Articles | Volume 22, issue 7
Hydrol. Earth Syst. Sci., 22, 3965–3981, 2018
https://doi.org/10.5194/hess-22-3965-2018
Hydrol. Earth Syst. Sci., 22, 3965–3981, 2018
https://doi.org/10.5194/hess-22-3965-2018
Research article
20 Jul 2018
Research article | 20 Jul 2018

Water ages in the critical zone of long-term experimental sites in northern latitudes

Matthias Sprenger et al.

Related authors

Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022,https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
Mechanisms of consistently disjunct soil water pools over (pore) space and time
Matthias Sprenger, Pilar Llorens, Carles Cayuela, Francesc Gallart, and Jérôme Latron
Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019,https://doi.org/10.5194/hess-23-2751-2019, 2019
Short summary
Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone
Matthias Sprenger, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017,https://doi.org/10.5194/hess-21-3839-2017, 2017
Short summary
Form and function in hillslope hydrology: characterization of subsurface flow based on response observations
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017,https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017,https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Modelling approaches
Stepping beyond perfectly mixed conditions in soil hydrological modelling using a Lagrangian approach
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022,https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Using machine learning to predict optimal electromagnetic induction instrument configurations for characterizing the shallow subsurface
Kim Madsen van't Veen, Ty Paul Andrew Ferré, Bo Vangsø Iversen, and Christen Duus Børgesen
Hydrol. Earth Syst. Sci., 26, 55–70, https://doi.org/10.5194/hess-26-55-2022,https://doi.org/10.5194/hess-26-55-2022, 2022
Short summary
Gravity as a tool to improve the hydrologic mass budget in karstic areas
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021,https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
A scaling procedure for straightforward computation of sorptivity
Laurent Lassabatere, Pierre-Emmanuel Peyneau, Deniz Yilmaz, Joseph Pollacco, Jesús Fernández-Gálvez, Borja Latorre, David Moret-Fernández, Simone Di Prima, Mehdi Rahmati, Ryan D. Stewart, Majdi Abou Najm, Claude Hammecker, and Rafael Angulo-Jaramillo
Hydrol. Earth Syst. Sci., 25, 5083–5104, https://doi.org/10.5194/hess-25-5083-2021,https://doi.org/10.5194/hess-25-5083-2021, 2021
Short summary
From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021,https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary

Cited articles

Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., Kormos, P., and Soulsby, C.: Modeling the isotopic evolution of snowpack and snowmelt: testing a spatially distributed parsimonious approach, Water Resour. Res., 53, 5813–5830, https://doi.org/10.1002/2017WR020650, 2017a. 
Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, 2017b. 
Ali, M., Fiori, A., and Russo, D.: A comparison of travel-time based catchment transport models, with application to numerical experiments, J. Hydrol., 511, 605–618, https://doi.org/10.1016/j.jhydrol.2014.02.010, 2014. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, D05109, 1998. 
Asano, Y., Uchida, T., and Ohte, N.: Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan, J. Hydrol., 261, 173–192, https://doi.org/10.1016/S0022-1694(02)00005-7, 2002. 
Download
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.