Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 21, issue 8
Hydrol. Earth Syst. Sci., 21, 4073–4101, 2017
https://doi.org/10.5194/hess-21-4073-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 4073–4101, 2017
https://doi.org/10.5194/hess-21-4073-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Aug 2017

Research article | 14 Aug 2017

Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

José María Santiago et al.

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies
Valentin Couvreur, Youri Rothfuss, Félicien Meunier, Thierry Bariac, Philippe Biron, Jean-Louis Durand, Patricia Richard, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020,https://doi.org/10.5194/hess-24-3057-2020, 2020
Short summary
Calibration of hydrological models for ecologically relevant streamflow predictions: a trade-off between fitting well to data and estimating consistent parameter sets?
Thibault Hallouin, Michael Bruen, and Fiachra E. O'Loughlin
Hydrol. Earth Syst. Sci., 24, 1031–1054, https://doi.org/10.5194/hess-24-1031-2020,https://doi.org/10.5194/hess-24-1031-2020, 2020
Short summary
Spatial variability of mean daily estimates of actual evaporation from remotely sensed imagery and surface reference data
Robert N. Armstrong, John W. Pomeroy, and Lawrence W. Martz
Hydrol. Earth Syst. Sci., 23, 4891–4907, https://doi.org/10.5194/hess-23-4891-2019,https://doi.org/10.5194/hess-23-4891-2019, 2019
Short summary
Quantification of soil water balance components based on continuous soil moisture measurement and the Richards equation in an irrigated agricultural field of a desert oasis
Zhongkai Li, Hu Liu, Wenzhi Zhao, Qiyue Yang, Rong Yang, and Jintao Liu
Hydrol. Earth Syst. Sci., 23, 4685–4706, https://doi.org/10.5194/hess-23-4685-2019,https://doi.org/10.5194/hess-23-4685-2019, 2019
Short summary
Mapping the suitability of groundwater-dependent vegetation in a semi-arid Mediterranean area
Inês Gomes Marques, João Nascimento, Rita M. Cardoso, Filipe Miguéns, Maria Teresa Condesso de Melo, Pedro M. M. Soares, Célia M. Gouveia, and Cathy Kurz Besson
Hydrol. Earth Syst. Sci., 23, 3525–3552, https://doi.org/10.5194/hess-23-3525-2019,https://doi.org/10.5194/hess-23-3525-2019, 2019
Short summary

Cited articles

Ahmed, S. and Tsanis, I.: Hydrologic and Hydraulic Impact of Climate Change on Lake Ontario Tributary, Am. J. Water Resour., 4, 1–15, https://doi.org/10.12691/ajwr-4-1-1, 2016.
Allen, K. R.: Comparison of the Growth Rate of Brown Trout (Salmo trutta) in a New Zealand Stream with Experimental Fish in Britain, J. Anim. Ecol., 54, 487–495, https://doi.org/10.2307/4493, 1985.
Almodóvar, A., Nicola, G. G., Ayllón, D., and Elvira, B.: Global warming threatens the persistence of Mediterranean brown trout, Glob. Change Biol., 18, 1549–1560, https://doi.org/10.1111/j.1365-2486.2011.02608.x, 2011.
Angilletta Jr., M. J.: Thermal Adaptation: A Theoretical and Empirical Synthesis, Oxford University Press, New York, USA, 2009.
Arismendi, I., Safeeq, M., Dunham, J. B., and Johnson, S. L.: Can air temperature be used to project influences of climate change on stream temperature?, Environ. Res. Lett., 9, 084015, https://doi.org/10.1088/1748-9326/9/8/084015, 2014.
Publications Copernicus
Download
Short summary
High-time-resolution models for streamflow and stream temperature are used in this study to predict future brown trout habitat loss. Flow reductions falling down to 51 % of current values and water temperature increases growing up to 4 ºC are predicted. Streamflow and temperature will act synergistically affecting fish. We found that the thermal response of rivers is influenced by basin geology and, consequently, geology will be also an influent factor in the cold-water fish distribution shift.
High-time-resolution models for streamflow and stream temperature are used in this study to...
Citation