Syst. Sci., 25, 3207–3225, https://doi.org/10.5194/hess-25-3207-2021, https://doi.org/10.5194/hess-25-3207-2021, 2021
Short summary
Short summary
In hydrology, it is often necessary to infer from a daily sum of precipitation a possible distribution over the day – for example how much it rained in each hour. In principle, for a given daily sum, there are endless possibilities. However, some are more likely than others. We show that a method from artificial intelligence called generative adversarial networks (GANs) can
learnwhat a typical distribution over the day looks like.
Jun Li, Zhaoli Wang, Xushu Wu, Jakob Zscheischler, Shenglian Guo, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 1587–1601, https://doi.org/10.5194/hess-25-1587-2021, https://doi.org/10.5194/hess-25-1587-2021, 2021
Short summary
Short summary
We introduce a daily-scale index, termed the standardized compound drought and heat index (SCDHI), to measure the key features of compound dry-hot conditions. SCDHI can not only monitor the long-term compound dry-hot events, but can also capture such events at sub-monthly scale and reflect the related vegetation activity impacts. The index can provide a new tool to quantify sub-monthly characteristics of compound dry-hot events, which are vital for releasing early and timely warning.
Damien Raynaud, Benoit Hingray, Guillaume Evin, Anne-Catherine Favre, and Jérémy Chardon
Hydrol. Earth Syst. Sci., 24, 4339–4352, https://doi.org/10.5194/hess-24-4339-2020, https://doi.org/10.5194/hess-24-4339-2020, 2020
Short summary
Short summary
This research paper proposes a weather generator combining two sampling approaches. A first generator recombines large-scale atmospheric situations. A second generator is applied to these atmospheric trajectories in order to simulate long time series of daily regional precipitation and temperature. The method is applied to daily time series in Switzerland. It reproduces adequately the observed climatology and improves the reproduction of extreme precipitation values.
Marc Schleiss
Hydrol. Earth Syst. Sci., 24, 3699–3723, https://doi.org/10.5194/hess-24-3699-2020, https://doi.org/10.5194/hess-24-3699-2020, 2020
Short summary
Short summary
A new way to downscale rainfall fields based on the notion of equal-volume areas (EVAs) is proposed. Experiments conducted on 100 rainfall events in the Netherlands show that the EVA method outperforms classical methods based on fixed grid cell sizes, producing fields with more realistic spatial structures. The main novelty of the method lies in its adaptive sampling strategy, which avoids many of the mathematical challenges associated with the presence of zero rainfall values.
Christian Onof and Li-Pen Wang
Hydrol. Earth Syst. Sci., 24, 2791–2815, https://doi.org/10.5194/hess-24-2791-2020, https://doi.org/10.5194/hess-24-2791-2020, 2020
Short summary
Short summary
The randomised Bartlett–Lewis (RBL) model is widely used to synthesise rainfall time series with realistic statistical features. However, it tended to underestimate rainfall extremes at sub-hourly and hourly timescales. In this paper, we revisit the derivation of equations that represent rainfall properties and compare statistical estimation methods that impact model calibration. These changes effectively improved the RBL model's capacity to reproduce sub-hourly and hourly rainfall extremes.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 24, 2841–2854, https://doi.org/10.5194/hess-24-2841-2020, https://doi.org/10.5194/hess-24-2841-2020, 2020
Short summary
Short summary
At subdaily resolution, rain intensity exhibits a strong variability in space and time due to the diversity of processes that produce rain (e.g., frontal storms, mesoscale convective systems and local convection). In this paper we explore a new method to simulate rain type time series conditional to meteorological covariates. Afterwards, we apply stochastic rain type simulation to the downscaling of precipitation of a regional climate model.
Jieru Yan, András Bárdossy, Sebastian Hörning, and Tao Tao
Hydrol. Earth Syst. Sci., 24, 2287–2301, https://doi.org/10.5194/hess-24-2287-2020, https://doi.org/10.5194/hess-24-2287-2020, 2020
Short summary
Short summary
For applications such as flood forecasting of urban- or town-scale distributed hydrological modeling, high-resolution quantitative precipitation estimation (QPE) with enough accuracy is the most important driving factor and thus the focus of this paper. Considering the fact that rain gauges are sparse but accurate and radar-based precipitation estimates are inaccurate but densely distributed, we are merging the two types of data intellectually to obtain accurate QPEs with high resolution.
Eva Steirou, Lars Gerlitz, Heiko Apel, Xun Sun, and Bruno Merz
Hydrol. Earth Syst. Sci., 23, 1305–1322, https://doi.org/10.5194/hess-23-1305-2019, https://doi.org/10.5194/hess-23-1305-2019, 2019
Short summary
Short summary
We investigate whether flood probabilities in Europe vary for different large-scale atmospheric circulation conditions. Maximum seasonal river flows from 600 gauges in Europe and five synchronous atmospheric circulation indices are analyzed. We find that a high percentage of stations is influenced by at least one of the climate indices, especially during winter. These results can be useful for preparedness and damage planning by (re-)insurance companies.
Florian Ehmele and Michael Kunz
Hydrol. Earth Syst. Sci., 23, 1083–1102, https://doi.org/10.5194/hess-23-1083-2019, https://doi.org/10.5194/hess-23-1083-2019, 2019
Short summary
Short summary
The risk estimation of precipitation events with high recurrence periods is difficult due to the limited timescale with meteorological observations and an inhomogeneous distribution of rain gauges, especially in mountainous terrains. In this study a spatially high resolved analytical model, designed for stochastic simulations of flood-related precipitation, is developed and applied to an investigation area in Germany but is transferable to other areas. High conformity with observations is found.
Jeongha Park, Christian Onof, and Dongkyun Kim
Hydrol. Earth Syst. Sci., 23, 989–1014, https://doi.org/10.5194/hess-23-989-2019, https://doi.org/10.5194/hess-23-989-2019, 2019
Short summary
Short summary
Rainfall data are often unavailable for the analysis of water-related problems such as floods and droughts. In such cases, researchers use rainfall generators to produce synthetic rainfall data. However, data from most rainfall generators can serve only one specific purpose; i.e. one rainfall generator cannot be applied to analyse both floods and droughts. To overcome this issue, we invented a multipurpose rainfall generator that can be applied to analyse most water-related problems.
Juliette Blanchet, Emmanuel Paquet, Pradeebane Vaittinada Ayar, and David Penot
Hydrol. Earth Syst. Sci., 23, 829–849, https://doi.org/10.5194/hess-23-829-2019, https://doi.org/10.5194/hess-23-829-2019, 2019
Short summary
Short summary
We propose an objective framework for estimating rainfall cumulative distribution functions in a region when data are only available at rain gauges. Our methodology allows us to assess goodness-of-fit of the full distribution, but with a particular focus on its tail. It is applied to daily rainfall in the Ardèche catchment in the south of France. Results show a preference for a mixture of Gamma distribution over seasons and weather patterns, with parameters interpolated with a thin plate spline.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 6591–6609, https://doi.org/10.5194/hess-22-6591-2018, https://doi.org/10.5194/hess-22-6591-2018, 2018
Short summary
Short summary
The present study evaluates the skill of a seasonal forecasting system for hydrological relevant variables in Denmark. Linear scaling and quantile mapping were used to correct the forecasts. Uncorrected forecasts tend to be more skillful than climatology, in general, for the first month lead time only. Corrected forecasts show a reduced bias in the mean; are more consistent; and show a level of accuracy that is closer to, although no higher than, that of ensemble climatology, in general.
Kuganesan Sivasubramaniam, Ashish Sharma, and Knut Alfredsen
Hydrol. Earth Syst. Sci., 22, 6533–6546, https://doi.org/10.5194/hess-22-6533-2018, https://doi.org/10.5194/hess-22-6533-2018, 2018
Short summary
Short summary
This study investigates the use of gauge precipitation and air temperature observations to ascertain radar precipitation in cold climates. The use of air temperature as an additional variable in a non-parametric model improved the estimation of radar precipitation significantly. Further, it was found that the temperature effects became insignificant when air temperature was above 10 °C. The findings from this study could be important for using radar precipitation for hydrological applications.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 22, 5919–5933, https://doi.org/10.5194/hess-22-5919-2018, https://doi.org/10.5194/hess-22-5919-2018, 2018
Short summary
Short summary
We propose a method for unsupervised classification of the space–time–intensity structure of weather radar images. The resulting classes are interpreted as rain types, i.e. pools of rain fields with homogeneous statistical properties. Rain types can in turn be used to define stationary periods for further stochastic rainfall modelling. The application of rain typing to real data indicates that non-stationarity can be significant within meteorological seasons, and even within a single storm.
Hannes Müller-Thomy, Markus Wallner, and Kristian Förster
Hydrol. Earth Syst. Sci., 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018, https://doi.org/10.5194/hess-22-5259-2018, 2018
Short summary
Short summary
Rainfall time series are disaggregated from daily to hourly values to be used for rainfall–runoff modeling of mesoscale catchments. Spatial rainfall consistency is implemented afterwards using simulated annealing. With the calibration process applied, observed runoff statistics (e.g., summer and winter peak flows) are represented well. However, rainfall datasets with under- or over-estimation of spatial consistency lead to similar results, so the need for a good representation can be questioned.
Xinjun Tu, Yiliang Du, Vijay P. Singh, Xiaohong Chen, Kairong Lin, and Haiou Wu
Hydrol. Earth Syst. Sci., 22, 5175–5189, https://doi.org/10.5194/hess-22-5175-2018, https://doi.org/10.5194/hess-22-5175-2018, 2018
Short summary
Short summary
For given frequencies of precipitation of a large region, design water demands of irrigation of the entire region among three methods, i.e., equalized frequency, typical year and most-likely weight function, slightly differed, but their alterations in sub-regions were complicated. A design procedure using the most-likely weight function in association with a high-dimensional copula, which built a linkage between regional frequency and sub-regional frequency of precipitation, is recommended.
Edmund P. Meredith, Henning W. Rust, and Uwe Ulbrich
Hydrol. Earth Syst. Sci., 22, 4183–4200, https://doi.org/10.5194/hess-22-4183-2018, https://doi.org/10.5194/hess-22-4183-2018, 2018
Short summary
Short summary
Kilometre-scale climate-model data are of great benefit to both hydrologists and end users studying extreme precipitation, though often unavailable due to the computational expense associated with such high-resolution simulations. We develop a method which identifies days with enhanced risk of extreme rainfall over a catchment, so that high-resolution simulations can be performed only when such a risk exists, reducing computational expense by over 90 % while still well capturing the extremes.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 3601–3617, https://doi.org/10.5194/hess-22-3601-2018, https://doi.org/10.5194/hess-22-3601-2018, 2018
Short summary
Short summary
The skill of an experimental streamflow forecast system in the Ahlergaarde catchment, Denmark, is analyzed. Inputs to generate the forecasts are taken from the ECMWF System 4 seasonal forecasting system and an ensemble of observations (ESP). Reduction of biases is achieved by processing the meteorological and/or streamflow forecasts. In general, this is not sufficient to ensure a higher level of accuracy than the ESP, indicating a modest added value of a seasonal meteorological system.
Sanjeev K. Jha, Durga L. Shrestha, Tricia A. Stadnyk, and Paulin Coulibaly
Hydrol. Earth Syst. Sci., 22, 1957–1969, https://doi.org/10.5194/hess-22-1957-2018, https://doi.org/10.5194/hess-22-1957-2018, 2018
Short summary
Short summary
The output from numerical weather prediction (NWP) models is known to have errors. River forecast centers in Canada mostly use precipitation forecasts directly obtained from American and Canadian NWP models. In this study, we evaluate the forecast performance of ensembles generated by a Bayesian post-processing approach in cold climates. We demonstrate that the post-processing approach generates bias-free forecasts and provides a better picture of uncertainty in the case of an extreme event.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Pere Quintana-Seguí, and Anaïs Barella-Ortiz
Hydrol. Earth Syst. Sci., 22, 1371–1389, https://doi.org/10.5194/hess-22-1371-2018, https://doi.org/10.5194/hess-22-1371-2018, 2018
Short summary
Short summary
This study investigates the use of a nonparametric model for combining multiple global precipitation datasets and characterizing estimation uncertainty. Inputs to the model included three satellite precipitation products, an atmospheric reanalysis precipitation dataset, satellite-derived near-surface daily soil moisture data, and terrain elevation. We evaluated the technique based on high-resolution reference precipitation data and further used generated ensembles to force a hydrological model.
David Cross, Christian Onof, Hugo Winter, and Pietro Bernardara
Hydrol. Earth Syst. Sci., 22, 727–756, https://doi.org/10.5194/hess-22-727-2018, https://doi.org/10.5194/hess-22-727-2018, 2018
Short summary
Short summary
Extreme rainfall is one of the most significant natural hazards. However, estimating very large events is highly uncertain. We present a new approach to construct intense rainfall using the structure of rainfall generation in clouds. The method is particularly effective at estimating short-duration extremes, which can be the most damaging. This is expected to have immediate impact for the estimation of very rare downpours, with the potential to improve climate resilience and hazard preparedness.
Jérémy Chardon, Benoit Hingray, and Anne-Catherine Favre
Hydrol. Earth Syst. Sci., 22, 265–286, https://doi.org/10.5194/hess-22-265-2018, https://doi.org/10.5194/hess-22-265-2018, 2018
Short summary
Short summary
We present a two-stage statistical downscaling model for the probabilistic prediction of local precipitation, where the downscaling statistical link is estimated from atmospheric circulation analogs of the current prediction day.
The model allows for a day-to-day adaptive and tailored downscaling. It can reveal specific predictors for peculiar and non-frequent weather configurations. This approach noticeably improves the skill of the prediction for both precipitation occurrence and quantity.
Christoph Ritschel, Uwe Ulbrich, Peter Névir, and Henning W. Rust
Hydrol. Earth Syst. Sci., 21, 6501–6517, https://doi.org/10.5194/hess-21-6501-2017, https://doi.org/10.5194/hess-21-6501-2017, 2017
Short summary
Short summary
A stochastic model for precipitation is used to simulate an observed precipitation series; it is compared to the original series in terms of intensity–duration frequency curves. Basis for the latter curves is a parametric model for the duration dependence of the underlying extreme value model allowing a consistent estimation of one single duration-dependent distribution using all duration series simultaneously. The stochastic model reproduces the curves except for very rare extreme events.
Poulomi Ganguli and Paulin Coulibaly
Hydrol. Earth Syst. Sci., 21, 6461–6483, https://doi.org/10.5194/hess-21-6461-2017, https://doi.org/10.5194/hess-21-6461-2017, 2017
Short summary
Short summary
Using statistical models, we test whether nonstationary versus stationary models show any significant differences in terms of design storm intensity at different durations across Southern Ontario. We find that detectable nonstationarity in rainfall extremes does not necessarily lead to significant differences in design storm intensity, especially for shorter return periods. An update of 2–44 % is required in current design standards to mitigate the risk of storm-induced urban flooding.
Daniele Nerini, Nikola Besic, Ioannis Sideris, Urs Germann, and Loris Foresti
Hydrol. Earth Syst. Sci., 21, 2777–2797, https://doi.org/10.5194/hess-21-2777-2017, https://doi.org/10.5194/hess-21-2777-2017, 2017
Short summary
Short summary
Stochastic generators are effective tools for the quantification of uncertainty in a number of applications with weather radar data, including quantitative precipitation estimation and very short-term forecasting. However, most of the current stochastic rainfall field generators cannot handle spatial non-stationarity. We propose an approach based on the short-space Fourier transform, which aims to reproduce the local spatial structure of the observed rainfall fields.
Tobias Mosthaf and András Bárdossy
Hydrol. Earth Syst. Sci., 21, 2463–2481, https://doi.org/10.5194/hess-21-2463-2017, https://doi.org/10.5194/hess-21-2463-2017, 2017
Short summary
Short summary
Parametric distribution functions are commonly used to model precipitation amounts at gauged and ungauged locations. Nonparametric distributions offer a more flexible way to model precipitation amounts. However, the nonparametric models do not exhibit parameters that can be easily regionalized for application at ungauged locations. To overcome this deficiency, we present a new interpolation scheme for nonparametric models and evaluate the usage of daily gauges for sub-daily resolutions.
Claudia Volosciuk, Douglas Maraun, Mathieu Vrac, and Martin Widmann
Hydrol. Earth Syst. Sci., 21, 1693–1719, https://doi.org/10.5194/hess-21-1693-2017, https://doi.org/10.5194/hess-21-1693-2017, 2017
Short summary
Short summary
For impact modeling, infrastructure design, or adaptation strategy planning, high-quality climate data on the point scale are often demanded. Due to the scale gap between gridbox and point scale and biases in climate models, we combine a statistical bias correction and a stochastic downscaling model and apply it to climate model-simulated precipitation. The method performs better in summer than in winter and in winter best for mild winter climate (Mediterranean) and worst for continental winter.
Aline Murawski, Gerd Bürger, Sergiy Vorogushyn, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4283–4306, https://doi.org/10.5194/hess-20-4283-2016, https://doi.org/10.5194/hess-20-4283-2016, 2016
Short summary
Short summary
To understand past flood changes in the Rhine catchment and the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. Here the link between patterns and local climate is tested, and the skill of GCMs in reproducing these patterns is evaluated.
Kue Bum Kim, Hyun-Han Kwon, and Dawei Han
Hydrol. Earth Syst. Sci., 20, 2019–2034, https://doi.org/10.5194/hess-20-2019-2016, https://doi.org/10.5194/hess-20-2019-2016, 2016
Short summary
Short summary
A primary advantage of using model ensembles for climate change impact studies is to represent the uncertainties associated with models through the ensemble spread. Currently, most of the conventional bias correction methods adjust all the ensemble members to one reference observation. As a result, the ensemble spread is degraded during bias correction. However the proposed method is able to correct the bias and conform to the ensemble spread so that the ensemble information can be better used.
E. P. Maurer, D. L. Ficklin, and W. Wang
Hydrol. Earth Syst. Sci., 20, 685–696, https://doi.org/10.5194/hess-20-685-2016, https://doi.org/10.5194/hess-20-685-2016, 2016
Short summary
Short summary
To translate climate model output from its native coarse scale to a finer scale more representative of that at which societal impacts are experienced, a common method applied is statistical downscaling. A component of many statistical downscaling techniques is quantile mapping (QM). QM can be applied at different spatial scales, and here we study how skill varies with spatial scale. We find the highest skill is generally obtained when applying QM at approximately a 50 km spatial scale.
S. Sadri, J. Kam, and J. Sheffield
Hydrol. Earth Syst. Sci., 20, 633–649, https://doi.org/10.5194/hess-20-633-2016, https://doi.org/10.5194/hess-20-633-2016, 2016
Short summary
Short summary
Low flows are a critical part of the river flow regime but little is known about how they are changing in response to human influences and climate. We analyzed low flow records across the eastern US and identified sites that were minimally influenced by human activities. We found a general increasing trend in low flows across the northeast and decreasing trend across the southeast that are likely driven by changes in climate. The results have implications for how we manage our water resources.
Cited articles
Acharjee, T. K., Halsema, G., Ludwig, F., and Hellegers, P.: Declining
trends of water requirements of dry season Boro rice in the north-west
Bangladesh, Agr. Water Manage., 180, 148–159, 2017.
Adamowski, J.: Development of a short-term river flood forecasting method
based on wavelet analysis, Warsaw Polish Academy of Sciences, Monograph, 172,
2007.
Adamowski, J. and Chan, H. F.: A wavelet neural network conjunction model
for groundwater level forecasting, J. Hydrol., 407, 28–40,
2011.
Ahasan, M. N., Chowdhary, M. A. M., and Quadir, D. A.: Variability and trends
of summer monsoon rainfall over Bangladesh, J. Hydrometeorol., 7,
1–17, 2010.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration: guidelines for computing crop water requirements, FAO
Irrigation and Drainage Paper, No. 56, Rome, Italy, 328 pp., 1998.
Alley, W. M.: Water balance models in one-month-ahead streamflow
forecasting, Water Resour. Res., 21, 597–606, 1985.
Arnall, N. W.: Factors controlling the effects of climate change on river
flow regimes in a humid temperate environment, Journal Hydrogeology, 132,
321–342, 1992.
Azad, S., Debnath, S., and Rajeevan, M. Analysing predictability in Indian
monsoon rainfall: a data analytic approach, Environ. Process., 2,
717–727, 2015.
Bakundukize, C., Camp, M. V., and Walraevens, K.: Estimation of groundwater
recharge in Bugesera region (Burundi) using soil moisture budget approach,
Geol. Belg., 14, 85–102, 2011.
Banglapedia: National Encyclopedia of Bangladesh, Asiatic Society of
Bangladesh, Dhaka, 2003.
Boughton, W.: Catchment water balance modelling in Australia 1960–2004,
Agr. Water Manage., 71, 91–116, 2004.
Box, G. E. P. and Jenkins, G. M.: Time Series Analysis: Forecasting and
Control (Revised edition), San Francisco, Holden Day, 1976.
Chapman, L. C. and Brown, D. M.: The climates of Canada for agriculture.
Canada Land Inventory Report No. 3, Environment Canada, Lands Directorate,
24, 1966.
Chou, C.: A threshold based wavelet denoising method for hydrological data
modelling, Water Resour. Manag., 25, 1809–1830,
https://doi.org/10.1007/s11269-011-9776-3, 2011.
de Jong, R. and Bootsma, A.: Estimates of water deficits and surpluses
during the growing season in Ontario using the SWATRE model, Can.
J. Soil Sci., 77, 285–294, 1997.
Donoho, D. L.: De-noising by soft-thresholding, IEEE T. Inform. Theory, 41,
613–627, 1995.
Donoho, D. L. and Johnstone I. M.: Ideal Denoising in an Orthonormal Basis
Chosen from a Library of Bases, CR Acad. Sci. I-Math., 319, 1317–1322, 1994.
Donoho, D. L. and Johnstone, I. M.: Minimax estimation via wavelet shrinkage,
Ann. Stat., 26, 879–921, 1998.
Fan, Z. and Thomas, A.: Spatiotemporal variability of reference
evapotranspiration and its contributing climatic factors in Yunnan Province,
SW China, 1961–2004, Climatic Change, 116, 309–325,
https://doi.org/10.1007/s10584-012-0479-4, 2012.
Fulton, J. W., Risser, D. W., Regan, R. S., Walker, J. F., Hunt, R. J.,
Niswonger, R. G., Hoffman, S. A., and Markstrom, S. L.: Water-budgets and
recharge-area simulations for the Spring Creek and Nittany Creek Basins and
parts of the Spruce Creek Basin, Centre and Huntingdon Counties,
Pennsylvania, Water Years 2000–06: U.S. Geological Scientific Investigations
Report 2015–5073, 86 pp., https://doi.org/10.3133/sir20155073, 2015.
Hamed, K. H. and Rao, A. R.: A modified Mann–Kendall trend test for
autocorrelated data, J. Hydrol., 204, 182–196, 1998.
Harvey, C. F., Ashfaque, K. N., Yu, W., Badruzzaman, A. B. M., Ali, M. A.,
Oates, P. M., Michael, H. A., Neumann, R. B., Beckie, R., Islam, S., and
Ahmed, M. F.: Groundwater dynamics and arsenic contamination in Bangladesh,
Chem. Geol., 228, 112–136, 2006.
Hasan, M. A., Islam, A. K. M. S., and Bokhtiar, S. M.: Changes of reference
evapotranspiration ETo in recent decades over Bangladesh, 2nd International
Conference on Advances in Civil Engineering, 26–28 December 2014 CUET,
Chittagong, Bangladesh, 2014.
Healy, R. W., Winter, T. C., LaBaugh, J. W., and Franke, O. L.: Water Budgets:
Foundations for Effective Water Resources and Environmental Management,
United States Geological Survey, Reston, Virginia, 2007.
Huq, S. M. I. and Shoaib, J. U.: The Soils of Bangladesh, 1–172,
https://doi.org/10.1007/978-94-007-1128-0, 2013.
Hyndman, R., Mitchell O'Hara, Wild, M., Bergmeir, C., Razbash, S., and Wang,
E. R.: Language Forecast Package Development team, 131 pp., 2017.
IPCC (Inter-governmental Panel on Climate Change): Technical summary of
climate change 2007: the physical science basis,
Contribution of working group I to the fourth assessment report of the
intergovernmental panel on climate change, edited by: Solomon, S., Qin, D.,
Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., Miller Jr., H. L.,
and Chen, Z.,
Cambridge University Press, Cambridge, 2007.
Kamruzzaman, M., Rahman, A. T. M. S., Kabir, M. E., Jahan, C. S., Mazumder,
Q. H., and Rahman, M. S.: Spatio-temporal Analysis of Climatic Variables in
the Western Part of Bangladesh, Environ. Dev. Sustain., 18, 89–108,
https://doi.org/10.1007/s10668-016-9872-x, 2016a.
Kamruzzaman, M., Kabir, M. E., Rahman, A. T. M. S., Mazumder, Q. H., Rahman,
M. S., and Jahan, C. S.: Modeling of Agricultural Drought Risk Pattern using
Markov Chain and GIS in the Western Part of Bangladesh, Environ. Dev.
Sustain., 18, 569–588, doi 10.1007/s10668-016-9898-0, 2016b.
Kang, S., Gu, B., Du, T., and Zhang, J.: Crop coefficient and ratio of
transpiration to evapotranspiration of winter wheat and maize in a
semi-humid region, Agr. Water Manage., 59, 239–254, 2003.
Kanoua, W. and Merkel, B. J.: Groundwater recharge in Titas Upazila in
Bangladesh, Arab. J. Geosci., 8, 1361–1371, https://doi.org/10.1007/s12517-014-1305-2,
2015.
Karim, M. R., Ishikawa, M., and Ikeda, M.: Modeling of seasonal water balance
for crop production in Bangladesh with implications for future projection,
Ital. J. Agron., 7, e21, https://doi.org/10.4081/ija.2012.e21 2012.
Karimi, P., Bastiaanssen, W. G. M., and Molden, D.: Water Accounting Plus
(WA+) – a water accounting procedure for complex river basins based on
satellite measurements, Hydrol. Earth Syst. Sci., 17, 2459–2472,
https://doi.org/10.5194/hess-17-2459-2013, 2013.
Kendall, M. G.: Rank Correlation Methods, Griffin, London, 1975.
Khalek, M. A. and Ali, M. A.: Comparative Study of Wavelet-SARIMA and
Wavelet-NNAR Models for Groundwater Level in Rajshahi District, IOSR Journal
of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 10,
1–15, 2016.
Kisi, O.: Stream flow forecasting using neuro-wavelet technique, Hydrol.
Process., 22, 4142–4152, 2008.
Kumar, M., Denis, D. M., and Suryavanshi, S.: Long-term climatic trend
analysis of Giridih district, Jharkhand (India) using statistical approach,
Modeling Earth Systems and Environment, 2, 116,
https://doi.org/10.1007/s40808-016-0162-2, 2016.
Leta, O. T., El-Kadi, A. I., Dulai, H., and Ghazal, K. A.: Assessment of
climate change impacts on water balance components of Heeia watershed in
Hawaii, J. Hydrol.-Regional Studies 8, 182–197.
https://doi.org/10.1016/j.ejrh.2016.09.006, 2016.
Lutz, S. R., Mallucci, S., Diamantini, E., Majone, B., Bellin, A., and Merz,
R.: Hydroclimatic and water quality trends across three Mediterranean river
basins, Sci. Total Environ., 571, 1392–1406, 2016.
Mallat, S. G.: A theory for multi-resolution signal decomposition: the
wavelet representation, IEEE T. Pattern Anal., 11, 674–693, 1989.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259,
1945.
McCuen, R. H., Knight, Z., and Cutter, A. G.: Evaluation of the
Nash–Sutcliffe Efficiency Index, J. Hydrol. Eng., 11, 597–602, 2006.
McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van Niel, T. G.,
Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N. M.,
Mescherskaya, A. V., Kruger, A. C., Rehman, S., and Dinpashoh, Y.: Global
review and synthesis of trends in observed terrestrial near-surface wind
speeds: Implications for evaporation, J. Hydrol., 416–417, 182–205,
https://doi.org/10.1016/j.jhydrol.2011.10.024, 2012.
Michael, H. A. and Voss, C. I.: Controls on groundwater flow in the Bengal
Basin of India and Bangladesh: regional modeling analysis, Hydrogeol. J., 17,
1561–577, 2009.
Misiti, M., Misiti, Y., Oppenheim, G., and Poggi, J.: Wavelet Toolbox User's
Guide, The Math Works, Inc., 1997.
Molden, D. and Sakthivadivel, R.: Water accounting to assess use and
productivity of water, Int. J. Water Resour. D., 15, 55–71,
https://doi.org/10.1080/07900629948934, 1999.
Moriarty, P., Batchelor, C., Abd-Alhadi, F., Laban, P., and Fahmy, H.: The
Empowers Approach to Water Governance Guidelines, Methods and Tools. Jordan:
Inter-Islamic Network on Water Resources Development and Management
(INWRDAM), 2007.
Moussa, R.: When monstrosity can be beautiful while normality can be ugly:
assessing the performance of event–based flood models, J. Hydrolog. Sci.,
55, 1074–1084, 2010.
Nalley, D., Adamowski, J., and Khalil, B.: Using discrete wavelet transforms
to analyze trends in streamflow and precipitation in Quebec and Ontario
(1954–2008), J. Hydrol., 475, 204–228, 2012.
Nalley, D., Adamowski, J., Khalil, B., and Ozga-Zielinski, B.: Trend
detection in surface air temperature in Ontario and Quebec, Canada during
1967–2006 using the discrete wavelet transform, Atmos. Res., 132–133,
375–398, 2013.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models, part I: a discussion of principles, J. Hydrol., 10, 282–290.
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nasher, N. M. R. and Uddin, M. N.: Maximum and Minimum Temperature Trends
Variation over Northern and Southern Part of Bangladesh, Journal of
Environmental Science and Natural Resources, 6, 83–88, 2013.
Nievergelt, Y.: Wavelets Made Easy, Birkhäuser, 297 pp., 2001.
Nury, A. H., Hasan, K., and Alam, J. B.: Comparative study of wavelet-ARIMA
and wavelet-ANN models for temperature time series data in northeastern
Bangladesh, Journal of King Saud University – Science, 29, 47–61, 2017.
Nury, A. H., Hasan, K., Erfan, K. M., and Dey, D. C.: Analysis of Spatially
and Temporally Varying Precipitation in Bangladesh, Asian Journal of Water,
Environment and Pollution, 13, 15–27, https://doi.org/10.3233/AJW-160023, 2016.
Partal, T.: Modelling evapotranspiration using discrete wavelet transform and
neural networks, Hydrol. Process., 23, 3545–3555, 2009.
Partal, T.: Wavelet transform-based analysis of periodicities and trends of
Sakarya basin (Turkey) streamflow data, River Res. Appl., 26, 695–711, 2010.
Partal, T. and Küçük, M.: Long-term trend analysis using discrete
wavelet components of annual precipitations measurements in Marmara region
(Turkey), Phys. Chem. Earth, 31, 1189–1200, 2006.
Pathak, P., Kalra, A., and Ahmed, S.: Wavelet-Aided Analysis to Estimate
Seasonal Variability and Dominant Periodicities in Temperature,
Precipitation, and Streamflow in the Midwestern United States, Water Resour.
Manag., 30, 4649–4665, https://doi.org/10.1007/s11269-016-1445-0, 2016.
Percival, D. B. and Walden, A. T.: Wavelet Methods for Time Series Analysis,
1106 Cambridge University Press, New York, 594 pp., 2000.
Pišoft, P., Kalvová, J., and Brázdil, R.: Cycles and trends in
the Czech temperature series using wavelet transforms, Int. J. Climatol., 24,
1661–1670, 2004.
Rahman, A. T. M. S.: Sustainable Groundwater Management in the Context of
Climate Change in Drought Prone Barind Area, NW Bangladesh, Unpublished
Master of Philosophy Thesis, Institute of
Environmental Science, University of Rajshahi, Bangladesh, 2016.
Rahman, A. T. M. S., Jahan, C. S., Mazumder, Q. H., Kamruzzaman, M., and
Hossain, A. Evaluation of spatio-temporal dynamics of water table in NW
Bangladesh: An integrated approach of GIS and Statistics, Sustainable Water
Resource Management, 2, 297–312, https://doi.org/10.1007/s40899-016-0057-4, 2016.
Rahman M. A., Yunsheng, L., and Sultana, N.: Analysis and prediction of
rainfall trends over Bangladesh using Mann–Kendall, Spearman's rho tests and
ARIMA model, Meteorol. Atmos. Phys., 129, 409–424,
https://doi.org/10.1007/s00703-016-0479-4, 2016.
Rahman, M. J. and Hasan, M. A. M.: Performance of Wavelet Transform on Models
in Forecasting Climatic Variables, in: Computational Intelligence Techniques
in Earth and Environmental Sciences, edited by: Islam, T., Srivastava, P.,
Gupta, M., Zhu, X., and Mukherjee, S., Springer, Dordrecht, 2014.
Rahman, M. R. and Lateh, H.: Spatio-temporal analysis of warming in
Bangladesh using recent observed temperature data and GIS, Clim. Dynam., 46,
2943–2960, 2016.
Ramana, R. V., Krishna, B., Kumar, S. R., and Pandey, N. G.: Monthly rainfall
prediction using wavelet neural network analysis, Water Resour. Manag., 27,
3697–3711, 2013.
Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M., and Perrin, J.:
Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field
relations, and hydrogeological setting, Hydrogeol. J., 13, 727–751, 2005.
R Core Team: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, 2016.
Ritter, A. and Muñoz-Carpena, R.: Performance evaluation of hydrological
models: Statistical significance for reducing subjectivity in goodness-of-fit
assessments, J. Hydrol., 480, 33–45,
https://doi.org/10.1016/j.jhydrol.2012.12.004, 2013.
Sang, Y.-F.: A practical guide to discrete wavelet decomposition of
hydrologic time series, Water Resour. Manag., 26, 3345–3365, 2012.
Sang, Y. F.: A review on the applications of wavelet transform in hydrology
time series analysis, Atmos. Res., 122, 8–15,
https://doi.org/10.1016/j.atmosres.2012.11.003, 2013.
Sang, Y.-F., Wang, Z., and Liu, C.: Discrete wavelet-based trend
identification in hydrologic time series, Hydrol. Process., 27, 2021–2031,
2013.
Santos, C. A. G and da Silva, G. B. L.: Daily streamflow forecasting using a
wavelet transform and artificial neural network hybrid models, Hydrolog. Sci.
J., 59, 312–324, 2014.
Scott, C. A. and Sharma, B.: Energy supply and the expansion of groundwater
irrigation in the Indus-Ganges Basin, International Journal of River Basin
Management, 7, 1–6, 2009.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Shahid, S. and Behrawan, H.: Drought risk assessment in the western part of
Bangladesh, Nat. Hazards, 46, 391–413, 2008.
Shahid, S. and Khairulmaini, O. S.: Spatial and temporal variability of
rainfall in Bangladesh, Asia-Pac. J. Atmos. Sci., 45, 375–389, 2009.
Shahid, S.: Recent trends in the climate of Bangladesh, Clim. Res., 42,
185–193, 2010.
Shamsudduha, M., Chandler, R. E., Taylor, R. G., and Ahmed, K. M.: Recent
trends in groundwater levels in a highly seasonal hydrological system: the
Ganges-Brahmaputra-Meghna Delta, Hydrol. Earth Syst. Sci., 13, 2373–2385,
https://doi.org/10.5194/hess-13-2373-2009, 2009.
Smith, L. C., Turcotte, D. L., and Isacks, B. L.: Stream flow
characterization and feature detection using a discrete wavelet transform,
Hydrol. Process., 12, 233–249, 1998.
Sneyers, R.: On the Statistical Analysis of Series of Observations,
Secretariat of the World Meteorological Organization, 192 pp., 1990.
SRDI (Soil Resources Development Institute): Soil map of Bangladesh, Soil
Resources Development Institute, 1998.
Sreekanth, P., Geethanjali, D. N., Sreedevi, P. D., Ahmed, S., Kumar, N. R.,
and Jayanthi, P. D. K.: Forecasting groundwater level using artificial neural
networks, Curr. Sci., 96, 933–939, 2009.
Stein, C. M.: Estimation of the Mean of a Multivariate Normal-Distribution,
Ann. Stat., 9, 1317–1322, 1981.
Syed, M. A. and Al Amin, M.: Geospatial Modeling for Investigating Spatial
Pattern and Change Trend of Temperature and Rainfall, Climate, 4, 21,
https://doi.org/10.3390/cli4020021, 2016.
Tabari, H. and Talaee, P. H.: Moisture index for Iran: spatial and temporal
analyses, Global Planet. Change, 100, 11–19, 2013.
Thornthwaite, C. W. and Mather, J. R.: The Water Balance, Publications in
Climatology, VIII(1), 1–104, Drexel Institute of Climatology, Centerton, New
Jersey, 1955.
Thornthwaite, C. W. and Mather, J. R.: Instructions and tables for computing
potential evapotranspiration and the water balance, Publications in
Climatology, Laboratory of Climatology, Drexel Institute of Technology,
Centerton, New Jersey, USA, 10, 183–311, 1957.
Tiwari, M. K. and Chatterjee, C.: Development of an accurate and reliable
hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid
approach, J. Hydrol., 1, 458–470, 2010.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am.
Meteorol. Soc., 79, 61–78, 1998.
Valipour, M.: Ability of Box-Jenkins Models to Estimate of Reference
Potential Evapotranspiration (A Case Study: Mehrabad Synoptic Station,
Tehran, Iran), IOSR Journal of Agriculture and Veterinary Science, 1, 1–11,
2012.
Valipour, M., Banihabib, M. B., and Behbahani, M. R.: Comparison of the ARMA,
ARIMA, and the autoregressive artificial neural network models in forecasting
the monthly inflow of Dez dam reservoir, J. Hydrol., 476, 433–441, 2013.
Viaroli, S., Mastrorillo, L., Lotti, F., Paolucci, V., and Mazza, R.: The
groundwater budget: a tool for preliminary estimation of the hydraulic
connection between neighboring aquifers, J. Hydrol., 556, 72–86,
doi.org/10.1016/j.jhydrol.2017.10.066, 2017.
Wang, W., Ding, J., and Li, Y.: Hydrologic Wavelet Analysis, Chemical
Industry Press, Beijing, China, 2005 (in Chinese).
Wang, D., Singh, V. P., Shang, X., Ding, H., Wu, J., Wang, L., Zou, X. Chen,
Y., Chen, X., Wang, S., and Wang, Z.: Sample entropy based adaptive wavelet
de-noising approach for meteorological and hydrologic time series, J.
Geophys. Res.-Atmos., 119, 8726–8740, https://doi.org/10.1002/2014JD021869, 2014.
Wolock, D. M. and McCabe, G. J.: Effects of potential climatic change on
annual runoff in the conterminous United States, J. Am. Water Resour. As.,
35, 1341–1350, 1999.
Xu, C.-Y. and Halldin, S.: The effect of climate change in river flow and
snow cover in the NOPEX area simulated by a simple water balance model, Proc.
of Nordic Hydrological Conference, Alkureyri, Iceland, 1, 436–445, 1996.
Yoon, H., Jun, S. C., Hyun, Y., Bae, G., and Lee, K. K.: A comparative study
of artificial neural networks and support vector machines for predicting
groundwater levels in a coastal aquifer, J. Hydrol., 396, 128–138, 2011.
Young, P. C.: Nonstationary time series analysis and forecasting, Progress in
Environmental Science, 1, 3–48, 1999.
Yue, S., Pilon, P., Phinney, B., and Cavadias, G.: The influence of
autocorrelation on the ability to detect trend in hydrological series,
Hydrol. Process., 16, 1807–1829, 2002.
Special issue