Articles | Volume 22, issue 7
https://doi.org/10.5194/hess-22-3965-2018
https://doi.org/10.5194/hess-22-3965-2018
Research article
 | 
20 Jul 2018
Research article |  | 20 Jul 2018

Water ages in the critical zone of long-term experimental sites in northern latitudes

Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby

Related authors

Snowmelt-mediated isotopic homogenization of shallow till soil
Filip Muhic, Pertti Ala-Aho, Matthias Sprenger, Björn Klöve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 4861–4881, https://doi.org/10.5194/hess-28-4861-2024,https://doi.org/10.5194/hess-28-4861-2024, 2024
Short summary
Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024,https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Seasonal recharge mechanism of the upper shallow groundwater in a long-term wastewater leakage and irrigation region of a river alluvium aquifer
Shiqin Wang, Zhixiong Zhang, Shoucai Wei, Wenbo Zheng, Binbin Liu, Matthias Sprenger, Yanjun Shen, and Yizhang Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-391,https://doi.org/10.5194/hess-2022-391, 2023
Revised manuscript not accepted
Short summary
Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022,https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
Mechanisms of consistently disjunct soil water pools over (pore) space and time
Matthias Sprenger, Pilar Llorens, Carles Cayuela, Francesc Gallart, and Jérôme Latron
Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019,https://doi.org/10.5194/hess-23-2751-2019, 2019
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Modelling approaches
Modeling 2D gravity-driven flow in unsaturated porous media for different infiltration rates
Jakub Kmec and Miloslav Šír
Hydrol. Earth Syst. Sci., 28, 4947–4970, https://doi.org/10.5194/hess-28-4947-2024,https://doi.org/10.5194/hess-28-4947-2024, 2024
Short summary
Mesoscale permeability variations estimated from natural airflows in the decorated Cosquer Cave (southeastern France)
Hugo Pellet, Bruno Arfib, Pierre Henry, Stéphanie Touron, and Ghislain Gassier
Hydrol. Earth Syst. Sci., 28, 4035–4057, https://doi.org/10.5194/hess-28-4035-2024,https://doi.org/10.5194/hess-28-4035-2024, 2024
Short summary
Identification of parameter importance for benzene transport in the unsaturated zone using global sensitivity analysis
Meirav Cohen, Nimrod Schwartz, and Ravid Rosenzweig
Hydrol. Earth Syst. Sci., 28, 1585–1604, https://doi.org/10.5194/hess-28-1585-2024,https://doi.org/10.5194/hess-28-1585-2024, 2024
Short summary
Evapotranspiration prediction for European forest sites does not improve with assimilation of in situ soil water content data
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024,https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
A comprehensive study of deep learning for soil moisture prediction
Yanling Wang, Liangsheng Shi, Yaan Hu, Xiaolong Hu, Wenxiang Song, and Lijun Wang
Hydrol. Earth Syst. Sci., 28, 917–943, https://doi.org/10.5194/hess-28-917-2024,https://doi.org/10.5194/hess-28-917-2024, 2024
Short summary

Cited articles

Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., Kormos, P., and Soulsby, C.: Modeling the isotopic evolution of snowpack and snowmelt: testing a spatially distributed parsimonious approach, Water Resour. Res., 53, 5813–5830, https://doi.org/10.1002/2017WR020650, 2017a. 
Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, 2017b. 
Ali, M., Fiori, A., and Russo, D.: A comparison of travel-time based catchment transport models, with application to numerical experiments, J. Hydrol., 511, 605–618, https://doi.org/10.1016/j.jhydrol.2014.02.010, 2014. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, D05109, 1998. 
Asano, Y., Uchida, T., and Ohte, N.: Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan, J. Hydrol., 261, 173–192, https://doi.org/10.1016/S0022-1694(02)00005-7, 2002. 
Download
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.