
Hydrol. Earth Syst. Sci., 22, 4213–4228, 2018
https://doi.org/10.5194/hess-22-4213-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Modeling the changes in water balance components of the highly
irrigated western part of Bangladesh
A. T. M. Sakiur Rahman1, M. Shakil Ahmed2, Hasnat Mohammad Adnan3, Mohammad Kamruzzaman4,
M. Abdul Khalek2, Quamrul Hasan Mazumder3, and Chowdhury Sarwar Jahan3

1Hydrology Lab, Department of Earth and Environmental Sciences, Graduate School of Science and Technology,
Kumamoto University, 2-40-1 Kurokami, Kumamoto, Japan
2Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
3Department of Geology and Mining, University of Rajshahi, Rajshahi 6205, Bangladesh
4Institute of Bangladesh Studies, University of Rajshahi, Rajshahi 6205, Bangladesh

Correspondence: A. T. M. Sakiur Rahman (shakigeo@gmail.com)

Received: 23 August 2017 – Discussion started: 10 October 2017
Revised: 12 June 2018 – Accepted: 9 July 2018 – Published: 9 August 2018

Abstract. The objectives of the present study were to ex-
plore the changes in the water balance components (WBCs)
by co-utilizing the discrete wavelet transform (DWT) and
different forms of the Mann–Kendall (MK) test and develop
a wavelet denoise autoregressive integrated moving average
(WD-ARIMA) model for forecasting the WBCs. The results
revealed that most of the potential evapotranspiration (PET)
trends (approximately 73 %) had a decreasing tendency from
1981–1982 to 2012–2013 in the western part of Bangladesh.
However, most of the trends (approximately 82 %) were not
statistically significant at a 5 % significance level. The actual
evapotranspiration (AET), annual deficit, and annual surplus
also exhibited a similar tendency. The rainfall and tempera-
ture exhibited increasing trends. However, the WBCs exhib-
ited an inverse trend, which suggested that the PET changes
associated with temperature changes could not explain the
change in the WBCs. Moreover, the 8-year (D3) and 16-
year (D4) periodic components were generally responsible
for the trends found in the original WBC data for the study
area. The actual data was affected by noise, which resulted in
the ARIMA model exhibiting an unsatisfactory performance.
Therefore, wavelet denoising of the WBC time series was
conducted to improve the performance of the ARIMA model.
The quality of the denoising time series data was ensured
using relevant statistical analysis. The performance of the
WD-ARIMA model was assessed using the Nash–Sutcliffe
efficiency (NSE) coefficient and coefficient of determination
(R2). The WD-ARIMA model exhibited very good perfor-

mance, which clearly demonstrated the advantages of denois-
ing the time series data for forecasting the WBCs. The valida-
tion results of the model revealed that the forecasted values
were very close to actual values, with an acceptable mean
percentage error. The residuals also followed a normal distri-
bution. The performance and validation results indicated that
models can be used for the short-term forecasting of WBCs.
Further studies on different combinations of wavelet analysis
are required to develop a superior model for the hydrological
forecasting in the context of climate change. The findings of
this study can be used to improve water resource manage-
ment in the highly irrigated western part of Bangladesh.

1 Introduction

The water balance model is considerably important for water
resource management, irrigation scheduling, and crop pat-
tern designing (Kang et al., 2003; Valipour, 2012). The model
can also be used for the reconstruction of catchment hydrol-
ogy, climate change impact assessment, and streamflow fore-
casting (Alley, 1985; Arnall, 1992; Xu and Halldin, 1996;
Molden and Sakthivadivel, 1999; Boughton, 2004; Anderson
et al., 2006; Healy et al., 2007; Moriarty et al., 2007; Karimi
et al., 2013). Therefore, accurately forecasting the water bal-
ance components (WBCs) and detecting the changes in them
is important for achieving sustainable water resource man-
agement. However, hydrometeorological time series are con-
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taminated by noises from hydrophysical processes. This af-
fects the accuracy of the analysis, simulation, and forecast-
ing (Sang et al., 2013; Wang et al., 2014). Hence, denois-
ing the time series is essential for improving the accuracy
of the obtained results. In this study, the wavelet denoising
technique was coupled with the ARIMA (autoregressive in-
tegrated moving average) model for forecasting the WBCs
after detecting the changes in them by using different forms
of the Mann–Kendall (MK) test. Moreover, the time period
responsible for the trends in the WBC time series was identi-
fied using discrete wavelet transform (DWT) time series data.

Physics-based numerical models are generally used for un-
derstanding a particular hydrological system and forecast-
ing the water balance or water budget components (Fulton
et al., 2015; Leta et al., 2016). To achieve reliable forecast-
ing using numerical models, a large amount of hydrological
data is required for assigning the physical properties of the
grid and model parameters and calibrating the model simula-
tion. However, numerical models have numerous limitations,
such as the cost, time, and availability of the data (Yoon et
al., 2011; Adamowski and Chan, 2011). Data-based forecast-
ing models and statistical models are suitable alternatives for
overcoming these limitations. The most common statistical
methods for hydrological forecasting are the ARIMA model
and multiple linear regression (Young, 1999; Adamowski,
2007). Many studies have used the ARIMA model to pre-
dict water balance input parameters, such as rainfall (Rah-
man et al., 2016), temperature (Nury et al., 2016), and po-
tential evapotranspiration (PET; Valipour, 2012). However,
the ARIMA model cannot handle nonstationary hydrolog-
ical data without preprocessing the input time series data
(Tiwari and Chatterjee, 2010; Adamowski and Chan, 2011).
Wavelet analysis, a new method in the area of hydrologi-
cal research, can be used to effectively handle nonstation-
ary data (Adamowski and Chan, 2011). Adamowski and
Chan (2011) coupled wavelet analysis with artificial neural
network (ANN) models for forecasting hydrological vari-
ables, such as the groundwater level, in Quebec, Canada.
Kisi (2008), Partal (2010), and Santos and da Silva (2014)
developed hybrid wavelet ANN models for monthly and
daily streamflow forecasting. Rahman and Hasan (2014)
found that the performance of wavelet-based ARIMA models
was superior to that of classical ARIMA models for forecast-
ing the humidity of the Rajshahi meteorological station in
Bangladesh. A comparative study of wavelet ARIMA mod-
els and wavelet ANN models was conducted by Nury et
al. (2017). The study indicates that the wavelet ARIMA mod-
els are more effective than wavelet ANN models for tem-
perature forecasting. Khalek and Ali (2016) developed the
wavelet seasonal ARIMA (W-SARIMA) and wavelet neural
network autoregressive (W-NNAR) models for forecasting
the groundwater level. They observed that the W-SARIMA
model exhibited a superior performance to the W-NNAR
model. In all the aforementioned studies, the performance of
the wavelet-aided model was better than that of the classical

ARIMA and ANN models. Moreover, analyzing the period-
icity using wavelet-transformed details and using the approx-
imation components of the hydrometeorological time series
data can provide insight regarding the effects of the time pe-
riod on the data trend (Nalley et al., 2013; Araghi et al., 2015;
Pathak et al., 2016). As a result, detecting the periodicity
through the wavelet transformation of hydrometeorological
time series data has gained popularity in recent years (Partal
and Küçük, 2006; Partal, 2009; Nalley et al., 2013; Araghi et
al., 2015; Pathak et al., 2016). Studies have been conducted
on the spatiotemporal characteristics of hydrometeorological
variables, such as rainfall (Shahid and Khairulmaini, 2009;
Ahasan et al., 2010; Kamruzzaman et al., 2016a; Rahman
and Lateh, 2016; Rahman et al., 2016; Syed and Al Amin,
2016), temperature (Shahid, 2010; Nasher and Uddin, 2013;
Rahman, 2016; Syed and Al Amin, 2016; Kamruzzaman et
al., 2016a), and PET (Hasan et al., 2014; Acharjee, 2017), in
Bangladesh. Karim et al. (2012) studied the WBCs, such as
the PET,AET, deficit of water, and surplus of water, of 12 dis-
tricts in Bangladesh. Kanoua and Merkel (2015) studied the
water balance of Titas Upazila (subdistrict) in Bangladesh.
Most of the studies conducted on hydrological variables in
Bangladesh were limited to detecting trends and forecasting
the rainfall and temperature. Therefore, this study was con-
ducted to detect the trends and identify the periodicities in
the WBCs, such as the potential evapotranspiration (PET),
actual evapotranspiration (AET), and annual deficit and sur-
plus of water, by co-utilizing the DWT and different forms
of the MK test in the western part of Bangladesh. More-
over, a wavelet denoise (WD)-ARIMA model was developed
for forecasting the WBCs. To date, no comprehensive study
has coupled wavelet denoising methods with ARIMA mod-
els for forecasting the WBCs. Wavelet denoising methods are
widely used in the engineering and scientific fields. How-
ever, these methods have been used to a limited extent in hy-
drology (Sang, 2013). The combination of wavelet denoising
methods with ARIMA models is expected to provide insight
regarding WBCs, which would ultimately help policymakers
prepare sustainable water resource management plans.

2 Study area, data, and methods

2.1 Study area

The climate of Bangladesh is humid, warm, and tropical.
The western part of Bangladesh covers approximately 41 %
or 60 165 km2 of the country. The geographic coordinates
of the study area extend between a latitude of 21◦36′–
26◦38′ N and longitude of 88◦19′–91◦01′ E. The annual rain-
fall and average temperature in the study area vary from
1492 to 2766 mm, with an average of 1925 mm, and 24.18
to 26.17 ◦C, with an average of 25.44 ◦C, respectively (Kam-
ruzzaman et al., 2016a). Bangladesh is the fourth-largest pro-
ducer of rice in the world (Scott and Sharma, 2009), and
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the livelihood of a majority of the people (approximately
75 %) (Shahid and Behrawan, 2008; Kamruzzaman et al.,
2016b) depends on agricultural practices. The crop calen-
dar of Bangladesh is related to the climatic seasons. Rice
is grown during three seasons (Aus, Aman, and Boro) in
Bangladesh. Almost 73.94 % of the cultivable area in the
country is used to cultivate Boro rice (Banglapedia, 2003).
The Aus and Aman rice varieties are mainly rain-fed crops.
However, Boro rice is almost completely groundwater-fed
(Ravenscroft et al., 2005) and requires approximately 1 m of
water per square meter in Bangladesh (Harvey et al., 2006;
Michael and Voss, 2009).

2.2 Data

The national climate database of Bangladesh prepared by
the Bangladesh Agricultural Research Council (BARC) was
used for this study. The database is available for research
and can be obtained from the BARC website (http://climate.
barcapps.gov.bd/, last access: 27 July 2018). The database
has been prepared from the data recorded by the Bangladesh
Meteorological Division and contains long-term monthly cli-
mate data, such as rainfall, minimum, maximum, and aver-
age temperatures, humidity, sunshine hours, wind speed, and
cloud cover. The locations of the meteorological stations in
the study area are displayed in Fig. 1. The data are rearranged
according to the hydrological year for the period from 1981–
1982 to 2012–2013. The hydrological year in Bangladesh be-
gins in April and ends in March.

2.3 Methods

In this study, the WBCs were calculated and their trends were
identified using the MK or Modified MK (MMK) test for
evaluating the long-term water balance of the highly irrigated
western part of Bangladesh. The DWT data of the WBC time
series were analyzed for identifying the time period respon-
sible for the trend in the data. The WBCs were forecasted us-
ing the ARIMA model, whose performance was statistically
evaluated. If the performance of the model was unsatisfac-
tory for forecasting the WBCs, denoising of the original time
series was conducted using DWT techniques to improve the
performance of the model. The descriptions of the methods
are presented in the following sections.

2.3.1 Calculation of the potential evapotranspiration
and water balance components

The potential evapotranspiration (PET) is a key parameter to
estimate the WBCs. In this study, the potential evapotran-
spiration was calculated using the Penman–Monteith equa-
tion (Allen et al., 1998). The soil–water balance concept pro-
posed by Thornthwaite and Mather (1955) is one of the most
widely used methods for estimating the WBCs. This method
is suitable for assessing the effectiveness of agricultural wa-
ter resource management practices and regional water bal-

Figure 1. Study area in the western part of Bangladesh with loca-
tions of meteorological stations.

ance studies because it allows the actual evapotranspiration
(AET), water deficit, and water surplus to be estimated (Chap-
man and Brown, 1966; Bakundukize et al., 2011; Karim et
al., 2012; Viaroli et al., 2017). The actual evapotranspira-
tion (AET) is the amount of water removed from the sur-
face due to evaporation and transpiration. The amount by
which the PET exceeds the AET is termed as the deficit.
The surplus is the excess rainfall received after the soil has
reached its water-holding capacity (de Jong and Bootsma,
1997). Calculating the field capacity of the soil is essential
for estimating the WBCs. The field capacity of the soil in
the study area was calculated using the soil texture map of
Bangladesh prepared by the Soil Resource Development In-
stitute, Bangladesh (SRDI, 1998), where the description of
the soils was presented by Huq and Shoaib (2013). The val-
ues suggested by Thornthwaite and Mather (1957) for the
water-holding capacity of the soil and rooting depth of the
plants were used for estimating the WBCs in this study. The
first step of the calculation involves subtracting 5 % rainfall
from the monthly rainfall data because this amount of wa-
ter is lost due to direct runoff (Wolock and McCabe, 1999;
Karim et al., 2012; Kanoua and Merkel, 2015). The remain-
ing rainfall amount is included in the calculation. The WBCs,
such as the AET, surplus, and deficit, were estimated using
the formulas presented in Table 1. The details of the WBC
calculations are available in the Supplement.
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Table 1. Calculations of water balance components (Thornthwaite and Mather, 1957).

Wet months ((P −R0) > PET) Dry months (P −R0) < PET

AET PET (P −R0)+1SB
Deficit 0 PET−AET
Surplus (P −R0)−PET 0

P is the rainfall (mm), R0 is the direct runoff (mm), PET is the potential evapotranspiration (mm),
AET is the actual evapotranspiration (mm), and 1SB is the changes in soil moisture storage (mm).

2.3.2 Trend test

In this study, the trends in the WBCs were detected using
the nonparametric MK test (Mann, 1945; Kendall, 1975) be-
cause it exhibits a better performance than the parametric test
(Nalley et al., 2012) for identifying trends in hydrological
variables, such as rainfall (Shahid, 2010), temperature (Kam-
ruzzaman et al., 2016a), PET (Kumar et al., 2016), soil mois-
ture (Tabari and Talaee, 2013), runoff (Pathak et al., 2016),
groundwater level (Rahman et al., 2016), and water quality
(Lutz et al., 2016). The MK test cannot be used to accu-
rately calculate the test statistic (Z) if there exists a signif-
icant serial correlation at lag 1 in the time series data (Yue
et al., 2002) because the variance is underestimated (Hamed
and Rao, 1998). The autocorrelation at lag 1 was checked
before analyzing the time series data. If there existed a sig-
nificant lag-1 autocorrelation at the 5 % level, the MMK test
(Hamed and Rao, 1998) was applied instead of the MK test.
The estimated Z statistic from the MK or MMK test was
evaluated for the direction of the trend (a positive Z statistic
indicated an increasing trend and vice versa). Moreover, the
Z statistic indicated the level of significance of the obtained
trend. If the calculated Z statistic is equal to or higher than
the tabulated value of the Z statistic (+1.96), it indicates a
significant positive trend at the 95 % confidence level. If the
calculated Z statistic is equal to or less than −1.96, it indi-
cates a significant decreasing trend. Moreover, the sequential
values of the u(t) statistic derived from the sequential MK
(SMK) test (Sneyers, 1990) are used for detecting the change
point. The u(t) statistic is similar to theZ statistic (Partal and
Küçük, 2006). The magnitude of the change was calculated
using Sen’s slope estimator (Sen, 1968). Numerous studies
have already been conducted (notably Nalley et al., 2012)
using the methods described in this section. Further details
regarding these methods can be obtained from Mann (1945),
Sen (1968), Kendall (1971), Hamed and Rao (1998), Sney-
ers (1990), and Yue et al. (2002).

2.3.3 Wavelet transform (WT) and periodicity

Wavelet analysis has been used in different parts of the world
to identify the periodicity in hydroclimatic time series data
(Smith et al., 1998; Azad et al., 2015; Nalley et al., 2012;
Araghi et al., 2015; Pathak et al., 2016). WT, a multireso-
lution analytical approach, can be applied to analyze time

series data because it offers flexible window functions that
can be changed over time (Nievergelt, 2001; Percival and
Walden, 2000). WT can be applied to detect the periodicity
in hydroclimatic time series data (Smith et al., 1998; Pišoft
et al., 2004; Sang, 2012; Torrence and Compo, 1998; Araghi
et al., 2015; Pathak et al., 2016) and exhibits better a perfor-
mance than traditional approaches (Sang, 2013). There exist
two main types of WT, namely continuous WT (CWT) and
DWT. Applying the CWT is complex because it produces nu-
merous coefficients (Torrence and Compo, 1998; Araghi et
al., 2015), whereas DWT is simple and useful for hydrocli-
matic analysis (Partal and Küçük, 2006; Nalley et al., 2012).
The wavelet coefficients of the DWT with a dyadic format
can be calculated as follows (Mallat, 1989):

ψm,n

(
t − τ

s

)
= s
−m/2
o ψ

(
t − nτos

m
o

smo

)
, (1)

where ψ is the mother wavelet, m is the wavelet dilation,
and n is the wavelet translation. The specified fixed dilation
step (so) is larger than 1, and τo is the location parameter. For
practical application, the values of so and τo are considered as
2 and 1, respectively (Partal and Küçük, 2006; Pathak, 2016).
After substituting these values in Eq. (1), the DWT for a time
series xi becomes the following:

Wm,n = 2−m/2
N−1∑
i=0

xiψ
(
2−m i− n

)
, (2)

where W indicates the wavelet coefficient at a scale s = 2m

and location τ = 2mn
In the DWT, details (D) and approximations (A) of the

time series can emerge from the original time series after
passing through low-pass and high-pass filters, respectively.
When approximations are the high-scale and low-frequency
components, details are the low-scale and high-frequency
components. Successive iterations are performed to decom-
pose the time series into its several low-resolution compo-
nents (Mallat, 1989; Misiti et al., 1997). In this study, four
levels (D1–D4) of decomposition were performed following
the dyadic scales. The decompositions are referred to as D1,
D2, D3, and D4, which correspond to a 2-, 4-, 8-, and 16-year
periodicity, respectively. The Daubechies wavelet was used
because of its superior performance in hydrometeorologi-
cal studies (Nalley et al., 2012, 2013; Ramana et al., 2013;
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Araghi et al., 2015). To confirm the periodicity present in the
time series, the correlation coefficient (Co) between u(t) of
the original data, u(t) of the decomposition (D) time series
data, and different models (D1+A . . . D4+D3+A) of the
time series data were calculated and the obtained results were
compared (Partal and Küçük, 2006; Partal, 2009).

2.3.4 ARIMA models

ARIMA models (Box and Jenkins, 1976) are used in hy-
drological science to identify the complex patterns in data
and project future scenarios (Adamowski and Chan, 2011;
Valipour et al., 2013; Nury et al., 2017; Khalek and Ali,
2016). ARIMA models include (1) an autoregressive process
(AR) represented by order p, (2) nonseasonal differences for
nonstationary data termed as order d, and (3) a moving aver-
age (MA) process represented by order q. An ARIMA model
of order (p,d,q) can be written as follows:

∅p (L)(1−L)dYt = θ0+ θq (L)Ut , (3)

where θ0 is the intercept with a mean of 0,Ut is the white pro-
cess with constant variance, ∅p (L) represents the AR term
(1−∅1L− . . . −∅pL

p), and θq (L) represents the MA term
(1− θ1L− . . . − θpL

p).

2.3.5 Wavelet denoising

Wavelet denoising based on the thresholds introduced by
Donoho et al. (1995) has been applied to hydrometeorolog-
ical analysis (Wang et al., 2005, 2014; Chou, 2011). In this
study, the following three analysis steps were performed for
denoising the time series data.

1. Decomposing the time series data x(t) into M resolu-
tion levels for obtaining the detail coefficients (Wj,k)
and approximation coefficients using the DWT.

2. The detail coefficients obtained from the DWT (1 to M
levels) were treated using threshold (Tj ) selection. A
soft or hard threshold can be used to deal with detail
coefficients and obtain the decomposed coefficient. In
this study, a soft threshold was selected because it per-
formed better than a hard threshold (Wang et al., 2014;
Chou, 2011).

Soft threshold processing:

W ′j,k =

{
sgn(Wj,k)

(∣∣Wj,k

∣∣− Tj ) ∣∣Wj,k

∣∣> Tj
0

∣∣Wj,k

∣∣< Tj .
3. Detail coefficients from levels 1 to M and approximate

coefficients at level M were reconstructed to obtain de-
noising time series data.

Selecting the threshold value is essential for denoising
the data. In this study, the universal threshold (UT) method
(Donoho and Johnstone, 1994) was used for estimating the

threshold value because it exhibited satisfactory performance
in analyzing hydrometeorological data (Wang et al., 2005;
Chou, 2011).

2.3.6 Assessment of model performance

There exist several indicators to assess the performance
of the models. The Nash–Sutcliffe efficiency (NSE) (Nash
and Sutcliffe, 1970) coefficient, a normalized goodness-of-fit
statistic, is the most powerful and popular method for mea-
suring the performance of hydrological models (McCuen et
al., 2006; Moussa, 2010; Ritter and Muñoz-Carpena, 2013).
The NSE coefficient was used in this study to evaluate and
compare the ARIMA and WD-ARIMA models. The NSE is
calculated as follows (Nash and Sutcliffe, 1970):

NSE= 1−
∑N
i=1(Oi −Pi)

2∑N
i=1(Oi −O)

2
= 1−

(
RMSE

SD

)2

, (4)

where N , Oi , Pi , O, and SD are the sample size, number
of observations, model estimates, mean, and standard devi-
ation of the observed values, respectively. The performance
of a model can be evaluated according to its NSE value as
very good (NSE≥ 0.9), good (NSE= 0.8–0.9), acceptable
(NSE≥ 0.65), and unsatisfactory (NSE < 0.65) (Ritter and
Muñoz-Carpena, 2013). ERMS is the root-mean-square error
and can be calculated as follows:

ERMS =

√∑N
i=1(Oi −Pi)

2

N
. (5)

The coefficient of determination (R2) is another goodness-
of-fit test to measure the performance of models. The perfect
fit of the model draws a line between the actual values and
fitted values, where R2 is 1. If yi is the observation data,
ŷi represents the model-forecasted values of yi and N is the
number of data points used.R2 is given as follows (Sreekanth
et al., 2009):

R2
= 1−

∑N
i=1
(
yi − ŷi

)2∑N
i=1(yi)

2
−
(
∑N
i=1yi )

2

N

. (6)

Moreover, the mean percentage error (EMP) and mean er-
ror (EM) were also calculated to evaluate the validation of
the model for forecasting. EMP indicates the percentage of
bias (large or small) between the forecasted and actual data
(Khalek and Ali, 2016). EMP and EM can be calculated as
follows:

EMP =

(
1
n

n∑
t=1

Yt (actual)−Yt (forecasted)
Yt (actual)

)
× 100%, (7)

EM =
1
n

n∑
t=1
[Yt (actual)−Yt (forecasted)]2. (8)
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3 Results

3.1 Exploratory statistics of the water balance
components

The mean annual PET in the study area between 1981–1982
and 2012–2013 varied from 1228 to 1460 mm (Fig. 2a), with
an average of 1338 mm. High PET values were observed in
the central part of the area, where the annual rainfall was low,
but the temperature was high (Kamruzzaman et al., 2016a).
The standard deviations of the PET varied from 205 (Jessore
station) to 41 mm (Bhola station). The AET (Fig. 2b) (aver-
age= 925 mm) was almost 31 % less than the PET because
during the dry months (December–May), the soil moisture
condition reached a critical stage. The annual surplus of wa-
ter varied from 515 to 1277 mm (Fig. 2c), with an average
of 838 mm. According to Wolock and McCabe (1999), 50 %
of the surplus water can be considered as runoff for the ma-
jor parts of the world. A high amount of surplus water was
found in the northern part of the study area and along the
coastal area. The annual deficit of water, which mainly oc-
curred during the dry season (December–May), varied from
329 to 556 mm, with an average of 416 mm (Fig. 2d). The
highest annual deficit of water was observed in Rajshahi,
which is located in the central–western part of the study area,
where the depth of groundwater below the surface increases
rapidly (Shamsudduha et al., 2009; Rahman et al., 2016).

3.2 Trend and periodicity of the water balance
components

3.2.1 Potential evapotranspiration

The MK or MMK test based on lag-1 autocorrelation was
applied to detect the trend in the PET. Table 2 represents the
Z statistic of the MK or MMK test for the original PET time
series data and the Z statistic of the decomposition (D1–D4),
approximation (A), and model (D1+A . . . D3+D4+A)
time series. The estimated Z statistic of the original data
ranged from−2.07 (Satkhira station) to 2.37 (Bhola station).
The Satkhira and Bhola stations exhibited significant PET
trends. The plots of the sequential u(t) statistic obtained from
the SMK test for these two stations are displayed in Fig. 3,
where the dashed lines correspond to a 5 % significance level
(±1.96). The decreasing PET trend for the Satkhira station
began in 1985–1886, and a significant decreasing trend oc-
curred in 1993–1994. The trend reversed after 2007–2008.
However, the significant increasing PET trend of the Bhola
station began very recently (2010–2011) after some fluctua-
tion.

Most of the trends (73 %) observed in the PET time se-
ries data of the study area were negative and statistically in-
significant at the 95 % confidence level or 5 % significance
level. Moreover, theZ statistic of the approximation (A) time
series obtained using the DWT indicated decreasing PET

trends for all the stations. The calculated Z statistic of the
approximation (A) time series was approximately −1.8 after
rounding the figures for all the stations. The approximation
time series data of all the stations exhibited a similar pattern
(Fig. S1 of the Supplement) over time. The magnitude of PET
changes ranged from −10.89 mm yr−1 for the Satkhira sta-
tion to 1.67 mm yr−1 for the Bhola station (Fig. 4a). The MK
or MMK test was also applied to the decomposition time se-
ries and model time series generated from the combination
of the approximation and decomposition time series data.
Table 2 represents the results for four stations arranged in
alphabetical order, and the complete results can be found in
Table S1 of the Supplement. To determine the dominant peri-
odicity affecting the PET trends, a two-step analysis was per-
formed. First, the value closest to the Z statistic of the origi-
nal time series data was obtained from the Z-statistic values
of different model and decomposition time series data. Sec-
ond, the correlation coefficients (Co) of pairs of data (such
as the Co between the u(t) statistics obtained from the SMK
test for the original and decomposition time series data) were
estimated, and the highest Co was determined from the esti-
mated Co values for different pairs (Table 2). The Z statistic
of the D4 time series data for the Barisal station was 0.76,
which was the closest to the Z statistic (0.72) of the origi-
nal time series data (Table 2). Moreover, the Z statistic of
the model (D3+D4+A) time series data was 0.56, which
is the second-nearest value to the Z statistic of the origi-
nal time series and has the highest correlation coefficient
(Co= 0.85). The D4 (16-year) component was the dominant
periodic component in the trend of the original data. How-
ever, D3 also affected the trend of the data. The Z-statistic
value (2.47) of the original time series for the Bhola station
was the closest to that (2.36) of the model (D2+D4+A)
time series data. However, the Z-statistic values of the D2,
D4, D2+A, and D4+A time series were 0.61, 1.2, 0.48, and
0.9, respectively. These values were not close to the Z statis-
tic of the original time series data. Hence, in this case, the Z
statistic was unable to determine which periodic component
(D2/D4) was the basic periodic component for the signifi-
cant trend in the original data. To determine the dominant
periodic component, the values of Co were analyzed. The
correlation coefficient (Co) between the u(t) statistic of the
SMK test for the original and D4 time series data was higher
than the correlation coefficient between the u(t) statistic of
the SMK test for the original and D2 time series data (Ta-
ble 2). Moreover, the values of the Z statistic for time series
with the D4 components, such as the D4 and D4+A model
time series, were higher than those for time series with the D2
component (D2 and D2+A) (Table 2). Therefore, D4 was
the main periodic component responsible for the PET trend
of the Bhola station. However, the Z-statistic values of D4
and D4+A were not close to the Z statistic of the original
data (Table 2). Moreover, there existed a statistically signifi-
cant positive trend in the original PET data of the Bhola sta-
tion, whereas the trends of the D4 and D4+A model time se-
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Figure 2. Distribution of mean annual (a) PET, (b) AET, (c) surplus, and (d) deficit of water in the study area during the hydrologic year
1981–1982 to 2012–2013.

Table 2. Z statistic of MK or MMK of original time series, approximation, and different models PET of DWT (the dominant components
are shown in bold and the asterisks denote significance at a 5 % level).

Barisal Bhola Bogra Dinajpur

Station models Z Co MSE Z Co MSE Z Co MSE Z Co MSE

Original 0.72 2.37∗ −0.20 −0.98
A −1.80 0.24 11.56 −1.80 −0.15 17.15 −1.80 0.83 4.66 −1.80 0.83 3.47
D1 0.91 0.50 0.50 2.02∗ 0.25 0.68 1.16 −0.42 5.10 −

D2 −0.03 0.17 1.51 0.61 0.21 0.94 0.16 0.60 3.70 0.43 0.63 8.82
D3 0.45 0.17 1.51 0.46 0.21 0.94 1.08 0.60 3.70 0.90 0.63 8.82
D4 0.76 0.37 3.93 1.20 0.80 7.28 1.14 0.13 3.76 2.10∗ −0.03 13.35
D1+A −0.89 0.35 0.71 1.58 0.11 0.72 −2.35∗ 0.90 0.54 −1.70 0.95 0.44
D2+A −1.51 0.14 2.75 0.48 0.13 1.05 −1.54 0.89 0.62 −2.05∗ 0.93 1.25
D3+A −0.66 0.50 1.90 0.31 0.14 1.23 −1.91 0.89 5.72 −1.56 0.95 3.03
D4+A 0.06 0.53 9.99 0.90 0.77 8.71 −0.34 0.58 7.32 −1.79 0.85 2.41
D1+D2+A −0.89 0.35 0.82 0.73 0.39 0.68 −1.12 0.88 0.77 −1.76 0.97 0.18
D1+D3+A −0.81 0.58 0.88 0.79 0.31 0.69 −1.33 0.87 0.89 −1.51 0.98 0.38
D1+D4+A 0.91 0.63 1.16 2.29∗ 0.83 0.35 0.24 0.87 0.53 −1.15 0.97 0.20
D2+D3+A −0.46 0.43 1.24 1.01 0.08 2.42 −1.33 0.89 1.10 −1.37 0.96 1.35
D2+D4+A 0.54 0.50 2.84 2.36∗ 0.77 0.68 0.10 0.88 0.60 −1.27 0.94 0.85
D3+D4+A 0.56 0.85 2.04 1.83 0.90 0.74 −0.30 0.87 1.37 −1.54 0.96 2.10

MSE, total mean square error; Co, correlation between original data and DWT models.

ries data were not statistically significant. When the D2 time
series was added to the D4+A model time series data, the
Z statistic of the resultant (D2+D4+A) model time series
data was very close to that of the original time series data.
The trend of the D2+D4+A model time series was statis-
tically significant, similar to the trend in the original time
series data (Table 2). Hence, D2 affected the trend of the
original time series data. Station-wise analysis indicated that
almost half of the stations exhibited harmony between the Z-
statistic values of the D3+D4+A model and original time
series data. Individual analysis of the D3 and D4 time series
data indicated that a higher relationship existed between the
D4 and original time series data. Three stations (Dinajpur,
Ishurdi, and Jessore) exhibited similar Z-statistic values for
the original and D1+D4+A model time series data, with
higher Co values of the u(t) statistic for the SMK test on

the D4 time series data than that for the SMK test on the
original data (except for the Ishurdi station). Moreover, two
stations (Bhola and Satkhira) exhibited significant trends in
the original data. The closest Z statistic was found between
the original and D2+D4+A time series data for both of the
stations. D4 (16-year periodicity) was the dominant periodic
component according to the Co values for both these stations.
Therefore, 16-year periodicity was the main periodic compo-
nent responsible for the trends in the PET data over the study
area. Moreover, D3 (8-year) periodicity also had an effect on
the trends for some stations (Tables 2 and S1). D4 (16-year)
periodicity dominates the annual rainfall trend for the Mar-
mara region in Turkey (Partal and Küçük, 2006). Araghi et
al. (2015) determined that 8–16-year (D3 to D4) periodicity
is responsible for the trends in the annual temperature in Iran.
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Table 3. Comparison of performance of ARIMA model and WD-ARIMA model.

PET AET Surplus Deficit

ARIMA WD-ARIMA WD-ARIMA WD-ARIMA WD-ARIMA

Stations NSE R2 NSE R2 NSE R2 NSE R2 NSE R2

Barisal 0.42 0.43 0.95 0.57 0.58 0.58 0.99 0.99 0.87 0.87
Bhola −0.57 0.10 0.95 0.61 0.98 0.59 0.99 0.99 0.56 0.67
Bogra 0.52 0.50 0.68 0.63 0.97 0.97 0.99 0.99 0.95 0.95
Dinajpur 0.54 0.52 0.99 0.79 0.98 0.98 0.84 0.95 0.95 0.94
Faridpur 0.32 0.30 0.65 0.50 0.99 0.99 0.99 0.99 0.87 0.88
Ishurdi 0.34 0.31 0.39 0.57 0.99 0.99 0.98 0.56 0.88 0.89
Jessore 0.81 0.81 0.76 0.67 0.82 0.82 0.96 0.96 0.82 0.77
Khulna 0.31 0.29 0.45 0.41 0.98 0.97 0.99 0.99 0.94 0.94
Rajshahi 0.58 0.56 0.60 0.61 0.99 0.99 0.98 0.98 0.97 0.97
Rangpur 0.19 0.20 0.98 0.98 0.84 0.92 0.47 0.49 0.86 0.84
Satkhira 0.77 0.20 0.95 0.98 0.99 0.99 0.99 0.99 0.99 0.99
Average 0.38 0.38 0.76 0.67 0.92 0.89 0.92 0.90 0.88 0.88

Figure 3. Sequential values of the u(t) statistics of (a) Satkhira sta-
tion and (b) Bhola station.

3.2.2 Actual evapotranspiration

All the stations except the Bogra station exhibited decreas-
ing trends in the AET. The calculated Z statistic ranged from
−2.90 for the Bogra station to 0.31 for the Ishurdi station.
Similar to the PET trends, the AET trends were also insignif-
icant at a 5 % significance level. However, the Ishurdi sta-
tion exhibited a significant (at a 5 % significance level) de-
creasing trend. The magnitudes of the trends of the original
AET data varied from−5 mm yr−1 for the Faridpur station to
0.75 mm yr−1 for the Bogra station. The distribution of the

trend magnitude is displayed in Fig. 4b. The periodicity in
the AET was marginally different from that in the PET (Ta-
ble S2). For almost half of the stations (five), D2 (4-year)
was the main periodic component. D4 (16-year) also affected
the trend because the Z statistic of the D2+D4+A model
time series was the nearest to that of the original series for
the Khulna and Ishurdi stations. Moreover, D4 (16-year) was
the main periodic component for the Rangpur and Rajshahi
stations. D1 (2-year) was the dominant periodic component
for the Barisal, Bhola, and Bogra stations. The AET value de-
pends on climatic factors, such as the PET, rainfall, and soil
moisture conditions. The variations in the periodicities of the
AET and PET were mainly related to the soil moisture condi-
tions of the area.

3.2.3 Surplus

Almost 82 % of the stations exhibited insignificant decreas-
ing trends for the annual surplus of water. The magnitude of
the trends of the original annual surplus data ranged from
−11.63 to 6.71 mm yr−1 (Fig. 4c). The periodicity character-
istics of the PET and surplus were similar (Table S3). D4 (16-
year) was the main periodic component present in seven sta-
tions. In most cases, D2 was also present (D2+D4+A), ex-
cept in Rajshahi. D3 (8-year) was mainly responsible for the
surplus trend of three stations. Surplus mainly occurred dur-
ing the rainy season (June–October) in the study area, when
the soil pores were almost completely filled with water and
the AET was equal to the PET. Surplus mainly depends on
rainfall and hence provides insight regarding the periodicity
in rainfall.

3.2.4 Deficit

Approximately 73 % of the stations exhibited increasing
trends for the annual deficit of water. The increasing trends
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Figure 4. Distribution of rate of changes of WBCs during the period of 1981–1982 to 2012–2013.

were significant for two stations at the 95 % confidence level
(Table S4). However, the Satkhira station exhibited a signif-
icant decreasing trend (Z=−2.08) in the annual deficit of
water. The magnitude of the trends of the original annual
deficit data ranged from −8.1 to 7.7 mm yr−1 (Fig. 4b). Peri-
odicity analysis revealed that D4 was mainly responsible for
the trends in the annual deficit of water. The Z statistic of
the (D2+D4+A) model time series data was close to the
Z statistic of the original time series data (Table S4). D3 (8-
year periodicity) was also responsible for the trends in the
data of the two stations.

3.3 Model selection and forecasting ability

The ARIMA model was selected for forecasting the WBC
time series. A four-step analysis was performed during time
series modeling. (1) First, the stationarity of the data was
checked using the Augmented Dickey–Fuller (ADF) test.
(2) Then, the autocorrelation function (ACF) was used for
selecting the order of the MA process (Figs. S2–S5). (3) The
partial autocorrelation function (PACF) was then used for se-
lecting the order of the AR process (Figs. S2–S5). (4) Finally,
the appropriate model was selected based on several trials
and model selection criteria, such as Akaike information cri-
terion (AIC) and Bayesian information criterion (BIC). In
addition to the manual model selection based on the ACF,
PACF, AIC, and BIC, the auto ARIMA function of the “fore-
cast” package (Hyndman et al., 2017) of R (R 3.4.0 language
developed by R Core Team, 2016) was used during the trails
for model selection to obtain information regarding the na-
ture of the data for modeling. The model with the lowest AIC
and BIC values and highest R2 value was selected. The Q–
Q plot was prepared to examine the normality of the residu-
als. The performance of the ARIMA model (parameters are
given in Table S5) was evaluated using the NSE coefficient
and R2 values (Table 3). The estimated NSE coefficient of
the ARIMA model for the PET time series varied from −0.6
for the Bhola station to 0.81 for the Jessore station (Table 3).
The ARIMA model exhibited an unsatisfactory performance

for almost all the stations. The average NSE coefficient of
the 11 stations was 0.38, and the R2 values ranged from 0.1
to 0.81, with an average of 0.38. Moreover, the NSE coeffi-
cient of the Bhola station indicated that the ARIMA model
was unsuitable for forecasting the PET. The ARIMA model
was also applied to the AET, surplus, and deficit time se-
ries data. There existed no significant spikes in the ACF and
PACF of the AET (Fig. S3). Moreover, the results obtained
from the auto ARIMA functions exhibited similar results.
Therefore, the ARIMA model was unsatisfactory for fore-
casting the variability in the AET. For WBCs such as surplus
and deficit, the performance of the ARIMA model was sim-
ilar to that of the AET, except for a few cases. Because hy-
drometeorological data are affected by noises from different
hydrophysical processes (Wang et al., 2014), the results ob-
tained using the ARIMA models were unsatisfactory. To im-
prove model performance, noise must be removed from the
data. In this study, DWT denoising was applied to the WBC
data and the quality of the denoising time series data was ex-
amined before further processing. When selecting a method
for denoising the time series using WT, the mean of the orig-
inal and denoising time series data should be close and the
standard deviation of the denoising time series should be less
than that of the original time series (Wang et al., 2014). Fig-
ure 5a displays the means of the actual and wavelet denois-
ing PET time series. No visible difference was observed be-
tween the mean of the original and DWT wavelet denois-
ing time series data. Moreover, the standard deviation of the
PET for the wavelet denoising time series was lower than that
for the original time series (Fig. 5b). The AET, surplus, and
deficit time series also exhibited similar results. Furthermore,
the lag-1 autocorrelation of the wavelet denoising time se-
ries data must be higher than that of the original time series
(Wang et al., 2014). Under this condition, the absolute lag-1
value of autocorrelation for the wavelet denoising time se-
ries was higher than that for the original series (Figs. S2b,
S3b, S4b, and S5b). The performance of the WD-ARIMA
model is represented in Table 3. After denoising the data, the
performance of the ARIMA model was satisfactory for all
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Figure 5. Comparison between actual and wavelet denoise PET
time series (a) mean and (b) standard deviation.

the WBC time series data (Table 3). The average NSE co-
efficient of the WD-ARIMA model for the PET time series
of the 11 stations located in the western part of Bangladesh
was 0.76, with an average R2 value of 0.67. The R2 and NSE
coefficient values indicated that the performance of the WD-
ARIMA model was better than that of the classical ARIMA
model for the modeling of PET (Table 3). Moreover, the av-
erage NSE value of the WD-ARIMA model for the AET time
series of the 11 stations was 0.92, which indicated that the
performance of the model was very good. The average R2

value was 0.89, which indicated that the model could explain
almost 89 % of the variance in the data (Table 3). The WD-
ARIMA model also exhibited a very good forecasting per-
formance for the annual surplus and deficit (Table 3). The
average NSE coefficient of the WD-ARIMA model for the
annual surplus of the 11 stations was approximately 0.92, and
the average R2 value was 0.9. The WD-ARIMA model ex-
hibited a good performance in forecasting the annual deficit
(average NSE= 0.88). The performance of the WD-ARIMA
model was good or very good for forecasting the AET, an-
nual surplus, and annual deficit. However, the performance
was acceptable for forecasting the PET. This deviation may
have arisen because the variability of the PET was higher than
that of the other WBCs or the deviation may be related to the
variability of climatic variables.

The WD-ARIMA models were validated to explore their
forecasting ability. The mean percentage error (EMP) of the
forecasted values for the 4-year period from 2008–2009 to
2012–2013 was calculated to determine the percentage bias
of the forecasted data (Table 4). The average EMP of the
WD-ARIMA model for the PET values of the 11 stations was
−0.6 (ranging from 0.75 to −3.34), which indicated that the

forecasted values were marginally lower than the actual val-
ues. The typical plots of the actual time series data versus
the fitted model data, normal Q–Q plots of the residuals of
the models, and actual and observed values for the WBCs
(plots for all the stations are displayed in Figs. S6–S9) are
illustrated in Fig. 6. The plot of the actual values versus the
forecasted values (Fig. 6) indicates that the actual and fore-
casted values were very close for the hydrologic years 2009–
2010 and 2010–2011. The normal Q–Q plots revealed that
the residuals of the models were near normal. However, the
differences in the values increased after these two hydro-
logic years for all the WBCs (Figs. S6–S9). The EMP val-
ues of WD-ARIMA models for the AET ranged from −0.7
to 0.2, with an average of −0.09, which indicated that the
forecasted AET values were marginally lower than the ac-
tual AET values. The EMP values for the annual surplus (av-
erage=−0.75) and annual deficit (average=−0.12) were
similar to that for the AET and PET. The average EMP val-
ues for all the WBCs were negative, which indicated that the
forecasted values for the WBCs were marginally lower than
the actual values for most of the stations.

3.4 Discussion

This study indicated that a decreasing PET trend dom-
inated the study area. However, positive trends in the
rainfall and temperature dominated the western part of
Bangladesh (Shahid and Khairulmaini, 2009; Kamruzzaman
et al., 2016a). Moreover, a recent study found a negative
trend in the evapotranspiration for four stations located in
northwest Bangladesh (Acharjee et al., 2017). Although the
annual rainfall and temperature of the Satkhira station ex-
hibited positive trends (Kamruzzaman et al., 2016a), its PET
exhibited a significant decreasing trend. Increasing tempera-
ture and decreasing PET trends were observed in the Yunnan
Province of South China (Fan and Thomas, 2012). McVicar
et al. (2012) also found decreasing PET trends in different
parts of the world. Therefore, although the temperature is
the primary factor driving changes in the PET (IPCC, 2007),
temperature-based models cannot suitably explain the causes
of PET changes. To obtain a detailed insight regarding the
mechanisms underlying the PET changes, a detailed analysis
must be conducted of all climatic variables, such as rainfall,
temperature, sunshine hours, wind speed, and humidity, and
climate-controlling phenomena, such as El Niño–Southern
Oscillation.

The WD-ARIMA model was used in this study for fore-
casting the WBCs. The performance of the model indicated
the benefit of denoising hydrological time series data, such
as the PET, AET, surplus, and deficit. However, the NSE co-
efficient indicated that the performance of the model was ac-
ceptable for PET forecasting (NSE≥ 0.65). The deviation be-
tween the forecasted values and actual values increased with
increasing time steps. Therefore, the WD-ARIMA model
was unsuitable for long-term forecasting. The WD-ARIMA
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Table 4. Accuracy of WD-ARIMA models of WBCs for validation of the model’s predictive ability for the period of 2009–2010 to 2012–
2013.

PET AET Surplus Deficit

Stations EM EMP EM EMP EM EMP EM EMP

Barisal 0.07 −0.02 −5.36 −0.70 −0.70 −0.10 0.80 0.29
Bhola 0.75 0.06 −0.10 −0.01 −0.80 −0.10 0.80 0.29
Bogra −0.75 −0.19 0.19 0.02 −1.10 −0.10 −0.07 −0.03
Dinajpur −0.16 −0.01 −0.19 −0.02 −0.10 0.00 −0.17 −0.10
Faridpur −2.22 −0.25 −0.77 −0.07 −0.10 0.00 1.05 0.39
Ishurdi 0.34 −0.16 −0.45 −0.05 −0.20 0.00 0.72 0.25
Jessore 0.11 −0.02 0.26 0.02 0.70 0.00 1.52 −2.42
Khulna −1.56 −0.22 −0.53 −0.05 0.60 0.10 0.01 −0.01
Rajshahi −3.34 −0.35 −0.11 −0.01 −0.60 −0.10 −0.14 0.08
Rangpur −0.11 −0.01 −0.40 −0.05 −8.50 −7.90 −0.05 −0.14
Satkhira 0.54 0.04 −0.36 −0.04 0.50 0.10 −0.43 0.12
Average −0.57 −0.10 −0.71 −0.09 −0.95 −0.75 0.37 −0.12

model was developed by coupling the discrete wavelet de-
noising time series data and ARIMA model. The soft thresh-
old method was selected for denoising the time series data,
and the UT method was used for determining the thresh-
old value. However, there exist other approaches, such as
SURE (Stein, 1981) and MINMAX (Donoho and Johnstone,
1998), for determining the threshold value. Moreover, Wang
et al. (2014) developed a hybrid method called the adaptive
wavelet denoising approach using sample entropy (AWDA-
SE) for denoising hydrometeorological time series data, such
as rainfall and streamflow data. The study (Wang et al., 2014)
indicated that the performance of the developed denoising
method was better than that of conventional methods for de-
noising rainfall and streamflow data. The aforementioned ap-
proaches may be used to increase the performance of the
ARIMA model for forecasting hydrological variables, such
as the PET. Moreover, there exist several mother wavelet
families, such as Daubechies, Haar, Coiflets, Morlet, and
Mexican hat (Sang, 2013). In this study, only Daubechies 6
from the Daubechies wavelet family was applied as the
mother wavelet for the DWT. The WD-ARIMA model ex-
hibited very good performance for forecasting the AET, sur-
plus, and deficit, whereas the classical ARIMA model exhib-
ited poor performance or was unable to forecast the WBCs.
Moreover, studies (Chou, 2011; Kisi, 2008; Partal, 2009;
Santos and da Silva, 2014; Rahman and Hasan, 2014; Nury
et al., 2016; Adamowski and Chan, 2011; Khalek and Ali,
2016) have indicated that the performance of wavelet-aided
models is better than that of the classical ARIMA and ANN
models for forecasting nonstationary hydrometeorological
variables. Because traditional methods such as Wiener filter-
ing, Kalman filtering, and Fourier transform are unsuitable
for nonstationary hydrological time series data (Adamowski
and Chan, 2011; Sang, 2013), wavelet denoising can be used
to improve the performance of the classical ARIMA model
for forecasting hydrological variables.

4 Summary and conclusions

In this study, the changes in the WBCs were explored us-
ing various forms of the wavelet-aided MK test. Moreover,
a wavelet-aided ARIMA model was used for forecasting the
WBCs. The results obtained from trend analysis indicated
that decreasing trends were dominant in all the WBCs in the
western part of Bangladesh during the period from 1982–
1983 to 2012–2013. However, most of the trends were in-
significant at the 95 % confidence level. One significant pos-
itive and one significant negative PET trend was found for
the Satkhira and Bhola stations, respectively. Different com-
binations of the D and A (i.e., D+A and D+A+A) com-
ponents of the DWT were analyzed using the Co value of
the u(t) statistic from the SMK test, which provides detailed
information regarding the dominant periodicity and time pe-
riod affecting the trend of the original data (see the Trend and
periodicity section or the example of the Bhola station). The
findings of this study revealed that to obtain details regarding
the time period responsible for the trends in the data, different
combinations of components (D+A and D+A+A) must
be analyzed rather than only the details (D) or approximation
(A) components of the WT data. Moreover, this study indi-
cated that the changes in temperature and rainfall were not
only associated with the changes in the PET. To determine
the attributes of PET changes, a detailed analysis must be
conducted of all the relevant climatic variables. In the west-
ern part of Bangladesh, the D3 (8-year) and D4 (16-year)
components had a dominant effect on the trends in the orig-
inal WBC time series data. D2 (4-year) periodicity was also
present in some cases, especially for the AET. Because sur-
plus occurs during the monsoon season and most of the rain-
fall occurs during this season, the rainfall pattern may have a
similar periodicity (D3 to D4).

Modeling of the study revealed that the WBC time series
data was affected by noises from different hydrophysical in-
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Figure 6. Plot of best WD-ARIMA model first panel represents actual versus fitted values for the period of 1981–1982 to 2012–2013, the
second panel is normal Q–Q plot of residuals of the model, and the third panel shows actual, fitted, and forecasted values for 2009–2010
to 2012–2013. (a) PET of Rangpur station located in the north, (b) AET of Ishurdi station located in the central part, (c) deficit of Rajshahi
station located in NW Bangladesh, and (d) surplus of Bhola station located in the south of the study area.

teractions. As a result, the classic ARIMA model exhibited
unsatisfactory performance in most of the cases (e.g., PET) or
was unable to model the variability and changes in the AET,
surplus, and deficit. This study indicated that the ARIMA

model can be used to model the time series data of WBCs
after denoising the data using DWT with a UT. The qual-
ity of the wavelet denoising time series data was evaluated,
and satisfactory results were obtained for WBC data denois-

Hydrol. Earth Syst. Sci., 22, 4213–4228, 2018 www.hydrol-earth-syst-sci.net/22/4213/2018/



A. T. M. S. Rahman et al.: Modeling the changes in water balance components 4225

ing. The performance of the fitted WD-ARIMA model was
evaluated using the NSE and R2 values. The average NSE
and R2 values of the 11 stations located in the western part
of Bangladesh were 0.76 and 0.67, respectively, for the PET;
0.92 and 0.89, respectively, for the AET; 0.92 and 0.9, re-
spectively, for the annual surplus; and 0.88 each for the an-
nual deficit. The validation of the WD-ARIMA model for the
period of 2009–2010 to 2012–2013 provided an acceptable
EMP value. Thus, the WD-ARIMA model had an accept-
able to very good performance for the short-term forecast-
ing of WBCs. However, the gap between the actual and fore-
casted data increased with increasing time. The obtained re-
sults encourage further studies to determine a realistic model
for real-world application under changing climate. The re-
sults of this study can be incorporated into water resource
management plans for the highly irrigated western part of
Bangladesh, where the groundwater resource is at a critical
stage. Further studies regarding the denoising of hydrolog-
ical time series data using different mother wavelets, such
as Haar and Coiflet, and the determination of thresholds by
using the MINMAX, SURE, or entropy-based adaptive de-
noising approaches would enable the development of supe-
rior models for forecasting hydroclimatic time series in the
context of climate change and be beneficial for sustainably
managing water resources.
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