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Abstract. Climate changes affect aquatic ecosystems by al-
tering temperatures and precipitation patterns, and the rear
edges of the distributions of cold-water species are espe-
cially sensitive to these effects. The main goal of this study
was to predict in detail how changes in air temperature and
precipitation will affect streamflow, the thermal habitat of a
cold-water fish (the brown trout, Salmo trutta), and the syn-
ergistic relationships among these variables at the rear edge
of the natural distribution of brown trout. Thirty-one sites in
14 mountain rivers and streams were studied in central Spain.
Models of streamflow were built for several of these sites
using M5 model trees, and a non-linear regression method
was used to estimate stream temperatures. Nine global cli-
mate models simulations for Representative Concentration
Pathways RCP4.5 and RCP8.5 scenarios were downscaled
to the local level. Significant reductions in streamflow were
predicted to occur in all of the basins (max. −49 %) by the
year 2099, and seasonal differences were noted between the
basins. The stream temperature models showed relationships
between the model parameters, geology and hydrologic re-
sponses. Temperature was sensitive to streamflow in one set
of streams, and summer reductions in streamflow contributed
to additional stream temperature increases (max. 3.6 ◦C), al-
though the sites that are most dependent on deep aquifers
will likely resist warming to a greater degree. The predicted
increases in water temperatures were as high as 4.0 ◦C. Tem-
perature and streamflow changes will cause a shift in the rear

edge of the distribution of this species. However, geology
will affect the extent of this shift. Approaches like the one
used herein have proven to be useful in planning the preven-
tion and mitigation of the negative effects of climate change
by differentiating areas based on the risk level and viability
of fish populations.

1 Introduction

Water temperatures are a primary influence on the physi-
cal, chemical and biological processes in rivers and streams
(Caissie, 2006; Webb et al., 2008) and, subsequently, the
organisms that live completely or partially in the water.
Temperature is a major feature of the ecological niche of
poikilothermic species (e.g. Magnuson and Destasio, 1997;
Angilletta, 2009) and a key factor in energy balance of fish.
It affects the rate of food intake, metabolic rate and growth
performance (Forseth et al., 2009; Elliott and Elliott, 2010;
Elliott and Allonby, 2013). It is also involved in many other
physiological functions, such as blood function and repro-
ductive maturation (Jeffries et al., 2012), reproductive timing
(Warren et al., 2012), gametogenesis (Lahnsteiner and Leit-
ner, 2013), cardiac function (Vornanen et al., 2014), gene ex-
pression (White et al., 2012; Meshcheryakova et al., 2016),
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ecological relationships (Hein et al., 2013; Fey and Herren,
2014), and fish behaviour (Colchen et al., 2017).

Natural patterns of water temperature and streamflow are
profoundly linked with climatic variables (Caissie, 2006;
Webb et al., 2008). Therefore, stream temperature is strongly
correlated with air temperature (Mohseni and Stefan, 1999),
whereas streamflow has a complex relationship with precip-
itation (McCuen, 1998; Gordon et al., 2004). In addition, at-
mospheric temperature influences the type of precipitation
(rain or snow) that occurs and the occurrence of snowmelt;
conversely, river discharge is also a main explanatory factor
of water temperature for some river systems (Neumann et
al., 2003; van Vliet et al., 2011). Furthermore, geology af-
fects surface water temperatures by means of groundwater
discharge (Caissie, 2006; Loinaz et al., 2013), influenced by
the aquifer depth (shallow or deep) and the water’s residence
time (Kurylyk et al., 2013; Snyder et al., 2015).

Climate change is already affecting aquatic ecosystems
by altering water temperatures and precipitation patterns.
Stream temperature increases have been documented over
the last several decades over the whole globe, such as in
Europe (e.g. Orr et al., 2015, documented a mean increase
in stream temperature of 0.03 ◦C per year in England and
Wales), Asia (e.g. Chen et al., 2016, documented a mean
increase in stream temperature of 0.029–0.046 ◦C per year
in the Yongan River, eastern China), America (e.g. Kaushal
et al., 2010, documented mean increases in stream tempera-
ture of 0.009–0.077 ◦C per year) and Australia (e.g. Chess-
man, 2009, documented mean increases in stream temper-
ature of 0.12 ◦C per year between macroinvertebrate sam-
pling campaigns). Abundant information is also available re-
garding the impact of recent climate changes on streamflow
regimes worldwide (e.g. Luce and Holden, 2009; Leppi et
al., 2012) and, more specifically, in the Iberian Peninsula
(e.g. Ceballos-Barbancho et al., 2008; Lorenzo-Lacruz et al.,
2012; Morán-Tejeda et al., 2014). However, detailed predic-
tions are uncommon (e.g. Thodsen, 2007). The predictions
of the Intergovernmental Panel on Climate Change (IPCC,
2013) suggest that these alterations will continue through-
out the 21st century, and they will have consequences for the
distribution of freshwater fish (e.g. Comte et al., 2013; Ruiz-
Navarro et al., 2016). These changes may have an especially
strong effect on cold-water fish, which have been shown
to be very sensitive to climate warming (Williams et al.,
2015; Santiago et al., 2016). For example, among salmonids,
DeWeber and Wagner (2015) found stream temperature to be
the most important determinant of the probability of occur-
rence of brook trout, Salvelinus fontinalis (Mitchill, 1814).

The rear edge populations (sensu Hampe and Petit, 2005:
“populations residing at the current low-latitude margins of
species’ distribution ranges”) of a cold-water species are es-
pecially sensitive to changes in water temperature, in ad-
dition to reductions in the available habitable volume (i.e.
streamflow). The rear edge is the eroding margin of the range
where lineages mix, the genetic drift and local adaptations

increase, and droughts put populations under stress. The im-
pact of water temperatures on the distribution of salmonid
fish is well documented (e.g. Beer and Anderson, 2013; Eby
et al., 2014); however, the combined effects of rising stream
temperatures and reductions in streamflow remain relatively
unexamined, with some exceptions (e.g. Wenger et al., 2011;
Muñoz-Mas et al., 2016). Jonsson and Jonsson (2009) pre-
dicted that the expected effects of climate change on water
temperatures and streamflow will have implications for the
migration, ontogeny, growth and life-history traits of Atlantic
salmon, Salmo salar Linnaeus, 1758, and brown trout, Salmo
trutta Linnaeus, 1758. Thus, investigation of these habitat
variables in the context of several climate scenarios should
help scientists to assess the magnitude of these changes on
the suitable range and life history of these species.

The objective of this study is to predict how and to what
extent the availability of suitable habitat for the brown trout,
a sensitive cold-water species, will change within its current
natural distribution under the new climate scenarios through
a study of changes in streamflow and temperature and their
interactions. Specifically, in this paper, we (i) assessed the ef-
fects of both streamflow and geology on stream temperature;
(ii) predicted the changes in streamflow and stream tempera-
ture implied by the climate change scenarios used in the 5th
Assessment Report (AR5) of the IPCC; and (iii) assessed the
expected effects of these changes on trout habitat aptitude. To
this end, hydrologic simulations with M5 model trees cou-
pled with non-linear water temperature models at the daily
time step were fed with high-resolution, downscaled versions
of the air temperature and precipitation fields predicted using
the most recent climate change scenarios (IPCC, 2013). The
effects of basin geology on the stream temperature models
and on the estimated changes in thermal regimes were stud-
ied. Finally, the changes in the thermal habitat of trout were
assessed by studying the violation of the tolerable tempera-
ture thresholds of the brown trout.

2 Materials and methods

The logical framework followed is summarized in Fig. 1.
First, the daily global climate models output presented by the
IPCC were downscaled to the study area. Then, the obtained
local climate models output were applied to generate simu-
lations of streamflow and water temperature. The results are
daily values that can be used for the assessment of fish habitat
suitability and availability.

The procedure yielded results in the form of continuous
time series, but they are presented for two time horizons: the
year 2050 (H-2050) and the year 2099 (H-2099). The values
for these horizons correspond to the average of the values of
the different variables for the decades 2041–2050 and 2090–
2099, respectively.
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Figure 1. Logical framework of the study.

Figure 2. River network and location of the study sites (water temperature data loggers), with details regarding lithology. The grid depicts
the actual occurrence of brown trout in Spain.

2.1 Study sites

In total, 31 sites in 14 mountain rivers and streams inhab-
ited by brown trout were chosen with the aim of encompass-
ing a diverse array of geological and hydrological conditions
in the centre of Spain (between the latitudes of 39◦53′ and
41◦21′ N). Specifically, the investigated sites are located in
the Tormes River and its tributaries, the Barbellido River, the
Gredos Gorge and the Aravalle River (in the Duero Basin);
the Cega River and the Pirón River (the Pirón River is a trib-
utary of the Cega River in the larger Duero Basin); the Lo-
zoya River, the Tagus River, the Gallo River, and the Cabril-
las River (all four of which are in the Tagus Basin); the
Ebrón River and the Vallanca River (the Vallanca River is
a tributary of the Ebrón River in the Turia Basin); and the
Palancia River and the Villahermosa River (Fig. 2). The ma-

jor geological components that lithologically characterize the
mountain sites in the Duero and Lozoya basins are igneous
rocks; the altitudinally lower sites in the Duero Basin are un-
derlain by Cenozoic detrital material, and the eastern basins
(Tagus, Gallo, Cabrillas, Ebrón, Vallanca, Palancia and Vil-
lahermosa) are underlain primarily by Mesozoic carbonates.
The distribution of geological materials was retrieved from
the Lithological Map of Spain (IGME, 2015) (Table 1).

The land cover type is mainly pine forest in all of the
studied basins (Pinus sylvestris, P. nigra, P. pinea and P.
pinaster) (CORINE Land Cover 2006; European Environ-
mental Agency, 2007). Only the lower basins of the down-
stream sites on the Cega and Pirón rivers are mosaics of
forest and croplands, whereas the uppermost sites within
the Tormes River basin (Barbellido and Gredos Gorge) lie
above the current tree line. Territorial planning does not con-

www.hydrol-earth-syst-sci.net/21/4073/2017/ Hydrol. Earth Syst. Sci., 21, 4073–4101, 2017



4076 J. M. Santiago et al.: Waning habitats due to climate change

Table 1. Description of the data logger (thermograph) sites, specifying given name, UTM coordinates (Europe WGS89), altitude (metres
above sea level), code of the nearest temperature meteorological station with suitable time series for this study (AEMET: Spanish Meteoro-
logical Agency), orthogonal distance between the data logger and the meteorological station, number of recorded days for stream temperature
and characteristic geological nature (lithology) of the data logger site (the last of which was obtained from IGME, 2015). Bold letters indicate
sites associated with the gauging stations.

Sites UTM-X UTM-Y Altitude AEMET Distance to AEMET Recording Lithology
(m a.s.l.) code station (km) days

Aravalle 283623 4468847 1010 2440 76.4 1257 Igneous
Barbellido 311759 4465519 1440 2440 52.2 881 Igneous
Gredos Gorge 306363 4468087 1280 2440 55.7 644 Igneous
Tormes1 308751 4469371 1270 2440 53.0 421 Igneous
Tormes2 297543 4467191 1135 2440 64.0 537 Igneous
Tormes3 285481 4470750 995 2440 74.1 588 Igneous
Cega1 427627 4539806 1600 2516 84.5 544 Igneous
Cega2 429416 4541728 1384 2516 85.8 544 Igneous
Cega3 428892 4549370 1043 2516 83.9 544 Igneous
Cega4 426932 4559076 943 2516 81.2 407 Quaternary detrital
Cega5 408504 4569772 853 2516 63.4 544 Quaternary detrital
Cega6 389014 4581160 766 2516 47.9 501 Quaternary detrital
Pirón1 422082 4536456 1475 2516 80.1 544 Igneous
Pirón2 420660 4537094 1348 2516 78.6 483 Igneous
Pirón3 409935 4549473 908 2516 65.2 544 Quaternary detrital
Pirón4 394462 4556823 826 2516 48.9 544 Quaternary detrital
Pirón5 388615 4560166 815 2516 42.9 424 Quaternary detrital
Lozoya1 422060 4520319 1452 3104 7.3 2151 Igneous
Lozoya2 425445 4522314 1267 3104 4.6 1870 Igneous
Lozoya3 425657 4527327 1142 3104 0.7 1776 Igneous
Lozoya4 430740 4530050 1090 3104 6.4 2187 Igneous
Tagus-Peralejos 590887 4494165 1149 3013 27.9 964 Carbonate
Tagus-Poveda 582900 4502160 1028 3013 22.8 669 Carbonate
Gallo 583771 4519743 998 3013 10.9 1019 Carbonate
Cabrillas 585619 4502986 1075 3013 20.8 1070 Carbonate
Ebrón 643551 4445027 879 8381B 9.5 592 Carbonate
Vallanca1 644966 4435479 745 8381B 1.8 836 Carbonate
Vallanca2 645936 4435715 718 8381B 0.8 836 Carbonate
Palancia1 694348 4421176 760 8434A 10.4 334 Carbonate
Palancia2 697451 4419477 660 8434A 7.8 334 Carbonate
Villahermosa 722594 4449436 592 8478 13.5 334 Carbonate

sider significant changes in land use at mid-century; objec-
tively, changes are not expected after that time because a
high percentage of the territory is protected. The studied
reaches are not effectively regulated (only small weirs or nat-
ural obstacles exist). One large dam lies on the Pirón River
(the Torrecaballeros Dam, which has a capacity of 0.32 hm3

and a maximum depth of 26 m and lies at an altitude of
1390 m a.s.l.), but it does not significantly alter the temporal
pattern of streamflow (Santiago et al., 2013). In the Lozoya
River, a large dam (the Pinilla Dam, which has a capacity of
38.1 hm3 and a maximum depth of 30 m and lies at an al-
titude of 1060 m a.s.l.) exists that separates fish populations
above and below the reservoir, although it lies downstream
of the studied reach.

Hydrological data characterize the streamflow regimes
as extreme winter/early spring (groups 13 and 14 in the

classification of Haines et al., 1988). However, the hydro-
graphs show a west-to-east smoothing gradient (Fig. 3). This
smoothing is associated with the carbonate rocks, whereas
greater seasonality is associated with the igneous and detrital
geological materials.

2.2 Data collection

At each study site, water temperatures were recorded every
2 h throughout the year using 31 Hobo® Water Tempera-
ture Pro v2 (Onset®) and Vemco® Minilog data loggers lo-
cated at several sites along the studied rivers and streams (Ta-
ble 1). Loggers were tested for malfunctions before being
deployed, and they were placed in areas not exposed to di-
rect sunshine (Stamp et al., 2014). Meteorological data were
obtained from nine thermometric and 15 pluviometric sta-
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Figure 3. River regime patterns for the different gauging stations. The flows are expressed as percentages of the mean annual flow, and the
months (horizontal axis) are ordered from January to December.

tions of the Spanish Meteorological Agency (AEMET) net-
work, and data from 10 gauging stations (from the official
network of the Spanish Water Administration) were obtained
to model the streamflows. The AEMET thermometric sta-
tions that lie closest to the stream temperature monitoring
sites and have at least 30 years of data between 1955 and
the present were selected. The selected pluviometric stations
were those located within the upstream river basin or near
the corresponding gauging station (Table 2). The air temper-
ature and precipitation data from AEMET were tested to as-
sess their reliability by applying a homogeneity test. This test
is based on a two-sample Kolmogorov–Smirnov test, and it
marks years as possibly containing inhomogeneous data. In
the second phase, the marked years are matched against the
distribution of the entire series to determine if they contain
true inhomogeneities, searching for possible dissimilarities
between the empirical distribution functions. Only reliable
series were used. The locations of the stations did not change
in the studied period.

2.3 Climate change modelling and downscaling

Data from nine global climate models associated with the 5th
Coupled Model Intercomparison Project (CMIP5) were used,
namely BCC-CSM1-1, CanESM2, CNRM-CM5, GFDL-
ESM2 M, HADGEM2-CC, MIROC-ESM-CHEM, MPI-
ESM-MR, MRI-CGCM3, and NorESM1-M (Santiago et al.,
2016). These models provided daily data to simulate future
climate changes corresponding to the Representative Con-
centration Pathways RCP4.5 (a stable scenario) and RCP8.5
(a scenario including a pronounced increase in CO2 concen-

trations) established in Taylor et al. (2009) and used in the
AR5 of the IPCC (2013). An array of nine general climate
models was used to avoid biases due to the particular as-
sumptions and features of each particular model (Kurylyk et
al., 2013). Historical simulations of the 20th century were
used to control the quality of the procedure and to compare
the magnitudes of the predicted changes.

Pourmokhtarian et al. (2016) note the importance of the
use of fine downscaling techniques. Thus, a two-step ana-
logue statistical method (Ribalaygua et al., 2013) was used to
downscale the daily climatic data, specifically the maximum
and minimum air temperatures and the precipitation for each
station and for each day. For both air temperature and precip-
itation, the procedure begins with an analogue stratification
(Zorita and von Storch, 1999) in which the n days most sim-
ilar to each problem day to be downscaled are selected using
four different meteorological large-scale fields as predictors,
specifically (1) the speed and (2) direction of the geostrophic
wind at 1000 hPa, as well as (3) the speed and (4) direc-
tion of the geostrophic wind at 500 hPa. In a second step,
the temperature determination was obtained through multi-
ple linear regression analysis using the selected n of the most
analogous days. This was performed for the maximum and
minimum air temperatures at each station and for each prob-
lem day. The linear regression uses forward and backward
stepwise selections of the predictors to select only the rel-
evant predictive variables for that particular case. For pre-
cipitation, a group of m problem days (the whole days of a
month were used) were downscaled together, and the “pre-
liminary precipitation quantity”, or the average precipitation
of the n most analogous days, was obtained for each prob-
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Table 2. Official stations used (meteorological and hydrological), variables, length of time series used and geographical position. AEMET:
Spanish Meteorological Agency; CHD: Water Administration of Duero Basin; CHT: Water Administration of Tagus Basin; and CHJ: Water
Administration of Júcar Basin.

Institution Code Name Variable Series length used UTM-X UTM-Y Altitude

AEMET 2180 Matabuena pluviometry 1955–2013 436266 4549752 1154
AEMET 2186 Turégano pluviometry 1955–2013 415346 4556596 935
AEMET 2196 Torreiglesias pluviometry 1970–2013 413294 4550606 1053
AEMET 2199 Cantimpalos pluviometry 1955–2013 402524 4547811 906
AEMET 2440 Aldea del Rey Niño temperature 1955–2012 356059 4493201 1160
AEMET 2462 Puerto de Navacerrada temperature and 1967–2012 414745 4516276 1894

pluviometry
AEMET 2516 Ataquines temperature 1970–2013 345716 4560666 802
AEMET 2813 Navacepeda de Tormes pluviometry 1965–2012 308892 4470347 1340
AEMET 2828 El Barco de Ávila temperature and 1955–1983 285643 4470512 1007

pluviometry
AEMET 3009E Orihuela del Tremedal pluviometry 1986–2000 614383 4489759 1450
AEMET 3010 Ródenas pluviometry 1968–2006 625505 4499963 1370
AEMET 3013 Molina de Aragón temperature and 1951–2010 594513 4521786 1056

pluviometry
AEMET 3015 Corduente pluviometry 1961–2000 584125 4523281 1120
AEMET 3018E Aragoncillo pluviometry 1968–2010 580519 4531876 1263
AEMET 3104 Rascafría-El Paular temperature and 1967–2012 425165 4526895 1159

pluviometry
AEMET 8376B Jabaloyas pluviometry 1993–2006 635600 4456215 1430
AEMET 8381B Ademuz-Agro temperature and 1989–2010 646722 4436034 740

pluviometry
AEMET 8434A Viver temperature 1971–2006 704704 4422256 562
AEMET 8478 Arañuel temperature 1971–2006 714943 4438277 406
CHD 2006 Tormes-Hoyos del Espino flow 1955–2012 314676 4467908 1377
CHD 2016 Cega-Pajares de Pedraza flow 1955–2013 428296 4557678 938
CHD 2057 Pirón-Villovela de Pirón flow 1972–2013 405596 4551929 869
CHD 2085 Tormes-El Barco de Ávila flow 1955–2012 285173 4470362 992
CHD 2714 Cega-Lastras de Cuéllar flow 2004–2013 403509 4571682 838
CHT 3001 Tagus-Peralejos de las Truchas flow 1946–2010 590474 4494474 1143
CHT 3002 Lozoya-Rascafría (El Paular) flow 1967–2013 425321 4522069 1270
CHT 3030 Gallo-Ventosa flow 1946–2010 587349 4520522 1016
CHT 3268 Cabrillas-Taravilla flow 1982–2010 587480 4503395 1107
CHJ 8104 Ebrón-Los Santos flow 1989–2010 645963 4441366 750

lem day. Thus, the m problem days from the highest to the
lowest “preliminary precipitation amount” could be sorted.
To assign the final amount of precipitation, each precipita-
tion amount of the m× n analogous days was taken. Then,
those m× n amounts of precipitation were sorted, and then
those amounts were clustered into m groups. Every quantity
was then assigned in order to the m days previously sorted
by the “preliminary precipitation amount”. Further details of
the methodology are described in Ribalaygua et al. (2013).

A systematic error is obtained when comparing the simu-
lated data from the climate models with the observed data.
Such errors are inherently associated with all downscaling
methodologies and climate models, which usually introduce
bias into their outputs. To eliminate this systematic error,
the future climate projections were corrected according to
a parametric quantile–quantile method (Monjo et al., 2014),

which was performed by comparing the observed and sim-
ulated empirical cumulative distribution functions (ECDFs)
and linking them using ECDFs obtained from the down-
scaled European Centre for Medium-Range Weather Fore-
casts ERA-40 reanalysis daily data (Uppala et al., 2005).

As a result, for each climate change scenario, the daily
maximum and minimum air temperatures (which were used
to infer the mean air temperature) and precipitation were ob-
tained for each climate model, and the whole dataset were
used as inputs to simulate the runoff and water temperatures
under these climate change scenarios.

2.4 Hydrological modelling

Although process-based physical models are considered the
standard hydrological models, flexible data-driven machine
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learning techniques are gaining popularity because they can
be based solely on precipitation and temperature (Shortridge
et al., 2016) and can be automatized to perform multiple
simulations. Therefore, the prediction of the streamflows un-
der the climate change scenarios was performed with data-
driven hydrological models developed using the M5 algo-
rithm (Quinlan, 1992). M5 has been shown to have skill in
modelling daily streamflow (Solomatine and Dulal, 2003;
Taghi Sattari et al., 2013), including in studies involving cli-
mate change (Muñoz-Mas et al., 2016), and it is sufficiently
fast to deal proficiently with larger datasets (Quinlan, 2017)

Mathematically, M5 is a kind of decision tree that, instead
of assigning a single value to each terminal node, assigns
a multi-linear regression model (Quinlan, 1992). Therefore,
the dataset is hierarchically divided into homogeneous parts
and a multi-linear model is adjusted to every part (Het-
tiarachchi et al., 2005). In this regard, each node, and the
corresponding multi-linear regression model, is specialized
in particular areas of the data set, such as peak flows or base
flows, to name the extremes (i.e. it is a piece-wise linear
model with each part dedicated to a particular hydrologic
condition) (Taghi Sattari et al., 2013). Based on the multi-
linear models at the terminal nodes, M5 allows extrapolation,
in contrast with other machine learning techniques that have
demonstrated little or no extrapolation ability (e.g. random
forest or multilayer perceptron) (Hettiarachchi et al., 2005;
Shortridge et al., 2016).

The M5 hydrological models were developed in R (R Core
Team, 2015) with the Cubist package (Kuhn et al., 2014).
One single M5 model tree was trained for each gauging sta-
tion (ten models were produced in total; Fig. 3 and Table 2),
whereas the predictions were supported by the nearest ob-
servation (i.e. neighbours= 1) to avoid producing unreliable
flows. Finally, M5 was allowed to determine the ultimate
number of models (i.e. nodes or areas) into which the dataset
is eventually divided (see Kuhn et al., 2014).

Following previous studies, the M5 hydrological models
were trained by employing the daily, monthly and quarterly
data lags of historical precipitation and air temperature col-
lected at meteorological stations within or nearby the target
river basins as input variables (Table 2) (Solomatine and Du-
lal, 2003; Taghi Sattari et al., 2013; Muñoz-Mas et al., 2016).
These three groups of variables were intended to reflect the
causes of peak, normal and base flows. The study encom-
passed several rivers and streams that may have different hy-
drologic behaviours; therefore, the starting set of input vari-
ables, which was afterwards subset, was larger than that used
in other studies (Solomatine and Dulal, 2003; Taghi Sattari
et al., 2013; Muñoz-Mas et al., 2016). The daily variables
included the precipitation and air temperature from the cur-
rent day to the 15th previous day (16 variables in total). The
monthly variables were calculated using the moving average
for the 12 previous months (12 variables in total), and the
quarterly data were calculated from the moving average for
the current month to the 24th previous month (8 variables in

total). Consequently, the daily variables overlapped with the
current month variable, and the first four quarterly variables
overlapped with the monthly data. In the end, 72 variables
were gathered, 36 each for air temperature and precipitation.

The whole set of input variables may be relevant for some
river systems (Shortridge et al., 2016), although it may cause
M5 to overfit the data in others (Schoups et al., 2008). There-
fore, the ultimate variable subset was optimized following
the forward stepwise approach (Kittler, 1978). This approach
relies on iteratively adding input variables (one at a time)
while the performance on the test data set improves and stop-
ping (i.e. selecting a smaller subset of the input variables)
as soon as the performance stagnates or degrades. However,
the classical forward stepwise approach may cause consid-
eration of unrelated variable sets (i.e. disjoint precipitation
and air temperature variable lags). To address such poten-
tial inconsistencies, the optimization began by testing the
precipitation-related variables and only tested the air temper-
ature variables for lags coinciding with those precipitation-
related variables that were already selected. No precautions
were taken regarding correlations among inputs (D. P. Solo-
matine, personal communication, 2016), and the forward
stepwise approach sought to maximize the Nash–Sutcliffe ef-
ficiency (NSE) index (which ranges from −∞ to 1; Nash
and Sutcliffe, 1970) in a fivefold cross-validation (i.e. for
each combination of variables, five M5 model trees were
trained on four parts and validated with the fifth part, which
was held out) (Borra and Di Ciaccio, 2010; Bennett et al.,
2013). Finally, in order to account for the uncertainty of the
models (Bennett et al., 2013), the variance of the NSEs ob-
tained during the cross-validation was inspected; large in-
tervals led to alternative data partitions. Following previous
studies (Fukuda et al., 2013; Muñoz-Mas et al., 2016), once
the optimal variables set for each gauging station was deter-
mined, 10 M5 model trees (i.e. one per gauging station) were
developed using the corresponding subset of variables, and
they were used to predict the streamflows under the climate
change scenarios.

The daily data were analysed monthly and seasonally us-
ing the following statistics: minimum flow (Qmin), the 10th
percentile of flow (Q10), the mean flow (Qmean), and the
maximum flow (Qmax). The annual runoff and days of zero
flow were also examined.

To assess the significance of the streamflow trends
throughout the century, Sen’s slope was used (as imple-
mented in the Trend package of R; Pohlert, 2016; p-
value≤ 0.05) with horizons H-2050 and H-2099.

Finally, the variation in the patterns of the monthly mean
streamflow was studied by means of the Ward hierarchical
clustering implemented in the cluster R package (Maech-
ler, 2013) on the basis of the rate of change of the normal-
ized monthly mean streamflows in H-2050 and H-2099 and
the RCP4.5 and RCP8.5 scenarios. Performance of the ob-
tained cluster was quantified by using the agglomerative co-
efficient (a.c.). This is a measure of the clustering structure of
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the dataset, as expressed by Kaufman and Rousseeuw (2005)
and its value ranges between 0 (maximum dissimilarity) and
1 (minimum dissimilarity).

2.5 Stream temperature modelling

Stream temperature (Ts) at each thermal sampling site was
simulated from air temperature (Ta) by means of a modi-
fied version of the bounded non-linear regression model de-
scribed by Mohseni et al. (1998). A previous modification
(Term 1 in Eq. 1; Santiago et al., 2016) served to improve
the behaviour of the former model, permitting it to be used
for daily inputs. In this study, the effect of the instream flow
(Q) effect is incorporated. Thus, this model addresses daily
mean stream temperature (DMST; Ts in Eq. 1) using the daily
mean air temperature (DMAT, Ta in Eq. 1), the 1-day before
variation in the daily mean air temperature (1Ta in Eq. 1),
and the daily mean flow (Qmean, Q in Eq. 1) as predictors.
DMST was used because it better reflects the average condi-
tions that fish (particularly trout) will experience for an ex-
tended period of time (Santiago et al., 2016), and it averages
over daily fluctuations in the radiation and heat fluxes. The
model is formulated as follows:

Ts = µ+
α−µ

1+ eγ (β−Ta)
+ λ(1Ta)︸ ︷︷ ︸

Term 1

+
ω

1+ eδ(τ−Q)︸ ︷︷ ︸
Term 2

, (1)

where µ is the minimum stream temperature (◦C), α is the
maximum stream temperature (◦C), β represents the air tem-
perature at which the rate of change of the stream tempera-
ture with respect to the air temperature is a maximum (◦C),
γ (◦C−1) is the value of the rate of change at β, and λ is
a coefficient (dimensionless) that represents the resistance
of DMST to change with respect to the 1-day variation in
DMAT (1Ta). In the flow component (Term 2 in Eq. 1),
ω is the maximum observable variation in stream tempera-
ture due to the flow difference (given in ◦C), τ represents the
flow value at which the rate of change of the stream temper-
ature with respect to the flow is a maximum (m3 s−1), and δ
(m−3 s) is this maximum rate at τ . Negative values of λ are
due to the resistance to stream temperature changes, and thus
they must be subtracted from the expected temperature: the
more resistant the stream is to temperature change, the closer
λ will be to zero. The less resistant the stream is to change,
the more negative λ is. The parameter µ was allowed to be
less than zero in the modelling process, even though this is
the freezing temperature. Thus, the function would truncate
at the freezing point. The relationship between the thermal
amplitude α−µ and the indicator of thermal stability λ was
studied using the Pearson correlation.

A blockwise non-parametric bootstrap regression (Liu and
Singh, 1992) was used to estimate the parameters of both
the modified Mohseni models (with and without streamflow),
and residual normality and non-autocorrelation were checked
with the Shapiro test and Durbin–Watson test. Moreover, the

7-day lag PACF (partial autocorrelation function) was ob-
tained. These calculations were performed using R. A 95 %
confidence interval was calculated for each parameter. Per-
formance was quantified using two indicators: the residual
standard error (RSE) and the Nash–Sutcliffe efficiency in-
dex (NSE). The Bayesian information criterion (BIC) and
the Akaike information criterion (AIC) were used to test the
eight-parameter models (Terms 1 and 2 of Eq. 1) against the
five-parameter models (Term 1 of Eq. 1).

This model can be classified as semi-physically based. It
has some advantages over machine learning methods, such
as classification and regression trees (De’ath and Fabricius,
2000) or random forests (Breiman, 2001), because the model
parameters imply a mechanistic interpretation of how pro-
cess drivers act, yielding a higher transferability (Wenger and
Olden, 2012). These features make of this model an advanta-
geous option for our goals.

2.6 Effects of geology on stream temperature

Geology determines the residence time of deep groundwater
in the aquifers underlying streams (Chilton, 1996), and resi-
dence times influence discharge temperatures. To explore the
relationships between thermal regimes and geology, a strati-
fied study of both the geology classes of the parameter val-
ues was completed by means of a t test with the Bonferroni
correction (p-value < 0.05). In the same sense, increments of
the annual averages of the daily mean (1Tmean), minimum
(1Tmin) and maximum (1Tmax) stream temperatures were
calculated and studied by lithological classes (Table 1).

The variation in the patterns of the monthly mean stream
temperature was studied by means of cluster analysis of the
temperature increases corresponding to H-2050 and H-2099
for the RCP4.5 and RCP8.5 scenarios (using Ward’s hier-
archical clustering as implemented in the cluster package of
R; Maechler, 2013). As said above, agglomerative coefficient
(a.c.) was used as a performance indicator.

2.7 Thermal habitat changes

Several tolerance temperatures and thermal niche limits have
been described for brown trout (Table 3). The realized
niche must reflect energetic efficiency: spending long peri-
ods above that threshold makes animals less efficient com-
petitors, and their performance decreases critically (Magnu-
son et al., 1979; Verberk et al., 2016). Thus, we focused our
study on the realized thermal niche. The elected threshold for
this study was the occurrence of DMST values above 18.7 ◦C
for seven or more consecutive days, because it has proven to
be the most realistic value to represent the realized thermal
niche (Santiago et al., 2016). The minimum period of seven
consecutive days is usually the established time for determin-
ing thermal tolerance (Elliott and Elliott, 2010), and when
this period is exceeded, the death risk (exclusion risk in our
case) increases substantially. The chosen threshold was origi-
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Table 3. Different classes of thermal thresholds for emerged trout classes found in the literature. The type of experiment differentiates the
experiments with controlled (laboratory) and uncontrolled (wild) temperature. Latitude of the experiments’ location is shown.

Variable Temperature) Type of Latitude Reference
(◦C experiment

maximum growth 13.1 laboratory 54◦ N Elliott et al. (1995)
Maximum growth 16 laboratory 61◦ N Forseth and Jonsson (1994)
Maximum growth 16.9 laboratory 43◦ N Ojanguren et al. (2001)
Maximum growth 13.2 wild 43◦ N Lobón-Cerviá and Rincón (1998)
Maximum growth 13 wild 41◦ S Allen (1985)
Maximum growth 15.4–19.1 laboratory 59◦ N Forseth et al. (2009)
Thermal optimum 14.2 wild 47◦ N Hari et al. (2006)
Upper growth limit 19.5 wild 41◦ S Allen (1985)
Upper thermal niche 20 wild 47◦ N Hari et al. (2006)
Upper thermal niche∗ 18.1 wild 41◦ N Santiago et al. (2016)
Upper thermal niche∗ 18.7 wild 41◦ N Santiago et al. (2016)
Critical feeding temperature 19.4 laboratory 54◦ N Elliott et al. (1995)
Critical feeding temperature ≥ 23 laboratory 59◦ N Forseth et al. (2009)
Incipient lethal temperature∗ 24.7 laboratory 54◦ N Elliott (1981)
Ultimate 27.8 laboratory 60◦ N Grande and Andersen (1991)
Ultimate∗∗ 29.7 laboratory 54◦ N Elliott (2000)

∗ Seven days; ∗∗ 10 min.

nally determined in one of the streams in this study (the Cega
River).

Once DMST was modelled, the frequency of events of
seven or more consecutive days above the threshold per year
(times above the threshold, TAT≥ 7), the total days above
the threshold per year (DAT), and the maximum consecutive
days above the threshold per year (MCDAT) were calculated
for the whole period of 2015–2099.

To assess the general trend in thermal habitat alterations at
the middle (H-2050) and the end of the century (H-2099), the
TAT≥ 7, DAT and MCDAT were calculated at each sampling
site for each climate change scenario and compared with cur-
rent conditions

2.8 Longitudinal interpolation and extrapolation

The number of sampling sites and their distribution in the
Cega, Pirón and Lozoya rivers (Fig. 2, Table 1) permit the
longitudinal interpolation and extrapolation of the predicted
water temperatures to study the relationships between the an-
nual average DMST and altitude (strong correlations were
detected between these quantities; R2

= 0.986, 0.985 and
0.881, respectively). A digital elevation model (DEM) with
a resolution of 5 m made using lidar and obtained from the
National Geographic Institute of the Spanish Government
(IGN) was used to perform an altitudinal interpolation of
the model parameters to determine the water temperature
along the stream continuum to simulate the effects of the cli-
mate change scenarios and then to obtain the percentage of
stream/river length that will be lost for trout. ArcGIS® 10.1
software (made by ESRI®) was used to manage the DEM.

All variables and abbreviations are summarized in the Ap-
pendix A. An overview of the uncertainty issue is given in
Appendix B.

3 Results

3.1 Climate change

Under the climate change scenarios, all the meteorological
stations will experience noticeable temperature (DMAT) in-
creases through the century. As might be expected, this trend
is steeper for the RCP8.5 scenario, especially in summer,
though it is also noticeable in winter to a lesser extent (annual
trends are shown in Fig. 4; the seasonal results are shown
by location in Figs. S1 to S24 in the Supplement). The air
temperature variations will run parallel to one another in
the two scenarios until mid-century, when the RCP8.5 sce-
nario predicts a similar trend and the increases decrease un-
der the RCP4.5 scenario; the annual change in temperatures
for RCP4.5 fluctuates between 2 and 2.5 ◦C at mid-century
and between 2.5 and 3.5 ◦C at the end of the century (3–4 ◦C
at mid-century and 3.5–4.5 ◦C at the end of the century in
summer) The annual change for RCP8.5 is between 2 and
3 ◦C at mid-century and between 5 and 7 ◦C at the end of the
century (3.5–4.5 ◦C at mid-century and 7–8 ◦C at the end of
the century in summer).

The change in the annual precipitation (mm day−1) will
fluctuate around zero (Fig. 4), although seasonal values will
vary (Fig. S1). RCP4.5 predicts a slight decrease (−7 %) by
mid-century in total precipitation, which will return to cur-
rent values by the end of the century. Conversely, RCP8.5

www.hydrol-earth-syst-sci.net/21/4073/2017/ Hydrol. Earth Syst. Sci., 21, 4073–4101, 2017



4082 J. M. Santiago et al.: Waning habitats due to climate change

Figure 4. Changes in mean air temperature and total annual precip-
itation related to climate change for the nine general climate models
and the two climate change scenarios for the all the studied meteo-
rological stations.

predicts stable precipitation up to mid-century and a slight
decrease (−10 %) by the end of the century. The most im-
portant changes appear to occur in autumn. Daily mean air
temperatures of the ensemble members for each meteorolog-
ical station are shown in the Supplement (Dataset S1).

3.2 Hydrological regimes

In general, decreases in flow will occur throughout the cen-
tury, but the degree of change will vary among the sites. Sta-
tions located in the western (Tormes) and eastern (Ebrón) ex-
tremes of the study area will experience an increase in flow
by 2099 after decreasing in the mid-21st century. Lozoya will
suffer the most intense flow decreases, followed by Pirón and
Cega-Lastras, Tagus and Gallo, and Cabrillas. These patterns
of change in flow regimes are predicted to be linked to a west-
to-east longitudinal gradient; climate change is expected to
have less of an influence on discharge at the western stations
and Ebrón (in the far eastern portion of the study area).

The hydrological models performed well; all of them
achieved NSE values ≥ 0.7 when a number of assorted com-
binations of variables were selected (Table S1 in the Supple-
ment). Figure 5 shows plots of the monthly Qmean results of
the simulations for the RCP4.5 and RCP8.5 scenarios in H-
2050 and H-2099. Daily mean streamflow estimated from the
climate change model ensemble is given in the Supplement
(Dataset S2).

3.2.1 RCP4.5 scenario

Statistically significant (p < 0.05) shifts in the flow regime
will be rare in H-2050 (Table 4, Fig. 5). In H-2099, these
changes will be less pronounced, but significant changes be-

come more frequent (Table 4, Fig. 5). Only two gauging sta-
tions (Lozoya and Tagus) exhibit significant reductions in
annual discharge. By the end of the century (H-2099), an-
nual discharge is expected to be significantly lower at seven
gauging stations. The Tagus Basin will experience the great-
est changes in annual discharge. Maximum, mean and mini-
mum daily discharges (Qmean andQmin), as well as the Q10,
will become much lower in Tagus River basin. Only Cega-
Lastras and Pirón (Duero River basin) will suffer a significant
increase in the number of zero-flow days.

3.2.2 RCP8.5 scenario

According to the predictions, the most significant changes
in flow regimes will occur at the gauging stations of Cega-
Lastras and Lozoya in H-2050 (Table 4, Fig. 5). In H-
2099, most sites will experience strong flow reductions, even
in seasons where seasonal increases in flow are predicted
(e.g. Ebrón and both stations in the Tormes River) (Table 4,
Fig. 5). Significant annual runoff reductions in H-2050 will
occur at five of the stations, increasing the occurrence of sig-
nificant losses at 9 out of the 10 sites in H-2099 (i.e. all sta-
tions except Ebrón). The most important decreases in every
variable and throughout the century were predicted for the
stations in the middle Cega Basin and the Tagus Basin. A
significant increase in the number of days with no flow was
predicted for Cega-Lastras, Pirón and Gallo.

3.2.3 Geographical pattern

The cluster analysis of gauging stations based on seasonal
variations in the flow regime revealed the importance of
careful examinations at the local level, since hydrologi-
cal behaviour is a consequence of both macroclimatic and
mesoclimatic conditions. A geographical pattern is recog-
nizable when the actual flow regime (2006–2015) is season-
ally clustered (Fig. 6). Analysing the deviations in this ge-
ographical pattern by scenarios and horizons, the different
gauging stations can grouped according to the seasonal be-
haviour of the flow changes (Fig. 7a). For the RCP4.5 sce-
nario in H-2050 (agglomerative coefficients, a.c.= 0.73), the
stations that differed most strongly from the remainder in
terms of their deviations in the flow regime are those located
at Cega-Lastras (winter), Pirón (autumn) and Ebrón (sum-
mer). For RCP4.5 in H-2099 (a.c.= 0.56), they are Cega-
Pajares (spring), Tormes-Hoyos (summer) and Ebrón (au-
tumn). For RCP8.5 in H-2050 (a.c.= 0.61), they are Pirón
(spring, summer and autumn), Lozoya and Ebrón (both in
winter). For RCP8.5 in H-2099 (a.c.= 0.72), they are Cega-
Pajares (spring) and Ebrón (summer, autumn and winter).
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Figure 5. Predicted monthly mean specific flow in H-2050 and H-2099 for the RCP4.5 and RCP8.5 scenarios. Shaded areas indicate decadal
fluctuations. Triangles show significant negative or positive trends (Sen’s slope p≤ 0.05); the sign of each trend is indicated by the directions
in which the triangles point.

3.3 Stream temperature

3.3.1 Model parameter behaviour and general trends

The inclusion of the streamflow component improves model
performance at 12 out of the 28 study sites (Table 5). In the
remaining 16 cases, either no convergence of values was ob-

served in the regression process or the obtained values did not
improve the results, as the streamflow component (Term 2
of the equation) is virtually zero at the other sites. The five-
parameter model was used in these remaining 16 cases. The
calculated parameters and the performance indicators (RSE
and NSE) of the models are shown in Table 6, and daily mean
stream temperatures estimated by the climate change models
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Figure 6. Gauging stations clustered by the current normalized
seasonal streamflow regime (agglomerative coefficient, a.c.= 0.81).
Stations are grouped by lithological classes.

are given in the Supplement (Dataset S3). Performance was
high in all the cases except in Pirón 5 where NSE was low.

For the entire array of sites (n= 31), the Pearson correla-
tion between thermal amplitude (α−µ) and λ is significant
(Pearson’s r =−0.832; p < 0.0001). As the thermal ampli-
tude increases, λ becomes more negative (indicating less re-
sistance). As the thermal amplitude decreases, λ approaches
zero (indicating more resistance).

By the end of the 21st century, the predicted average in-
crease in the mean annual stream temperature among the
sites is 1.1 ◦C for the RCP4.5 scenario (range 0.3–1.6 ◦C) and
2.7 ◦C for RCP8.5 (range 0.8–4.0 ◦C). The average increases
in maximum annual mean temperature are predicted to be
0.8 ◦C for RCP4.5 (range 0.1–1.5 ◦C) and 1.6 ◦C for RCP8.5
(range 0.2–3.0 ◦C), and the average increases in minimum
annual mean temperature are predicted to be 1.0 ◦C (range
0.4–1.8 ◦C) and 2.7 ◦C (range 1.1–4.5 ◦C), respectively. The
most important increases are predicted to occur in winter,
with summer experiencing smaller increases.

3.3.2 Stream temperature and geological nature

The values of the model parameters showed different be-
haviours depending on the lithology found in each basin,
which thus influences the thermal response to climate
change. The thermal amplitude is greater at sites underlain
by igneous bedrock (α−µ= 20.38 ◦C) than at sites under-
lain by carbonate bedrock (α−µ= 13.07 ◦C). β values are
greater at sites underlain by igneous bedrock (β = 12.71 ◦C)
than at sites underlain by carbonate bedrock (β = 7.80 ◦C),
and λ is significantly greater (λ=−0.140) at sites under-
lain by carbonate bedrock than at sites underlain by igneous
bedrock (λ=−0.292) and at sites underlain by Quaternary

Table 5. Bayesian (BIC) and Akaike (AIC) information criteria val-
ues for the stream-temperature models with five and eight parame-
ters.

Site BIC 5 BIC 8 AIC 5 AIC 8

Tormes2 2075.7 1911.8 2108.5 1837.9
Tormes3 2346.7 2274.2 2346.7 2234.8
Cega1 1814.8 1731.9 1789.1 1693.4
Pirón1 1725.9 1530.5 1700.2 1492.0
Lozoya1 5097.3 4924.6 5065.2 4876.4
Lozoya2 3979.3 3927.9 3948.6 3881.9
Lozoya3 3841.6 3673.6 3811.5 3628.5
Lozoya4 5076.6 4735.3 5044.8 4687.5
Cabrillas 2552.9 2172.2 2523.1 2127.4
Ebrón 624.8 169.8 598.5 130.3
Vallanca1 1438.9 1359.9 1410.6 1317.3
Vallanca2 1322.1 1279.7 1293.7 1237.1

detrital material (λ=−0.305) (Fig. 8). All of these differ-
ences are significant (p-values < 0.001, as determined using
t tests with the Bonferroni correction).

Among the eight-parameter models (n= 12), significant
differences are also found among the lithological classes
for ω and τ . For both ω and τ , the values were higher
at sites underlain by carbonate bedrock (ω = 0.96 ◦C; τ =
3.640 m3 s−1) than at sites underlain by igneous bedrock
(ω =−2.12 ◦C; τ = 0.345 m3 s−1). The differences in the
δ values among the carbonate (δ = 67.06 m−3 s) and ig-
neous sites (δ = 67.06 m−3 s) were only marginally signifi-
cant (p < 0.1).

Under the RCP4.5 scenario, 1Tmin displays significantly
different behaviour at sites underlain by Quaternary detri-
tal material than at sites underlain by carbonate and igneous
rocks. Under the RCP8.5 scenario, this difference is solely
found between the sites underlain by Quaternary detrital ma-
terial and those underlain by carbonate rocks. 1Tmean ex-
hibits significant differences between the sites underlain by
all three lithologies in both scenarios. All of these results are
common to H-2050 and H-2099. In terms of 1Tmax, in H-
2050, significant differences are found between the sites un-
derlain by carbonate and igneous rocks for both scenarios.
These differences are also significant in H-2099 for RCP4.5
and RCP8.5 and between the sites underlain by carbonate
rocks and Quaternary detrital material under the RCP8.5 sce-
nario (Fig. 9).

The results of the cluster analysis of the monthly mean
stream temperatures revealed a highly homogeneous aggre-
gation of sites for the different combinations of horizons
and scenarios, given that the thermal responses of the rivers
and streams are tightly linked with lithology (Fig. 7b). The
carbonate sites from the Cabrillas stream (in the east) and
Pirón 3 (which is strongly influenced by a calcareous spring)
form a group of sites that shows low thermal amplitude and
in which λ is close to zero. At the other extreme, a group
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Figure 7. Study sites clustered by the predicted change ratios of the seasonal mean streamflow (gauging stations) and by the predicted
increase in the monthly mean stream temperature (◦C) at the water temperature recording sites in H-2050 and H-2099 for the RCP4.5 and
RCP8.5 scenarios. Axes indicate geographic positions (UTM coordinates). The colours and numbers indicate the clusters.

that is made up mainly of sites underlain by igneous material
(in the Lozoya and Tormes basins, in addition to several sites
found in the detrital basin of Cega-Pirón) shows higher ther-
mal amplitude and lower values of λ than the former group.

The remaining sites have intermediate values of thermal am-
plitude and resistance.
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Table 6. Parameter values of the stream temperature models for every thermograph site (λ is a dimensionless parameter) and values of the
performance indicators residual standard error (RSE) and Nash–Sutcliffe efficiency index (NSE).

Site µ α α−µ γ β λ ω δ τ RSE NSE
(◦C) (◦C) (◦C) (◦C−1) (◦C) (◦C) (m−3 s) (m3 s−1) (◦C)

Aravalle 0.1 23.3 23.2 0.14 10.79 −0.31 2.31 0.70
Barbellido 1.1 19.2 18.1 0.23 12.19 −0.30 3.29 0.81
Gredos Gorge 2.4 19.0 16.6 0.18 14.06 −0.29 3.68 0.71
Tormes1 −1.1 20.8 21.9 0.16 11.00 −0.35 1.97 0.83
Tormes2 3.4 24.6 21.3 0.14 11.82 −0.31 −3.98 61.43 0.37 1.56 0.78
Tormes3 −0.1 30.5 30.6 0.12 12.61 −0.39 −2.85 223.69 0.22 1.62 0.79
Pirón1 −1.4 19.1 20.5 0.09 14.33 −0.18 −2.08 72.82 0.15 0.97 0.91
Pirón2 0.6 15.5 14.9 0.22 12.11 −0.23 3.69 0.82
Pirón3 7.2 14.0 6.8 0.29 10.17 −0.10 1.16 0.77
Pirón4 −0.6 18.3 18.9 0.15 8.20 −0.29 1.26 0.85
Pirón5 −4.6 21.7 26.3 0.13 8.92 −0.40 1.57 0.39
Cega1 1.4 15.6 14.2 0.19 15.92 −0.22 −1.53 112.98 0.27 1.17 0.88
Cega2 −0.6 18.0 18.6 0.17 16.03 −0.31 1.81 0.85
Cega3 −2.0 24.7 26.6 0.14 15.35 −0.41 2.83 0.85
Cega4 −0.3 19.9 20.2 0.16 12.21 −0.35 1.65 0.87
Cega5 −2.4 18.1 20.5 0.13 7.85 −0.31 0.87 0.84
Cega6 0.7 22.4 21.7 0.13 13.84 −0.38 2.34 0.79
Lozoya1 0.4 19.5 19.1 0.18 11.90 −0.24 −1.33 11.93 0.41 1.13 0.90
Lozoya2 0.3 20.2 20.0 0.19 11.63 −0.28 −1.27 13.16 0.38 1.17 0.90
Lozoya3 1.1 21.0 19.9 0.19 10.62 −0.29 −1.74 23.44 0.49 1.23 0.89
Lozoya4 1.7 22.0 20.2 0.17 10.29 −0.27 −2.19 17.04 0.48 1.17 0.90
Tagus-Peralejos 1.1 21.0 19.9 0.11 11.01 −0.17 1.00 0.89
Tagus-Poveda 1.3 20.4 19.2 0.15 9.95 −0.38 1.26 0.83
Gallo 0.4 20.2 19.8 0.13 7.76 −0.18 0.90 0.92
Cabrillas 8.3 15.3 7.0 0.21 9.23 −0.04 −1.38 13.56 1.25 1.65 0.90
Ebrón 5.5 17.0 11.4 0.07 6.58 −0.06 1.73 −1.78 3.16 0.27 0.86
Vallanca1 −0.5 16.9 17.4 0.09 4.70 −0.12 1.95 −5.21 4.85 0.53 0.88
Vallanca2 1.4 16.8 15.4 0.10 5.36 −0.11 1.54 −11.29 5.29 0.50 0.89
Palancia1 11.7 15.3 3.6 0.19 13.92 −0.03 0.23 0.93
Palancia2 9.3 16.1 6.8 0.27 12.73 −0.11 0.59 0.88
Villahermosa 7.8 18.0 10.2 0.27 16.46 −0.20 1.02 0.85

3.3.3 Effect of streamflow reductions on stream
temperature

The predicted flow reductions lead to notable increases
in water temperature. The effect of streamflow variation
on stream temperature is analysed at the following sites:
Tormes 2, Tormes 3, Pirón 1, Cega 1, Lozoya 1 to 4, Cabril-
las, Ebrón 1 and Vallanca 1 and 2. These are the sites at which
the eight-parameter model improves upon the five-parameter
model. In all cases, differences in stream temperature be-
tween the five- and eight-parameter models are found, and
summer flow reductions lead to increases in stream temper-
ature, increasing DAT, TAT≥ 7 and MCDAT. Among these
sites, the threshold is only surpassed at Lozoya and Tormes,
increasing the thermal habitat loss. At Cega 1, Cabrillas and
Ebrón, α is below the thermal threshold, and at Pirón 1, the
stream temperature increase is not sufficient to exceed the
threshold.

For all of the sites at which the influence of streamflow on
stream temperature was revealed, the eight-parameter model
estimates higher values of maximum annual DMST than the
five-parameter model. The maximum annual DMST calcu-
lated by the eight-parameter model is 3.6 ◦C higher than that
calculated by the five-parameter model at the Tormes 2 site.
This difference is not so large at the other sites, and the mini-
mum disagreement between the models (0.01 ◦C) is noted at
the Ebrón and Cabrillas sites. In general, the maximum dif-
ferences between the two models are noted in igneous catch-
ments, whereas carbonate sites yield the lowest differences.

3.3.4 Effect of climate change on the thermal habitat of
brown trout

The length of the thermal habitat of trout will undergo impor-
tant reductions due to the rises in water temperatures and the
increase in the extent of the warm period. In the predictions
for H-2050, the 18.7 ◦C threshold (TAT≥ 7) will be violated

www.hydrol-earth-syst-sci.net/21/4073/2017/ Hydrol. Earth Syst. Sci., 21, 4073–4101, 2017



4088 J. M. Santiago et al.: Waning habitats due to climate change

Table 7. Maximum daily mean stream temperature (◦C) in each site in the year 2015 and the horizons H-2050 and H-2099. Both scenarios
(RCP4.5 and RCP8.5) are shown. Bold numbers: values > 18.7 ◦C.

Maximum daily mean stream temperature (◦C)

RCP4.5 RCP8.5

Site 2015 H-2050 H-2099 2015 H-2050 H-2099

Aravalle 19.8 20.4 21.0 19.8 20.7 22.0
Barbellido 17.9 18.4 18.7 17.9 18.6 19.3
Gredos Gorge 16.5 17.1 17.6 16.5 17.4 18.5
Tormes1 18.1 18.6 19.1 18.0 18.9 20.1
Tormes2 20.5 21.2 21.4 20.7 21.1 22.1
Tormes3 21.8 22.7 23.1 22.4 22.4 24.5
Cega1 12.4 13.1 13.6 12.5 13.3 14.0
Cega2 15.2 15.9 16.3 15.2 16.1 17.3
Cega3 19.8 20.7 21.4 19.8 21.0 22.8
Cega4 18.1 18.5 18.9 18.1 18.7 19.7
Cega5 16.6 16.9 17.3 16.6 17.1 17.8
Cega6 18.7 19.5 19.9 18.8 19.6 21.0
Pirón1 12.9 13.8 14.2 13.2 13.9 15.6
Pirón2 14.9 15.1 15.4 14.9 15.3 15.7
Pirón3 14.1 14.1 14.2 14.0 14.2 14.3
Pirón4 17.2 17.5 17.8 17.2 17.7 18.3
Pirón5 19.3 19.8 20.2 19.3 20.0 21.1
Lozoya1 16.8 17.4 17.8 16.8 17.6 18.8
Lozoya2 17.6 18.1 18.6 17.5 18.4 19.6
Lozoya3 19.0 19.5 19.9 18.9 19.7 20.8
Lozoya4 19.5 20.0 20.5 19.5 20.3 21.4
Tagus-Peralejos 16.7 17.2 17.6 16.6 17.4 18.6
Tagus-Poveda 18.1 18.6 19.0 18.1 18.8 19.9
Gallo 17.9 18.3 18.6 17.9 18.4 19.3
Cabrillas 14.9 15.0 15.1 14.9 15.1 15.2
Ebrón 16.2 16.5 16.5 16.2 16.5 17.0
Vallanca1 16.8 17.1 17.3 16.8 17.2 17.9
Vallanca2 16.5 16.8 17.0 16.5 16.9 17.5
Palancia1 15.0 15.1 15.1 15.0 15.1 15.3
Palancia2 16.0 16.1 16.1 16.0 16.1 16.4
Vistahermosa 16.0 16.1 16.1 16.0 16.1 16.5

at eight sites under the RCP4.5 scenario and six sites under
the RCP8.5 scenario. In H-2099, the threshold will be vio-
lated at eight sites under the RCP4.5 scenario and 13 sites
under the RCP8.5 scenario.

By the end of the century (H-2099), the most notable in-
creases in TAT≥ 7 (Fig. 10) will be produced at Cega 6,
Pirón 5 and Lozoya 3 under the RCP4.5 scenario and at
Tormes 1, Cega 4, Cega 6, Lozoya 2, Gallo and Tagus-
Poveda under the RCP8.5 scenario. The most significant in-
creases in MCDAT (Fig. 10) will occur at low-altitude sites
underlain by igneous rocks and detrital material. In general,
the highest temperatures (maximum values of 24.5 ◦C, Ta-
ble 7) are predicted to occur in the downstream reaches of
the igneous and detrital river basins. In the carbonate basins,
only two sites (Tagus-Poveda and Gallo) will exceed the ther-
mal threshold. At mid-century (H-2050), the main changes
under the RCP8.5 scenario are similar to those predicted for

RCP4.5 at the end of the century (H-2099). RCP4.5 pre-
dicts a slower warming from mid-century onwards, whereas
RCP8.5 predicts an acceleration of the warming during that
period.

Continuous modelling of water temperature by means of
the interpolation of model parameters along the Cega, Pirón
and Lozoya rivers and the application of the model to DEM
data predicts relevant losses of thermal habitat, which will
affect up to 56, 11 and 66 % of the lengths of these streams,
respectively. In the Cega and Pirón rivers, the habitat loss
is expressed relative to the proportion of total stream length
where trout currently dwell (98 and 77 km in the Cega and
Pirón streams, respectively). In the Lozoya River, the loss
is predicted to occur in the reach (20 km) immediately up-
stream of a large reservoir (the Pinilla reservoir), which pro-
duces a total disconnection of the stream. The losses in maxi-
mum usable habitat will shift the current downstream limit of
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Figure 8. Distributions of the stream temperature model parame-
ter values (α−µ, β, γ and λ) in relation to lithology. Differences
were assessed using Student’s t test with the Bonferroni correction
(p < 0.05).

the trout distribution from 820 up to 831 m a.s.l in the Pirón
River, from 730 up to 830 m a.s.l. in the Cega River, and from
1090 up to 1276 m a.s.l. in the Lozoya River. In the particular
case of the Cega River, a window of usable thermal habitat is
also predicted to occur upstream from this altitudinal range
(from 913 up to 1050 m a.s.l.).

4 Discussion

4.1 Climate change

Our downscaled results predict greater air temperature incre-
ments than the original IPCC (2013) results. These higher
temperatures may lead to increased ecological impacts (Mag-
nuson and Destasio, 1997; Angilletta, 2009) caused by the
combination of rising water temperatures and decreasing
stream flows. The results from the AR5 of the IPCC and its
annex, the Atlas of Global and Regional Climate Projections
(IPCC, 2013), suggest that droughts are unlikely to increase
in the near future for the Mediterranean area. However, air
temperatures are expected to rise, subsequently increasing
evapotranspiration. As a consequence, the available water in
rivers and streams will be reduced. Regional studies have
used coarser resolutions than ours, which may be appropriate
for their goals (e.g. Thuiller et al., 2006). However, they may
be insufficient when more local predictions are needed, as
does our study, which treats geographically confined, stream-
dwelling trout populations. Therefore, fine downscaling tech-
niques like those applied in this study must be used when
high-resolution, detailed predictions are needed.

4.2 Streamflow

This study predicts significant but diverse streamflow reduc-
tions during the present century. At the regional level, a re-
duction in water resources is expected in the Mediterranean
area (IPCC, 2013). Milly et al. (2005) predicted a 10–30 %
decrease in runoff in southern Europe in 2050. In another
global-scale study, van Vliet et al. (2013) predicted a de-
crease in the mean flows of greater than 25 % in the Iberian
Peninsula area by the end of the century (2071–2100), us-
ing averages for both the SRES A2 and B1 scenarios (Na-
kicenovic et al., 2000). Our results predict mean flows that
are similar to that value (−23 %; range: 0–49 %), although
the emissions scenarios in this study are more severe (that
is, they involve greater increases in atmospheric CO2) than
those used in the aforementioned studies.

More specifically, the predictions for the RCP4.5 scenario
show flow reductions that range from negligibly small to sig-
nificant (up to 17 %). Under the RCP8.5 scenario, significant
reductions become more widespread, ranging up to 49 % of
the annual streamflow losses. Our results also predict a rele-
vant increase in the number of days with zero flow for some
stations in the detrital area under this scenario (RCP8.5). The
predicted streamflow changes are compatible with those ob-
tained in previous studies, although these studies were per-
formed at larger scales (Milly et al., 2005; van Vliet et al.,
2013). The apparent differences between the streamflow re-
ductions estimated in this study and those obtained by Milly
et al. (2005) and van Vliet et al. (2013) (who report lower
flow reductions than those given in the present study) might
be caused by the regional focus of their predictions (the en-
tire Iberian Peninsula), whereas ours are focused on moun-
tain reaches.

In terms of methods, process-based hydrological models
are often preferred for climate change studies (Van Vliet et
al., 2012). However, they can be overly complicated and re-
quire excessive data inputs, which may also lead to over-
fitting of the data (Zhuo et al., 2015). Constraining further
predictions to within the training domain is a rule of thumb
for machine learning studies (Fielding, 1999), although ex-
trapolation is rather common (Elith and Leathwick, 2009).
Therefore, taking into account the extrapolation that occurs
towards lower flows, which are over-represented in the train-
ing dataset, we consider the magnitude of the extrapolation
acceptable, and we consider the values, although they are not
exempt from uncertainty, to be reliable.

4.3 Stream temperature

The model we present in this study showed good perfor-
mance. Bustillo et al. (2013) recommended the assessment
of the impacts of climate change on river temperatures us-
ing regression-based methods like ours that rely on logistic
approximations of equilibrium temperatures (Edinger et al.,
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Figure 9. Distributions of 1Tmin, 1Tmean and 1Tmax in relation to lithology for the climate change scenarios RCP4.5 and RCP8.5 in
H-2050 and H-2050. The reference period corresponds to the simulated period 2010–2019.

1968), which are at least as robust as the most refined classi-
cal heat balance models.

However, we also sought to identify relationships between
thermal regime and other environmental variables besides
air temperature and streamflow, such as geology. Bogan et
al. (2003) showed that water temperatures were uniquely
controlled by climate in only 26 % of 596 studied stream
reaches. Groundwater, wastewater and reservoir releases in-
fluenced water temperatures in the remaining 74 % of the
cases. Loinaz et al. (2013) quantified the influence of ground-
water discharge on temperature variations in the Silver Creek
Basin (Idaho, USA), and they concluded that a 10 % reduc-
tion in groundwater flow can cause increases of over 0.3
and 1.5 ◦C in the average and maximum stream tempera-
tures, respectively. Our studied reaches were not influenced
by wastewater or reservoir releases (with the exception of
releases from the Torrecaballeros Dam on the Pirón River).
Kurylyk et al. (2015) showed that the temperature of shallow
groundwater influences the thermal regimes of groundwater-
dominated streams and rivers. Since groundwater is strongly
influenced by geology, we can expect it to be a good indi-
cator of the thermal response, as shown here. The models
used accurately described the thermal performance of the
study sites, and we found significant relationships among the
model parameters, the underlying lithologies and the hydro-
logic responses. Thermal amplitude (α−µ) and temperature
at the maximum change rate (β) were lower, and the resis-
tance parameter (λ) was closer to zero, in river basins that
were highly influenced by aquifers (mainly carbonate) com-
pared to the others, particularly compared with river basins
underlain by carbonate rocks. Since DMST is a variable that
is relevant for detecting departures from thermal niche, we
can conclude that it is worthwhile to use the more complex

eight-parameter model to predict the effects of global warm-
ing, especially in igneous catchments.

A wide range of models is described in the literature, and
each such model has its strengths and weaknesses. Arismendi
et al. (2014) hold that regression models based on air temper-
ature can be inadequate for projecting future stream temper-
atures because they are only surrogates for air temperature,
whereas Piccolroaz et al. (2016) argued that the adequacy
depends on the hydrological regime, type of model and the
timescale analysis. Their main objections to regressive meth-
ods arose when modelling reaches of regulated rivers, but this
is not our case. In addition, our model improves the mod-
els that were tested in both studies (Arismendi et al., 2014;
Piccolroaz et al., 2016). Performance indicators of our mod-
els produce good results, showing that the models are suffi-
ciently competent. We show that our model implicitly inte-
grates the effect of other factors, such as geology and flow
regime by means of its parameters. A fine mechanistic solu-
tion to the modelling issue could need prohibitive methods
(Kurylyk et al., 2015), losing the advantages that make at-
tractive the model (input data easy to get). Therefore a com-
promise between improved precision and increased cost must
be met.

The behaviour and dynamics of the parameters offer a
promising research field. Their analysis may help to intro-
duce new parametrization criteria to avoid the risk of ignor-
ing the effect of climate warming on groundwater (subsur-
face water and deep water), for instance. The thermal sen-
sitivity of shallow groundwater differs between short-term
(e.g. seasonal) and long-term (e.g. multi-decadal) time hori-
zons, and the relationship between air and water tempera-
tures does not necessarily reflect this difference. This vari-
ability should be taken into account in order to avoid un-
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Figure 10. Increases in TAT≥ 7 (time above the threshold during seven or more consecutive days), MCDAT (maximum consecutive days
above the threshold) and DAT (days above the threshold per annum) from the present to H-2050 and H-2099 for RCP4.5 and RCP8.5.

derestimating the effects of climate warming (Kurylyk et al.,
2015).

Regression models are substantially site-specific com-
pared to deterministic approaches (Arismendi et al., 2014).
However, the parameters of these regression approaches are
still physically meaningful, and these models require fewer
variables that can limit the applicability of more complex
models in areas where data are scarce. Consequently, the
value of this type of model is its applicability to a large num-
ber of sites where the only available data describe air temper-

atures (and precipitation and streamflow to a lesser extent).
On the other hand, our results show that predictions can im-
prove when streamflow is included in the water temperature
model, although some streams show little or no sensitivity
to the introduction of streamflow into the model. However,
the lack of sensitivity is not necessarily due to the absence
of the influence of flow on the water temperature but rather
to its minor relevance compared to other sources of noise.
Thus, when flow data are available, it may be recommended
to use the more complex eight-parameter model to predict
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the effects of climate warming. This conclusion is especially
applicable to lithologically sensitive basins, such as those un-
derlain by igneous rocks.

The predicted increase in water temperature will be sub-
stantial at most of the study sites. The annual mean rates of
change will increase with time. Stewart et al. (2015) predict
an increase of 1–2 ◦C by mid-century in 80 % of the stream
lengths in Wisconsin and by 1–3 ◦C by the latter part of the
century in 99 % of the stream lengths, which corresponds to
a significant loss in suitable areas for cold-water fish. The re-
sults of Stewart et al. (2015) do not differ from ours, except
that we expect greater increases by the end of the studied pe-
riod (up to 4 ◦C). Our results are also compatible with those
of van Vliet et al. (2013), who predicted a water temperature
increase > 2 ◦C in the Iberian Peninsula area by the end of the
century; however, our results are more specific and precise.
In this sense, Muñoz-Mas et al. (2016) also obtained similar
results for H-2050 in a river reach in central Spain by mid-
century (i.e. daily mean flow reductions between 20 and 29 %
and daily mean stream temperature increases up to 0.8 ◦C).
However, we predict that the minima are more sensitive to
climate warming than the maxima.

4.4 Effects of climate change on brown trout
populations

Brown trout are sensitive to changes in discharge patterns be-
cause high-intensity floods during the incubation and emer-
gence periods may limit recruitment (Lobón-Cerviá and
Rincón, 2004; Junker et al., 2015). In the Iberian Penin-
sula, the trout distribution is mainly concentrated in moun-
tain streams, where extreme discharges during winter are ex-
pected to increase (Rojas et al., 2012). These extreme dis-
charges will likely affect trout recruitment negatively. Thus,
the predicted changes in the hydrological regime can subject
brown trout populations to more variable conditions, which
may occasionally present some populations with insupera-
ble bottlenecks. Trout are polytypic and display an adapt-
able phenology and rather high intra-population variability
in their life history traits that might allow them to show re-
silience to variations in habitat features (Gortázar et al., 2007;
Larios-López et al., 2015), especially in the marginal ranges
(Ayllón et al., 2016). However, despite these strong evolu-
tionary responses, the current combination of warming and
streamflow reduction scenarios is likely to exceed the capac-
ity of many populations to adapt to new conditions (Ayllón et
al., 2016). Consistent with regional predictions (Rojas et al.,
2012; Garner et al., 2015), significant flow reductions are ex-
pected during summertime in most of the studied rivers and
streams at the end of the century, and this may mean, in turn,
the reduction in the suitable habitat (i.e. the available water
volume) (Muñoz-Mas et al., 2016). Finally, the increase in
extreme droughts, which involve absolute water depletion, in
certain reaches of the streams may be critical for some trout
populations.

The predicted increase in winter stream temperatures can
affect the sessile phases (i.e. eggs and larvae) of trout de-
velopment. These phases are very sensitive to temperature
changes because it affects their physiology, and because their
development is temperature dependent (e.g. Lobón-Cerviá
and Mortensen, 2005; Lahnsteiner and Leitner, 2013). Thus,
changes in the duration of incubation and yolk sac absorp-
tion can affect emergence times and, in turn, the sensitivity
of these phases to hydrological regime alterations (Sánchez-
Hernández and Nunn, 2016). An increase in stream temper-
ature can also reduce hatchling survival (Elliott and Elliott,
2010). In accordance with the results presented herein, the
predicted synergy of streamflow reductions and water tem-
perature increases will cause substantial losses of suitable
fish habitat, especially for cold-water fish such as brown trout
(Muñoz-Mas et al., 2016).

The increases in threshold violations were important in our
simulations. The duration of warm events (temperature above
the threshold value) increased by up to 3 months at the end
of the century in the most pessimistic scenario (RCP8.5). A
continuous analysis of the whole-river response should be
conducted to allow spatially explicit predictions and to iden-
tify reaches where thermal refugia are likely to occur. How-
ever, our results suggest that trout will not survive in these
reaches because the persistence of thermal refugia is improb-
able or because their extents will be insufficient. In the Cega,
Pirón and Lozoya rivers, important losses of thermal habitat
will occur that could jeopardize the viability of the trout pop-
ulation. Behavioural thermoregulatory tactics are common in
fish (Reynolds and Casterlin, 1979; Goyer et al., 2014); for
instance, some species perform short excursions (< 60 min in
experiments with brook char, S. fontinalis) that could be a
common thermoregulatory behaviour adopted by cold fresh-
water fish species to sustain their body temperature below a
critical temperature threshold, enabling them to exploit re-
sources in an unfavourable thermal environment (Pépino et
al., 2015). Brown trout can use pool bottoms during day-
light hours to avoid the warmer and less oxygenated sur-
face waters in thermal refugia (Elliott, 2000). Nevertheless, if
the warm events became too long, the thermal refugia could
become completely insufficient, thus compromising fish sur-
vival (Brewitt and Danner, 2014; Daigle et al., 2014).

4.5 The brown trout distribution

According to our results, streamflow reductions are able to
synergistically contribute to the loss of thermal habitat by
increasing daily mean stream temperatures. This effect is es-
pecially relevant in summer in the Mediterranean area, when
the warmest temperatures and minimum flows usually occur.
The existence of thermal refugia represents a possible means
of fish survival, and the probability for a water body to be-
come a thermal refugium is highly geologically dependent.
In our simulations, the sites that are most dependent on deep
aquifers (i.e. basins underlain by Mesozoic carbonate rocks)
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display improved resistance to warming. The habitat retrac-
tion at the rear edge of the actual distribution of brown trout
is deduced to be geologically mediated.

The mountains of central and south-eastern Spain con-
tain the rear edge of the distribution of native brown trout
(Kottelat and Freyhof, 2007). Fragmentation and disconnec-
tion of populations by newly formed thermal barriers may
aggravate the already significant losses of thermal habitat
by reducing the viability of populations and increasing the
extinction risk. Thus, the rear edge of the trout population
in the Iberian Peninsula might shift to the northern moun-
tains to varying extents depending on the presence of rele-
vant mesological features, such as geology. The calcareous
mountains of northern Spain could be a refuge for trout be-
cause they combine favourable geology and a relatively more
humid climate. As a result of this differential response, the
western portion of the Iberian range (which is plutonic and
less buffered) will eventually experience more frequent lo-
cal temperature-driven extinction events, thus producing a
greater shift northward, than in the eastern Iberian end of
this range, which is calcareous and highly buffered and will
remain more resilient to these local extinction events. How-
ever, the predicted streamflow reductions may act synergis-
tically, reducing the physical space, and this may jeopar-
dize the less thermally exposed populations. In the Iberian
Peninsula, stream temperatures will increase less in the cen-
tral and northern mountains than in the central plateau, and
the increases will be smaller in karstic than in granitic (ig-
neous) mountains. At the same time, the side of the penin-
sula that faces the Mediterranean is expected to be more sen-
sitive to warming and streamflow reductions than the side
of the peninsula that faces the Atlantic. Thus, brown trout
populations in the karstic mountains of northern Spain (the
Cantabrian Mountains and the calcareous parts of the Pyre-
nees) are better able to resist the climate warming than the
populations farther east in the granitic portion of the Pyre-
nees (Santiago, 2017). Similar patterns may occur in other
parts of southern Europe. Most likely, the less pronounced
thermal responses of rivers and streams in the karstic areas
will allow for greater persistence of the brown trout popula-
tion, although changes in streamflow regimes will likely also
occur there.

In a study of the major basins of Europe, Lassalle and
Rochard (2009) predicted that the brown trout would “lose
all its suitable basins in the southern part of its distribution
area ([the] Black Sea, the Mediterranean, the Iberian Penin-
sula and the South of France), but [would] likely to con-
tinue being abundant in [the] northern basins”. Almodóvar
et al. (2011) estimated that the brown trout will be erad-
icated over almost the entire stream length of the studied

basins in northern Spain, and Filipe et al. (2013) estimated
an expected loss of 57 % of the studied reaches in the Ebro
Basin in north-eastern Spain. Our study shows important, yet
not so dramatic, reductions in the thermal habitat of Iberian
brown trout populations in mountainous areas. The number
of general climate models used, the reliability of the down-
scaling procedure, the resolution of the stream temperature
and streamflow models, and the method used to study the
threshold imply a substantial improvement in detail (Santi-
ago et al., 2016) over previous work. It is reasonable to infer
that many mountain streams appear poised to become refugia
for cold-water biodiversity during this century (Isaak et al.,
2016).

5 Conclusions

The main findings of this study are as follows: (i) our down-
scaled results predict greater air temperature increments than
the IPCC’s averages, from which our estimations were made;
(ii) significant but diverse streamflow reductions are pre-
dicted to occur during the present century; (iii) the models
presented in this study have been shown to be useful for
improving simulations; (iv) the predicted increases in water
temperature will be influenced to varying degrees by the flow
and geological features of rivers and streams; (v) the thermal
habitat of brown trout, a cold-water species, will decrease as
a consequence of the synergistic effects of flow reduction and
water warming; and (vi) the peaks in water temperature and
the complete depletion of the river channels will produce lo-
cal extinctions, although the ultimate magnitude of the effect
will be governed by the geological nature of the basins.

Our findings might be useful in planning the prevention
and mitigation of the negative effects of climate change on
freshwater fish species at the rear edge of their distributions.
A differentiation of areas based on their risk level and viabil-
ity is necessary to set standardized conservation goals. Our
results show that trout conservation requires knowledge of
both temperature and streamflow dynamics at fine spatial and
temporal scales. Managers need easy-to-use tools to simulate
the expected impacts and the management options to address
them, and the methods and results we provide could provide
key information in developing these tools and management
options.

Data availability. Stream temperature data owned by the authors
can be found at https://doi.org/10.1594/PANGAEA.879494 (Santi-
ago et al., 2017).
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Appendix A: Table of symbols and abbreviations
(alphabetically ordered)

Symbol/abbreviation Meaning

a.c. agglomerative coefficient
AEMET Spanish Meteorological Agency
AIC Akaike information criterion
α maximum stream temperature
AR5 Fifth Assessment Report of the IPCC
β air temperature at which the rate of change of the stream temperature with respect to the air

temperature is a maximum
BIC Bayesian information criterion
CMIP5 Fifth Coupled Model Intercomparison Project
DAT total days above the threshold per year
δ maximum rate at τ .
1Ta 1-day variation in the daily mean air temperature
1Tmax increments of the annual averages of the daily maximum stream temperature
1Tmean increments of the annual averages of the daily mean stream temperature
1Tmin increments of the annual averages of the daily minimum stream temperature
DEM digital elevation model
DMAT daily mean air temperature
DMST daily mean steam temperature
ECDF empirical cumulative distribution functions
γ rate of change at β
H-2050 year horizon 2050
H-2099 year horizon 2099
IGN National Geographic Institute of the Spanish Government
IPCC Intergovernmental Panel on Climate Change
λ represents the resistance of DMST to change with respect to the 1-day variation in DMAT (1Ta)
M5 machine learning technique
MCDAT maximum consecutive days above the threshold per year
µ minimum stream temperature
NSE Nash–Sutcliffe efficiency
ω maximum observable variation in stream temperature due to the flow difference
PACF partial autocorrelation function
Q10 10th percentile of flow
Qmax maximum flow
Qmean mean flow
Qmin minimum flow
RCP4.5 Representative Concentration Pathway 4.5
RCP8.5 Representative Concentration Pathway 8.5
RSE residual standard error
Ta air temperature
TAT≥ 7 frequency of events of seven or more consecutive days above the threshold per year
τ low value at which the rate of change of the stream temperature with respect to the flow

is a maximum
Ts stream temperature
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Appendix B: Uncertainty

In science, and particularly in hydrological studies, the un-
certainty is a matter which requires special attention, and it
has led us to include a synthesis of our approach to this prob-
lem in this appendix. The uncertainty analysis is a necessary
step in assessing the risk level in the applicability of a model
(Pappenberger and Beven, 2006). Our aim was to study the
viability of the brown trout populations, and we modelled
the flow and the stream temperature for this purpose. From
a conceptual point of view our approaches were consistent
with it.

On data inputs to build the models, uncertainties and in-
consistencies are a habitual issue (Juston et al., 2013). The
meteorological and hydrological services subject data to their
own quality controls but systematic error cannot always be
completely controlled (Beven and Westerberg, 2011; McMil-
lan et al., 2012). For this reason, in addition, we tested the
input data seeking inconsistencies.

The modelling of the river reaches as one-dimensional el-
ements implies a simplification of the fluvial ecosystem that
is generally accepted at this scale (e.g. Viganò et al., 2015;
Ahmed and Tsanis, 2016), especially for ecological purposes
(e.g. Caiola et al., 2014). Nevertheless, the size of the rivers
under study made little or nothing relevant the variations in
width and depth (it was verified in the field).

Regarding the parameterization of the models, cross-
validation was used to evaluate the uncertainty in these pro-
cess, and indicators such as the NSE (for hydrological and
thermal models), the deviance and the RSE (for thermal mod-
els) were calculated. In the case of the thermal model, the
functions of distribution of the parameters of the model were
built by non-parametric bootstrap, and the mean values were
chosen as the most proficient estimators. As results show, pa-

rameters tell us about the functional behaviour of catchments
(particularly on the effects of the catchments geology on the
streams temperature) and this might improve predictions in
ungauged basins by better controlling uncertainty (Juston et
al., 2013).

Once the models were constructed, It was verified that
the overlaps of the ranges of the model input variables and
the ranges of the outputs were significant (p < 0.05). The
non-overlapping zones affected, on the one hand, infrequent
events (great floods) and the extreme temperature zone (zone
of extrapolation), being the last one the scope in which we
expected to work. However, the weakness of the hydrologi-
cal model in the flood zone should be considered for other
applications and developments of the model. The hydrologi-
cal model given us sufficient and relevant information since
its possible weak points (extrapolation in the floods assess-
ment) did not affect our goal: we focused on central trends
and minimum values, and they were solidly represented in
the samples and in the simulations.

As said, the inherent uncertainty of the climate predictions
according to the scenarios RCP4.5 and RCP8.5 was attenu-
ated by means of the ensemble technique, showing the dis-
persion of the results by mean of the percentiles in Figs. S1
to S24 (in the Supplement). Beven (2011) exposed his legit-
imate concerns on the credibility of climate models which
fail when are compared with the control period and, conse-
quently, we used ERA-40 reanalysis to control this source of
bias with excellent results.

There was a time dependence between the errors of the
model and the scope of the prediction, but these errors were
only important in the zone of high temperature and low flow,
as expected by the physical nature of the climatic variables.
Moreover, this is the behaviour of the variables that was our
intention to evaluate.
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