Articles | Volume 22, issue 7
https://doi.org/10.5194/hess-22-3761-2018
https://doi.org/10.5194/hess-22-3761-2018
Research article
 | 
16 Jul 2018
Research article |  | 16 Jul 2018

Defining and analyzing the frequency and severity of flood events to improve risk management from a reinsurance standpoint

Elliott P. Morrill and Joseph F. Becker

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024,https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024,https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024,https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary

Cited articles

Bacova-Mitkova, V. and Onderka, M.: Analysis of extreme hydrologicqal events on the Danube using the peak over threshold method, J. Hydrol. Hydromech., 58, 88–101, https://doi.org/10.2478/v10098-010-0009-x, 2010. 
Barredo, J. I., Saurí, D., and Llasat, M. C.: Assessing trends in insured losses from floods in Spain 1971–2008, Nat. Hazards Earth Syst. Sci., 12, 1723–1729, https://doi.org/10.5194/nhess-12-1723-2012, 2012. 
Black, A. R. and Werritty, A.: Seasonality of flooding: a case study of North Britain, J. Hydrol., 195, 1–25, https://doi.org/10.1016/S0022-1694(96)03264-7, 1997. 
Dobour, J. C. and Noel, J.: A climiatological assessment of flood events in Georgia, National Oceanographic and Atmospheric Administration (NOAA), 2005. 
Doocy, S., Daniels, A., Murray, S., and Kirsch, T. D.: The Human Impact of Floods: a Historical Review of Events 1980–2009 and Systematic Literature Review, in: PLOS Currents Disasters, 1st Edn., PLOS, https://doi.org/10.1371/currents.dis.f4de, 2013. 
Download
Short summary
The goal of the paper was to develop a method to identify the length and severity of flood events for (re)insurance and risk management usage. We took publically available nationwide discharge data from the USGS to apply our method to. We were able to define a peak and a threshold for each individual site, which served as the basis of our method. The hope was that the method would help replace the current standard hours clause and hopefully improve how flood insurance is covered internationally.