Articles | Volume 21, issue 3
https://doi.org/10.5194/hess-21-1339-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-1339-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Estimation of surface energy fluxes in the Arctic tundra using the remote sensing thermal-based Two-Source Energy Balance model
Geophysical Institute, University of Alaska Fairbanks, Fairbanks,
Alaska 99775, USA
Institute of Northern Engineering, Water Environmental Research
Center, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
Anupma Prakash
Geophysical Institute, University of Alaska Fairbanks, Fairbanks,
Alaska 99775, USA
Martha C. Anderson
Hydrology and Remote Sensing Laboratory, United States Department of
Agriculture, Agriculture Research Service, Beltsville, Maryland 20705, USA
William P. Kustas
Hydrology and Remote Sensing Laboratory, United States Department of
Agriculture, Agriculture Research Service, Beltsville, Maryland 20705, USA
Eugénie S. Euskirchen
Institute of Arctic Biology. University of Alaska Fairbanks,
Fairbanks, Alaska 99775, USA
Douglas L. Kane
Institute of Northern Engineering, Water Environmental Research
Center, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
Related authors
No articles found.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Kelsey Spehlmann, Eugénie Euskirchen, and Svetlana Stuefer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-153, https://doi.org/10.5194/tc-2023-153, 2023
Revised manuscript under review for TC
Short summary
Short summary
Sublimation is the hidden portion of the water cycle where snow changes phase directly to water vapor, skipping the liquid state. Though sublimation is difficult to measure, especially in remote regions such as arctic and subarctic Alaska where this study took place, our measurements confirm that sublimation is a substantial component of the annual water cycle. Results from this research contribute to knowledge of how site conditions affect sublimation rates and the winter hydrologic cycle.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Sangchul Lee, Dongho Kim, Gregory W. McCarty, Martha Anderson, Feng Gao, Fangni Lei, Glenn E. Moglen, Xuesong Zhang, Haw Yen, Junyu Qi, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-187, https://doi.org/10.5194/hess-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
Watershed modeling is important to protect water resources. However, errors are involved in watershed modeling. To reduce errors, remotely sensed evapotranspiration data are widely used. However, the use of remotely sensed evapotranspiration data still includes errors. This study applied two remotely sensed data (evapotranspiration and leaf area index) into watershed modeling to reduce errors. The results showed advancement of watershed modeling by two remotely sensed data.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Sarah E. Chadburn, Eleanor J. Burke, Angela V. Gallego-Sala, Noah D. Smith, M. Syndonia Bret-Harte, Dan J. Charman, Julia Drewer, Colin W. Edgar, Eugenie S. Euskirchen, Krzysztof Fortuniak, Yao Gao, Mahdi Nakhavali, Włodzimierz Pawlak, Edward A. G. Schuur, and Sebastian Westermann
Geosci. Model Dev., 15, 1633–1657, https://doi.org/10.5194/gmd-15-1633-2022, https://doi.org/10.5194/gmd-15-1633-2022, 2022
Short summary
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Anam M. Khan, Paul C. Stoy, James T. Douglas, Martha Anderson, George Diak, Jason A. Otkin, Christopher Hain, Elizabeth M. Rehbein, and Joel McCorkel
Biogeosciences, 18, 4117–4141, https://doi.org/10.5194/bg-18-4117-2021, https://doi.org/10.5194/bg-18-4117-2021, 2021
Short summary
Short summary
Remote sensing has played an important role in the study of land surface processes. Geostationary satellites, such as the GOES-R series, can observe the Earth every 5–15 min, providing us with more observations than widely used polar-orbiting satellites. Here, we outline current efforts utilizing geostationary observations in environmental science and look towards the future of GOES observations in the carbon cycle, ecosystem disturbance, and other areas of application in environmental science.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Mahmoud Osman, Benjamin F. Zaitchik, Hamada S. Badr, Jordan I. Christian, Tsegaye Tadesse, Jason A. Otkin, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 25, 565–581, https://doi.org/10.5194/hess-25-565-2021, https://doi.org/10.5194/hess-25-565-2021, 2021
Short summary
Short summary
Our study of flash droughts' definitions over the United States shows that published definitions yield markedly different inventories of flash drought geography and frequency. Results suggest there are several pathways that can lead to events that are characterized as flash droughts. Lack of consensus across definitions helps to explain apparent contradictions in the literature on trends and indicates the selection of a definition is important for accurate monitoring of different mechanisms.
Sangchul Lee, Gregory W. McCarty, Glenn E. Moglen, Haw Yen, Fangni Lei, Martha Anderson, Feng Gao, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-669, https://doi.org/10.5194/hess-2020-669, 2021
Publication in HESS not foreseen
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Jason A. Otkin, Yafang Zhong, David Lorenz, Martha C. Anderson, and Christopher Hain
Hydrol. Earth Syst. Sci., 22, 5373–5386, https://doi.org/10.5194/hess-22-5373-2018, https://doi.org/10.5194/hess-22-5373-2018, 2018
Short summary
Short summary
Correlation analyses were used to explore relationships between the Evaporative Stress Index (ESI) – which depicts anomalies in evapotranspiration (ET) – and various land and atmospheric variables that impact ET. The results revealed that the ESI is more strongly correlated to anomalies in soil moisture and near-surface vapor pressure deficit than to precipitation and temperature anomalies. Large regional and seasonal dependencies in the strengths of the correlations were also observed.
Vikalp Mishra, James F. Cruise, Christopher R. Hain, John R. Mecikalski, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 22, 4935–4957, https://doi.org/10.5194/hess-22-4935-2018, https://doi.org/10.5194/hess-22-4935-2018, 2018
Short summary
Short summary
Multiple satellite observations can be used for surface and subsurface soil moisture estimations. In this study, satellite observations along with a mathematical model were used to distribute and develop multiyear soil moisture profiles over the southeastern US. Such remotely sensed profiles become particularly useful at large spatiotemporal scales, can be a significant tool in data-scarce regions of the world, can complement various land and crop models, and can act as drought indicators etc.
Thomas R. H. Holmes, Christopher R. Hain, Wade T. Crow, Martha C. Anderson, and William P. Kustas
Hydrol. Earth Syst. Sci., 22, 1351–1369, https://doi.org/10.5194/hess-22-1351-2018, https://doi.org/10.5194/hess-22-1351-2018, 2018
Short summary
Short summary
In an effort to apply cloud-tolerant microwave data to satellite-based monitoring of evapotranspiration (ET), this study reports on an experiment where microwave-based land surface temperature is used as the key diagnostic input to a two-source energy balance method for the estimation of ET. Comparisons of this microwave ET with the conventional thermal infrared estimates show widespread agreement in spatial and temporal patterns from seasonal to inter-annual timescales over Africa and Europe.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Wade T. Crow, Eunjin Han, Dongryeol Ryu, Christopher R. Hain, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 21, 1849–1862, https://doi.org/10.5194/hess-21-1849-2017, https://doi.org/10.5194/hess-21-1849-2017, 2017
Short summary
Short summary
Terrestrial water storage is defined as the total volume of water stored within the land surface and sub-surface and is a key variable for tracking long-term variability in the global water cycle. Currently, annual variations in terrestrial water storage can only be measured at extremely coarse spatial resolutions (> 200 000 km2) using gravity-based remote sensing. Here we provide evidence that microwave-based remote sensing of soil moisture can be applied to enhance this resolution.
Yun Yang, Martha C. Anderson, Feng Gao, Christopher R. Hain, Kathryn A. Semmens, William P. Kustas, Asko Noormets, Randolph H. Wynne, Valerie A. Thomas, and Ge Sun
Hydrol. Earth Syst. Sci., 21, 1017–1037, https://doi.org/10.5194/hess-21-1017-2017, https://doi.org/10.5194/hess-21-1017-2017, 2017
Short summary
Short summary
This work explores the utility of a thermal remote sensing based MODIS/Landsat ET data fusion procedure over a mixed forested/agricultural landscape in North Carolina, USA. The daily ET retrieved at 30 m resolution agreed well with measured fluxes in a clear-cut and a mature pine stand. An accounting of consumptive water use by land cover classes is presented, as well as relative partitioning of ET between evaporation (E) and transpiration (T) components.
Joseph G. Alfieri, Martha C. Anderson, William P. Kustas, and Carmelo Cammalleri
Hydrol. Earth Syst. Sci., 21, 83–98, https://doi.org/10.5194/hess-21-83-2017, https://doi.org/10.5194/hess-21-83-2017, 2017
Xiyan Xu, William J. Riley, Charles D. Koven, Dave P. Billesbach, Rachel Y.-W. Chang, Róisín Commane, Eugénie S. Euskirchen, Sean Hartery, Yoshinobu Harazono, Hiroki Iwata, Kyle C. McDonald, Charles E. Miller, Walter C. Oechel, Benjamin Poulter, Naama Raz-Yaseef, Colm Sweeney, Margaret Torn, Steven C. Wofsy, Zhen Zhang, and Donatella Zona
Biogeosciences, 13, 5043–5056, https://doi.org/10.5194/bg-13-5043-2016, https://doi.org/10.5194/bg-13-5043-2016, 2016
Short summary
Short summary
Wetlands are the largest global natural methane source. Peat-rich bogs and fens lying between 50°N and 70°N contribute 10–30% to this source. The predictive capability of the seasonal methane cycle can directly affect the estimation of global methane budget. We present multiscale methane seasonal emission by observations and modeling and find that the uncertainties in predicting the seasonal methane emissions are from the wetland extent, cold-season CH4 production and CH4 transport processes.
Thomas R. H. Holmes, Christopher R. Hain, Martha C. Anderson, and Wade T. Crow
Hydrol. Earth Syst. Sci., 20, 3263–3275, https://doi.org/10.5194/hess-20-3263-2016, https://doi.org/10.5194/hess-20-3263-2016, 2016
Short summary
Short summary
We test the cloud tolerance of two technologies to estimate land surface temperature (LST) from space: microwave (MW) and thermal infrared (TIR). Although TIR has slightly lower errors than MW with ground data under clear-sky conditions, it suffers increasing negative bias as cloud cover increases. In contrast, we find no direct impact of clouds on the accuracy and bias of MW-LST. MW-LST can therefore be used to improve TIR cloud screening and increase sampling in clouded regions.
Ting Xia, William P. Kustas, Martha C. Anderson, Joseph G. Alfieri, Feng Gao, Lynn McKee, John H. Prueger, Hatim M. E. Geli, Christopher M. U. Neale, Luis Sanchez, Maria Mar Alsina, and Zhongjing Wang
Hydrol. Earth Syst. Sci., 20, 1523–1545, https://doi.org/10.5194/hess-20-1523-2016, https://doi.org/10.5194/hess-20-1523-2016, 2016
Short summary
Short summary
This paper describes a model inter-comparison and validation study conducted using sub-meter resolution thermal data from an aircraft. The model inter-comparison is between a physically based model and a very simple empirical model. The strengths and weaknesses of both modeling approaches for high-resolution mapping of water use in vineyards is described. The findings provide significant insight into the utility of complex versus simple models for precise water resources management.
Y. Yi, J. S. Kimball, M. A. Rawlins, M. Moghaddam, and E. S. Euskirchen
Biogeosciences, 12, 5811–5829, https://doi.org/10.5194/bg-12-5811-2015, https://doi.org/10.5194/bg-12-5811-2015, 2015
Short summary
Short summary
We found that regional warming promotes widespread deepening of soil thaw in the pan-Arctic area; continued warming will most likely promote permafrost degradation in the warm permafrost areas. We also found that deeper snowpack enhances soil respiration from deeper soil carbon pool more than temperature does, particularly in the cold permafrost areas, where a large amount of soil carbon is stored in deep perennial frozen soils but is potentially vulnerable to mobilization from climate change.
M. A. Schull, M. C. Anderson, R. Houborg, A. Gitelson, and W. P. Kustas
Biogeosciences, 12, 1511–1523, https://doi.org/10.5194/bg-12-1511-2015, https://doi.org/10.5194/bg-12-1511-2015, 2015
C. Cammalleri, M. C. Anderson, and W. P. Kustas
Hydrol. Earth Syst. Sci., 18, 1885–1894, https://doi.org/10.5194/hess-18-1885-2014, https://doi.org/10.5194/hess-18-1885-2014, 2014
R. Guzinski, M. C. Anderson, W. P. Kustas, H. Nieto, and I. Sandholt
Hydrol. Earth Syst. Sci., 17, 2809–2825, https://doi.org/10.5194/hess-17-2809-2013, https://doi.org/10.5194/hess-17-2809-2013, 2013
J. Cristóbal and M. C. Anderson
Hydrol. Earth Syst. Sci., 17, 163–175, https://doi.org/10.5194/hess-17-163-2013, https://doi.org/10.5194/hess-17-163-2013, 2013
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests
Machine learning and global vegetation: random forests for downscaling and gap filling
Unraveling phenological and stomatal responses to flash drought and implications for water and carbon budgets
Ecohydrological responses to solar radiation changes
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Technical assessment combined with extended cost-benefit analysis for groundwater ecosystem services restoration – An application for Grand Bahama
Technical note: Seamless extraction and analysis of river networks in R
Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California
Improving regional climate simulations based on a hybrid data assimilation and machine learning method
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Impacts of different types of El Niño events on water quality over the Corn Belt, United States
Leveraging sap flow data in a catchment-scale hybrid model to improve soil moisture and transpiration estimates
Coupled modelling of hydrological processes and grassland production in two contrasting climates
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling
How does water yield respond to mountain pine beetle infestation in a semiarid forest?
Daily soil temperature modeling improved by integrating observed snow cover and estimated soil moisture in the USA Great Plains
Plant hydraulic transport controls transpiration sensitivity to soil water stress
Drought onset and propagation into soil moisture and grassland vegetation responses during the 2012–2019 major drought in Southern California
Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects
Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion
Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models
Quantification of ecohydrological sensitivities and their influencing factors at the seasonal scale
Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis
Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites
Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor
Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies
Calibration of hydrological models for ecologically relevant streamflow predictions: a trade-off between fitting well to data and estimating consistent parameter sets?
Spatial variability of mean daily estimates of actual evaporation from remotely sensed imagery and surface reference data
Quantification of soil water balance components based on continuous soil moisture measurement and the Richards equation in an irrigated agricultural field of a desert oasis
Mapping the suitability of groundwater-dependent vegetation in a semi-arid Mediterranean area
Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach
The 18O ecohydrology of a grassland ecosystem – predictions and observations
A comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions
Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river
Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data
Testing an optimality-based model of rooting zone water storage capacity in temperate forests
A regional-scale ecological risk framework for environmental flow evaluations
Climate-driven disturbances in the San Juan River sub-basin of the Colorado River
Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space
Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States
Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI
Jesús Sánchez-Dávila, Miquel De Cáceres, Jordi Vayreda, and Javier Retana
Hydrol. Earth Syst. Sci., 28, 3037–3050, https://doi.org/10.5194/hess-28-3037-2024, https://doi.org/10.5194/hess-28-3037-2024, 2024
Short summary
Short summary
Forest blue water is determined by the climate, functional traits, and stand structure variables. The leaf area index (LAI) is the main driver of the trade-off between the blue and green water. Blue water is concentrated in the autumn–winter season, and deciduous trees can increase the relative blue water. The leaf phenology and seasonal distribution are determinants for the relative blue water.
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024, https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Short summary
Drought often manifests itself in vegetation; however, obtaining high-resolution remote-sensing products that are spatially and temporally consistent is difficult. In this study, we show that machine learning (ML) can fill data gaps in existing products. We also demonstrate that ML can be used as a downscaling tool. By relying on ML for gap filling and downscaling, we can obtain a more holistic view of the impacts of drought on vegetation.
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024, https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Short summary
We simulate how dynamic vegetation interacts with the atmosphere during extreme drought events known as flash droughts. We find that plants nearly halt water and carbon exchanges and limit their growth during flash drought. This work has implications for how to account for changes in vegetation state during extreme drought events when making predictions under future climate scenarios.
Yiran Wang, Naika Meili, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2024-768, https://doi.org/10.5194/egusphere-2024-768, 2024
Short summary
Short summary
Our study uses climate model simulations and process-based ecohydrological modeling to assess the direct and climate feedback induced effects of solar radiation changes on hydrological variables. Results show that solar radiation without climate feedback primarily affects sensible heat with limited effects on hydrology and vegetation. However, climate feedback exacerbates the effects of radiation changes on evapotranspiration and affects vegetation productivity.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Anne Imig, Francesca Perosa, Carolina Iwane Hotta, Sophia Klausner, Kristen Welsh, and Arno Rein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-236, https://doi.org/10.5194/hess-2023-236, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
In 2019, Hurricane Dorian led to salinization of groundwater resources on the island of Grand Bahama. We assessed the feasibility of managed aquifer recharge (MAR) for restoring fresh groundwater. Furthermore, we applied a financial and an extended cost-benefit analysis for assessing ecosystem services supported by MAR and reforestation. As a first estimate, MAR could only provide a small contribution to the water demand. Reforestation measures were assessed as financially profitable.
Luca Carraro
Hydrol. Earth Syst. Sci., 27, 3733–3742, https://doi.org/10.5194/hess-27-3733-2023, https://doi.org/10.5194/hess-27-3733-2023, 2023
Short summary
Short summary
Mathematical models are key to the study of environmental processes in rivers. Such models often require information on river morphology from geographic information system (GIS) software, which hinders the use of replicable workflows. Here I present rivnet, an R package for simple, robust, GIS-free extraction and analysis of river networks. The package is designed so as to require minimal user input and is oriented towards ecohydrological, ecological and biogeochemical modeling.
Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein
Hydrol. Earth Syst. Sci., 27, 3021–3039, https://doi.org/10.5194/hess-27-3021-2023, https://doi.org/10.5194/hess-27-3021-2023, 2023
Short summary
Short summary
Managing streams for environmental flows involves prioritizing healthy stream ecosystems while distributing water resources. Classifying streams of similar types is a useful step in developing environmental flows. Environmental flows are often developed on data-poor streams that must be modeled. This paper has developed a new method of classification that prioritizes model accuracy. The new method advances environmental streamflow management and modeling of data-poor watersheds.
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023, https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Short summary
This study attempts to provide a framework for direct integration of soil moisture observations collected from soil sensors and satellite imagery into process-based crop models for improving the representation of agricultural systems. The performance of this framework was evaluated across 19 sites times years for crop yield, normalized difference vegetation index (NDVI), soil moisture, tile flow drainage, and nitrate leaching.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Don A. White, Shiqi Ren, Daniel S. Mendham, Francisco Balocchi-Contreras, Richard P. Silberstein, Dean Meason, Andrés Iroumé, and Pablo Ramirez de Arellano
Hydrol. Earth Syst. Sci., 26, 5357–5371, https://doi.org/10.5194/hess-26-5357-2022, https://doi.org/10.5194/hess-26-5357-2022, 2022
Short summary
Short summary
Of all the planting options for wood production and carbon storage, Eucalyptus species provoke the greatest concern about their effect on water resources. We compared Eucalyptus and Pinus species (the two most widely planted genera) by fitting a simple model to the published estimates of their annual water use. There was no significant difference between the two genera. This has important implications for the global debate around Eucalyptus and is an option for carbon forests.
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314, https://doi.org/10.5194/hess-26-5291-2022, https://doi.org/10.5194/hess-26-5291-2022, 2022
Short summary
Short summary
Variable infiltration capacity simulation considering dynamic vegetation types and structural parameters is able to better capture the effect of temporally explicit vegetation change and climate variation in hydrological regimes. Vegetation greening including interannual LAI and intra-annual LAI temporal pattern change induced by large-scale ecological restoration and non-vegetation underlying surface change played dominant roles in the natural streamflow reduction of the Yellow River basin.
Pan Chen, Wenhong Li, and Keqi He
Hydrol. Earth Syst. Sci., 26, 4875–4892, https://doi.org/10.5194/hess-26-4875-2022, https://doi.org/10.5194/hess-26-4875-2022, 2022
Short summary
Short summary
The study assessed changes in total nitrogen (TN) and total phosphorus (TP) loads in response to eastern Pacific (EP) and central Pacific (CP) El Niño events over the Corn Belt, USA, using the SWAT model. Results showed that EP (CP) El Niño events improved (exacerbated) water quality in the region. Furthermore, EP El Niño had a much broader and longer impact on water quality at the outlets, but CP El Niño could lead to similar increases in TN/TP loads as EP El Niño at the specific watersheds.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022, https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Short summary
Most models that simulate water and carbon exchanges with the atmosphere rely on information about vegetation, but optimality models predict vegetation properties based on general principles. Here, we use the Vegetation Optimality Model (VOM) to predict vegetation behaviour at five savanna sites. The VOM overpredicted vegetation cover and carbon uptake during the wet seasons but also performed similarly to conventional models, showing that vegetation optimality is a promising approach.
Hongyu Li, Yi Luo, Lin Sun, Xiangdong Li, Changkun Ma, Xiaolei Wang, Ting Jiang, and Haoyang Zhu
Hydrol. Earth Syst. Sci., 26, 17–34, https://doi.org/10.5194/hess-26-17-2022, https://doi.org/10.5194/hess-26-17-2022, 2022
Short summary
Short summary
Drying soil layers (DSLs) have been extensively reported in artificial forestland in the Loess Plateau, China, which has limited water resources and deep loess. To address this issue relating to plant root–soil water interactions, this study developed a root growth model that simulates both the dynamic rooting depth and fine-root distribution. Evaluation vs. field data proved a positive performance. Long-term simulation reproduced the evolution process of the DSLs and revealed their mechanisms.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021, https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary
Short summary
To quantify how vegetation greening impacts the capacity of water supply, we built a hybrid model and conducted a case study using the upper Han River basin (UHRB) that serves as the water source area to the world’s largest water diversion project. Vegetation greening in the UHRB during 2001–2018 induced annual water yield (WY) greatly decreased. Vegetation greening also increased the possibility of drought and reduced a quarter of WY on average during drought periods.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou
Hydrol. Earth Syst. Sci., 25, 4681–4699, https://doi.org/10.5194/hess-25-4681-2021, https://doi.org/10.5194/hess-25-4681-2021, 2021
Short summary
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.
Haidong Zhao, Gretchen F. Sassenrath, Mary Beth Kirkham, Nenghan Wan, and Xiaomao Lin
Hydrol. Earth Syst. Sci., 25, 4357–4372, https://doi.org/10.5194/hess-25-4357-2021, https://doi.org/10.5194/hess-25-4357-2021, 2021
Short summary
Short summary
This study was done to develop an improved soil temperature model for the USA Great Plains by using common weather station variables as inputs. After incorporating knowledge of estimated soil moisture and observed daily snow depth, the improved model showed a near 50 % gain in performance compared to the original model. We conclude that our improved model can better estimate soil temperature at the surface soil layer where most hydrological and biological processes occur.
Brandon P. Sloan, Sally E. Thompson, and Xue Feng
Hydrol. Earth Syst. Sci., 25, 4259–4274, https://doi.org/10.5194/hess-25-4259-2021, https://doi.org/10.5194/hess-25-4259-2021, 2021
Short summary
Short summary
Plants affect the global water and carbon cycles by modifying their water use and carbon intake in response to soil moisture. Global climate models represent this response with either simple empirical models or complex physical models. We reveal that the latter improves predictions in plants with large flow resistance; however, adding dependence on atmospheric moisture demand to the former matches performance of the latter, leading to a new tool for improving carbon and water cycle predictions.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Yanlan Liu, Nataniel M. Holtzman, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 25, 2399–2417, https://doi.org/10.5194/hess-25-2399-2021, https://doi.org/10.5194/hess-25-2399-2021, 2021
Short summary
Short summary
The flow of water through plants varies with species-specific traits. To determine how they vary across the world, we mapped the traits that best allowed a model to match microwave satellite data. We also defined average values across a few clusters of trait behavior. These form a tractable solution for use in large-scale models. Transpiration estimates using these clusters were more accurate than if using plant functional types. We expect our maps to improve transpiration forecasts.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Yiping Hou, Mingfang Zhang, Xiaohua Wei, Shirong Liu, Qiang Li, Tijiu Cai, Wenfei Liu, Runqi Zhao, and Xiangzhuo Liu
Hydrol. Earth Syst. Sci., 25, 1447–1466, https://doi.org/10.5194/hess-25-1447-2021, https://doi.org/10.5194/hess-25-1447-2021, 2021
Short summary
Short summary
Ecohydrological sensitivity, defined as the response intensity of streamflow to vegetation change, indicates the hydrological sensitivity to vegetation change. The study revealed seasonal ecohydrological sensitivities were highly variable, depending on climate condition and watershed attributes. Dry season ecohydrological sensitivity was mostly determined by topography, soil and vegetation, while wet season ecohydrological sensitivity was mainly controlled by soil, landscape and vegetation.
Xiangyu Luan and Giulia Vico
Hydrol. Earth Syst. Sci., 25, 1411–1423, https://doi.org/10.5194/hess-25-1411-2021, https://doi.org/10.5194/hess-25-1411-2021, 2021
Short summary
Short summary
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the joint effects of (unpredictable) air temperature and soil water availability on crop heat stress via a mechanistic model. Larger but more infrequent precipitation increased crop canopy temperatures. Keeping crops well watered via irrigation could reduce canopy temperature but not enough to always exclude heat damage. Thus, irrigation is only a partial solution to adapt to warmer and drier climates.
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020, https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Short summary
There is a growing interest globally in the spatial distribution and temporal dynamics of intermittently flowing streams and rivers. We developed an approach to quantify catchment-wide flow intermittency over long time frames. Modelled patterns of flow intermittency in eastern Australia revealed highly dynamic behaviour in space and time. The developed approach is transferable to other parts of the world and can inform hydro-ecological understanding and management of intermittent streams.
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020, https://doi.org/10.5194/hess-24-5203-2020, 2020
Yusen Yuan, Taisheng Du, Honglang Wang, and Lixin Wang
Hydrol. Earth Syst. Sci., 24, 4491–4501, https://doi.org/10.5194/hess-24-4491-2020, https://doi.org/10.5194/hess-24-4491-2020, 2020
Short summary
Short summary
The isotopic composition of ambient water vapor is an important source of atmospheric water vapor and has not been able to be estimated to date using the Keeling plot approach. Here we proposed two new methods to estimate the isotopic composition of ambient water vapor: one using the intersection point method and another relying on the intermediate value theorem.
Valentin Couvreur, Youri Rothfuss, Félicien Meunier, Thierry Bariac, Philippe Biron, Jean-Louis Durand, Patricia Richard, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020, https://doi.org/10.5194/hess-24-3057-2020, 2020
Short summary
Short summary
Isotopic labeling of soil water is a broadly used tool for tracing the origin of water extracted by plants and computing root water uptake (RWU) profiles with multisource mixing models. In this study, we show how a method such as this may misconstrue time series of xylem water isotopic composition as the temporal dynamics of RWU by simulating data collected during a tall fescue rhizotron experiment with an isotope-enabled physical soil–root model accounting for variability in root traits.
Thibault Hallouin, Michael Bruen, and Fiachra E. O'Loughlin
Hydrol. Earth Syst. Sci., 24, 1031–1054, https://doi.org/10.5194/hess-24-1031-2020, https://doi.org/10.5194/hess-24-1031-2020, 2020
Short summary
Short summary
A hydrological model was used to compare different parameterisation strategies in view of predicting ecologically relevant streamflow indices in 33 Irish catchments. Compared for 14 different periods, a strategy fitting simulated and observed streamflow indices yielded better performance than fitting simulated and observed streamflow, but it also yielded a less consistent ensemble of parameter sets, suggesting that these indices may not be hydrologically relevant for model parameterisation.
Robert N. Armstrong, John W. Pomeroy, and Lawrence W. Martz
Hydrol. Earth Syst. Sci., 23, 4891–4907, https://doi.org/10.5194/hess-23-4891-2019, https://doi.org/10.5194/hess-23-4891-2019, 2019
Short summary
Short summary
Digital and thermal images taken near midday were used to scale daily point observations of key factors driving actual-evaporation estimates across a complex Canadian Prairie landscape. Point estimates of actual evaporation agreed well with observed values via eddy covariance. Impacts of spatial variations on areal estimates were minor, and no covariance was found between model parameters driving the energy term. The methods can be applied further to improve land surface parameterisations.
Zhongkai Li, Hu Liu, Wenzhi Zhao, Qiyue Yang, Rong Yang, and Jintao Liu
Hydrol. Earth Syst. Sci., 23, 4685–4706, https://doi.org/10.5194/hess-23-4685-2019, https://doi.org/10.5194/hess-23-4685-2019, 2019
Short summary
Short summary
A database of soil moisture measurements from the middle Heihe River basin of China was used to test the potential of a soil moisture database in estimating the soil water balance components (SWBCs). We determined SWBCs using a method that combined the soil water balance method and the inverse Richards equation. This work confirmed that relatively reasonable estimations of the SWBCs in coarse-textured sandy soils can be derived using soil moisture measurements.
Inês Gomes Marques, João Nascimento, Rita M. Cardoso, Filipe Miguéns, Maria Teresa Condesso de Melo, Pedro M. M. Soares, Célia M. Gouveia, and Cathy Kurz Besson
Hydrol. Earth Syst. Sci., 23, 3525–3552, https://doi.org/10.5194/hess-23-3525-2019, https://doi.org/10.5194/hess-23-3525-2019, 2019
Short summary
Short summary
Mediterranean cork woodlands are very particular agroforestry systems present in a confined area of the Mediterranean Basin. They are of great importance due to their high socioeconomic value; however, a decrease in water availability has put this system in danger. In this paper we build a model that explains this system's tree-species distribution in southern Portugal from environmental variables. This could help predict their future distribution under changing climatic conditions.
Samuli Launiainen, Mingfu Guan, Aura Salmivaara, and Antti-Jussi Kieloaho
Hydrol. Earth Syst. Sci., 23, 3457–3480, https://doi.org/10.5194/hess-23-3457-2019, https://doi.org/10.5194/hess-23-3457-2019, 2019
Short summary
Short summary
Boreal forest evapotranspiration and water cycle is modeled at stand and catchment scale using physiological and physical principles, open GIS data and daily weather data. The approach can predict daily evapotranspiration well across Nordic coniferous-dominated stands and successfully reproduces daily streamflow and annual evapotranspiration across boreal headwater catchments in Finland. The model is modular and simple and designed for practical applications over large areas using open data.
Regina T. Hirl, Hans Schnyder, Ulrike Ostler, Rudi Schäufele, Inga Schleip, Sylvia H. Vetter, Karl Auerswald, Juan C. Baca Cabrera, Lisa Wingate, Margaret M. Barbour, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2581–2600, https://doi.org/10.5194/hess-23-2581-2019, https://doi.org/10.5194/hess-23-2581-2019, 2019
Short summary
Short summary
We evaluated the system-scale understanding of the propagation of the oxygen isotope signal (δ18O) of rain through soil and xylem to leaf water in a temperate drought-prone grassland. Biweekly δ18O observations of the water pools made during seven growing seasons were accurately reproduced by the 18O-enabled process-based model MuSICA. While water uptake occurred from shallow soil depths throughout dry and wet periods, leaf water 18O enrichment responded to both soil and atmospheric moisture.
Christoph Schürz, Brigitta Hollosi, Christoph Matulla, Alexander Pressl, Thomas Ertl, Karsten Schulz, and Bano Mehdi
Hydrol. Earth Syst. Sci., 23, 1211–1244, https://doi.org/10.5194/hess-23-1211-2019, https://doi.org/10.5194/hess-23-1211-2019, 2019
Short summary
Short summary
For two Austrian catchments we simulated discharge and nitrate-nitrogen (NO3-N) considering future changes of climate, land use, and point source emissions together with the impact of different setups and parametrizations of the implemented eco-hydrological model. In a comprehensive analysis we identified the dominant sources of uncertainty for the simulation of discharge and NO3-N and further examined how specific properties of the model inputs control the future simulation results.
Yu-Ting Shih, Pei-Hao Chen, Li-Chin Lee, Chien-Sen Liao, Shih-Hao Jien, Fuh-Kwo Shiah, Tsung-Yu Lee, Thomas Hein, Franz Zehetner, Chung-Te Chang, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 22, 6579–6590, https://doi.org/10.5194/hess-22-6579-2018, https://doi.org/10.5194/hess-22-6579-2018, 2018
Short summary
Short summary
DOC and DIC export in Taiwan shows that the annual DOC and DIC fluxes were 2.7–4.8 and 48.4–54.3 ton C km2 yr1, respectively, which were approximately 2 and 20 times higher than the global means of 1.4 and 2.6 ton C km2 yr1, respectively.
Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, Dan Zhu, Fabienne Maignan, Shushi Peng, Shilong Piao, Jan Polcher, Feng Zhou, Hyungjun Kim, and other China-Trend-Stream project members
Hydrol. Earth Syst. Sci., 22, 5463–5484, https://doi.org/10.5194/hess-22-5463-2018, https://doi.org/10.5194/hess-22-5463-2018, 2018
Short summary
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Matthias J. R. Speich, Heike Lischke, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4097–4124, https://doi.org/10.5194/hess-22-4097-2018, https://doi.org/10.5194/hess-22-4097-2018, 2018
Short summary
Short summary
To simulate the water balance of, e.g., a forest plot, it is important to estimate the maximum volume of water available to plants. This depends on soil properties and the average depth of roots. Rooting depth has proven challenging to estimate. Here, we applied a model assuming that plants dimension their roots to optimize their carbon budget. We compared its results with values obtained by calibrating a dynamic water balance model. In most cases, there is good agreement between both methods.
Gordon C. O'Brien, Chris Dickens, Eleanor Hines, Victor Wepener, Retha Stassen, Leo Quayle, Kelly Fouchy, James MacKenzie, P. Mark Graham, and Wayne G. Landis
Hydrol. Earth Syst. Sci., 22, 957–975, https://doi.org/10.5194/hess-22-957-2018, https://doi.org/10.5194/hess-22-957-2018, 2018
Short summary
Short summary
In global water resource allocation, robust tools are required to establish environmental flows. In addition, tools should characterize past, present and future consequences of altered flows and non-flow variables to social and ecological management objectives. PROBFLO is a risk assessment method designed to meet best practice principles for regional-scale holistic E-flow assessments. The approach has been developed in Africa and applied across the continent.
Katrina E. Bennett, Theodore J. Bohn, Kurt Solander, Nathan G. McDowell, Chonggang Xu, Enrique Vivoni, and Richard S. Middleton
Hydrol. Earth Syst. Sci., 22, 709–725, https://doi.org/10.5194/hess-22-709-2018, https://doi.org/10.5194/hess-22-709-2018, 2018
Short summary
Short summary
We applied the Variable Infiltration Capacity hydrologic model to examine scenarios of change under climate and landscape disturbances in the San Juan River basin, a major sub-watershed of the Colorado River basin. Climate change coupled with landscape disturbance leads to reduced streamflow in the San Juan River basin. Disturbances are expected to be widespread in this region. Therefore, accounting for these changes within the context of climate change is imperative for water resource planning.
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary
Short summary
Which is the dominant effect on evapotranspiration in northern forests, an increase by recent forests expansion or a decrease by the water use response due to increasing CO2 concentrations? We determined the dominant effect during the period 1961–2012 in 65 Swedish basins. We used the Budyko framework to study the hydroclimatic movements in Budyko space. Our findings suggest that forest expansion is the dominant driver of long-term and large-scale evapotranspiration changes.
Jie Zhu, Ge Sun, Wenhong Li, Yu Zhang, Guofang Miao, Asko Noormets, Steve G. McNulty, John S. King, Mukesh Kumar, and Xuan Wang
Hydrol. Earth Syst. Sci., 21, 6289–6305, https://doi.org/10.5194/hess-21-6289-2017, https://doi.org/10.5194/hess-21-6289-2017, 2017
Short summary
Short summary
Forested wetlands provide myriad ecosystem services threatened by climate change. This study develops empirical hydrologic models by synthesizing hydrometeorological data across the southeastern US. We used global climate projections to model hydrological changes for five wetlands. We found all wetlands are predicted to become drier by the end of this century. This study suggests that climate change may substantially affect wetland biogeochemical cycles and other functions in the future.
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary
Short summary
Plants are shaping the landscape and controlling the hydrological cycle, particularly in arid and semi-arid ecosystems. Remote sensing data appears as an appealing source of information for vegetation monitoring, in particular in areas with a limited amount of available field data. Here, we present an example of how remote sensing data can be exploited in a data-scarce basin. We propose a mathematical methodology that can be used as a springboard for future applications.
Cited articles
ACIA: Impacts of a Warming Arctic, Cambridge University Press, Cambridge, 140 pp., 2004.
Agam, N., Kustas, W. P., Anderson, M. C., Norman, J. M., Colaizzi, P. D., Howell, T. A., Prueger, J. H., Meyers, T. P., and Wilson, T. B.: Application of the Priestley–Taylor Approach in a Two-Source Surface Energy Balance Model, J. Hydrometeorol., 11, 185–198, https://doi.org/10.1175/2009jhm1124.1, 2010.
AMAP: Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost. SWIPA 2011, Overview Report, Oslo, Norway, 96 pp., 2012.
Anderson, M. C., Norman, J. M., Meyers, T. P., and Diak, G. R.: An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency, Agr. Forest Meteorol., 101, 265–289, https://doi.org/10.1016/S0168-1923(99)00170-7, 2000.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Torn, R. D., Kustas, W. P., and Basara, J. B.: A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales, J. Hydrometeorol., 5, 343–363, 2004.
Anderson, M. C., Norman, J. M., Kustas, W. P., Li, F. Q., Prueger, J. H., and Mecikalski, J. R.: Effects of vegetation clumping on two-source model estimates of surface energy fluxes from an agricultural landscape during SMACEX, J. Hydrometeorol., 6, 892–909, https://doi.org/10.1175/Jhm465.1, 2005.
Anderson, M. C., Kustas, W. P., and Norman, J. M.: Upscaling Flux Observations from Local to Continental Scales Using Thermal Remote Sensing, Agron. J., 99, 240–254, https://doi.org/10.2134/agronj2005.0096S, 2007.
Anderson, M. C., Norman, J., Kustas, W., Houborg, R., Starks, P., and Agam, N.: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales, Remote Sens. Environ., 112, 4227–4241, https://doi.org/10.1016/j.rse.2008.07.009, 2008.
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst. Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011.
Anderson, M. C., Kustas, W. P., Alfieri, J. G., Gao, F., Hain, C., Prueger, J. H., Evett, S., Colaizzi, P., Howell, T., and Chávez, J. L.: Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign, Adv. Water Resour., 50, 162–177, https://doi.org/10.1016/j.advwatres.2012.06.005, 2012.
Beringer, J., Chapin, F. S., Thompson, C. C., and McGuire, A. D.: Surface energy exchanges along a tundra-forest transition and feedbacks to climate, Agr. Forest Meteorol., 131, 143–161, https://doi.org/10.1016/j.agrformet.2005.05.006, 2005.
Beck, P. S. A., Atzberger, C., Hogda, K. A., Johansen, B., and Skidmore, A. K.: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI, Remote Sens. Environ., 100, 321–334, https://doi.org/10.1016/j.rse.2005.10.021, 2006.
Bhatt, U. S., Walker, D. A., Raynolds, M. K., Comiso, J. C., Epstein, H. E., Jia, G. S., Gens, R., Pinzon, J. E., Tucker, C. J., Tweedie, C. E., and Webber, P. J.: Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline, Earth Interact., 14, 1–20, https://doi.org/10.1175/2010ei315.1, 2010.
Blok, D., Heijmans, M. M. P. D., Schaepman-Strub, G., van Ruijven, J., Parmentier, F. J. W., Maximov, T. C., and Berendse, F.: The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site, Ecosystems, 14, 1055–1065, https://doi.org/10.1007/s10021-011-9463-5, 2011.
Boike, J., Hagedorn, B., and Roth, K.: Heat and Water Transfer Processes in Permafrost Affected Soils: A Review of Field and Modeling Based Studies for the Arctic and Antarctic, Plenary Paper, Proceedings of the 9th International Conference on Permafrost, June 29–July 3, 2008, University of Alaska, Fairbanks, USA, 2008a.
Boike, J., Wille, C., and Abnizova, A.: Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia, J. Geophys. Res.-Biogeo., 113, G03025, https://doi.org/10.1029/2007jg000540, 2008b.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11, 742–744, https://doi.org/10.1029/WR011i005p00742, 1975.
Cammalleri, C., Anderson, M. C., Ciraolo, G., D'Urso, G., Kustas, W. P., La Loggia, G., and Minacapilli, M.: The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model, Hydrol. Earth Syst. Sci., 14, 2643–2659, https://doi.org/10.5194/hess-14-2643-2010, 2010.
Cammalleri, C., Anderson, M. C., Ciraolo, G., D'Urso, G., Kustas, W. P., La Loggia, G., and Minacapilli, M.: Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations, Remote Sens. Environ., 124, 502–515, https://doi.org/10.1016/j.rse.2012.06.009, 2012.
Choi, M., Kustas, W. P., Anderson, M. C., Allen, R. G., Li, F., and Kjaersgaard, J. H.: An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, U.S.) during SMACEX, Agr. Forest Meteorol., 149, 2082–2097, https://doi.org/10.1016/j.agrformet.2009.07.002, 2009.
Cleugh, H. A., Leuning, R., Mu, Q. Z., and Running, S. W.: Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sens. Environ., 106, 285–304, https://doi.org/10.1016/j.rse.2006.07.007, 2007.
Courault, D., Seguin, B., and Olioso, A.: Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches, Irrigation and Drainage Systems, 19, 223–249, 2005.
Crawford, T. M. and Duchon, C. E.: An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation, J. Appl. Meteorol., 38, 474–480, https://doi.org/10.1175/1520-0450(1999)038<0474:AIPFEE>2.0.CO;2, 1999.
Cristóbal, J. and Anderson, M. C.: Validation of a Meteosat Second Generation solar radiation dataset over the northeastern Iberian Peninsula, Hydrol. Earth Syst. Sci., 17, 163–175, https://doi.org/10.5194/hess-17-163-2013, 2013.
Cristóbal, J., Ninyerola, M., and Pons, X.: Modeling air temperature through a combination of remote sensing and GIS data, J. Geophys. Res., 113, D13106, https://doi.org/10.1029/2007jd009318, 2008.
Daughtry, C. S. T., Kustas, W. P., Moran, M. S., Pinter, P. J., Jackson, R. D., Brown, P. W., Nichols, W. D., and Gay, L. W.: Spectral Estimates of Net-Radiation and Soil Heat-Flux, Remote Sens. Environ., 32, 111–124, https://doi.org/10.1016/0034-4257(90)90012-B, 1990.
Deardorff, J. W.: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation, J. Geophys. Res., 83, 1889, https://doi.org/10.1029/JC083iC04p01889, 1978.
Domingo, F., Villagarcia, L., Brenner, A. J., and Puigdefabregas, J.: Measuring and modelling the radiation balance of a heterogeneous shrubland, Plant Cell Environ., 23, 27–38, https://doi.org/10.1046/j.1365-3040.2000.00532.x, 2000.
Duursma, R. A. and Medlyn, B. E.: MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO2] × drought interactions, Geosci. Model Dev., 5, 919–940, https://doi.org/10.5194/gmd-5-919-2012, 2012.
Eaton, A. K., Rouse, W. R., Lafleur, P. M., Marsh, P., and Blanken, P. D.: Surface energy balance of the western and central Canadian subarctic: Variations in the energy balance among five major terrain types, J. Climate, 14, 3692–3703, https://doi.org/10.1175/1520-0442(2001)014<3692:SEBOTW>2.0.CO;2, 2001.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002jd003296, 2003.
Ekici, A., Chadburn, S., Chaudhary, N., Hajdu, L. H., Marmy, A., Peng, S., Boike, J., Burke, E., Friend, A. D., Hauck, C., Krinner, G., Langer, M., Miller, P. A., and Beer, C.: Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes, The Cryosphere, 9, 1343–1361, https://doi.org/10.5194/tc-9-1343-2015, 2015.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Bjork, R. G., Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D. S., Hofgaard, A., Johnson, D. R., Johnstone, J. F., Jonsdottir, I. S., Jorgenson, J. C., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lara, M., Levesque, E., Magnusson, B., May, J. L., Mercado-Diaz, J. A., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Onipchenko, V. G., Rixen, C., Schmidt, N. M., Shaver, G. R., Spasojevic, M. J., Porhallsdottir, P. E., Tolvanen, A., Troxler, T., Tweedie, C. E., Villareal, S., Wahren, C. H., Walker, X., Webber, P. J., Welker, J. M., and Wipf, S.: Plot-scale evidence of tundra vegetation change and links to recent summer warming, Nature Climate Change, 2, 453–457, https://doi.org/10.1038/Nclimate1465, 2012.
Engstrom, R. N., Hope, A. S., Stow, D. A., Vourlitis, G. L., and Oechel, W. C.: Priestley-Taylor Alpha Coefficient: Variability and Relationship to Ndvi in Arctic Tundra Landscapes, J. Am. Water Resour. As., 38, 1647–1659, https://doi.org/10.1111/j.1752-1688.2002.tb04371.x, 2002.
Eugster, W., Rouse, W. R., Pielke, R. A., McFadden, J. P., Baldocchi, D. D., Kittel, T. G. F., Chapin, F. S., Liston, G. E., Vidale, P. L., Vaganov, E., and Chambers, S.: Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate, Glob. Change Biol., 6, 84–115, https://doi.org/10.1046/j.1365-2486.2000.06015.x, 2000.
Eugster, W., McFadden, J. P., and Chapin, F. S.: Differences in Surface Roughness, Energy, and CO2 Fluxes in Two Moist Tundra Vegetation Types, Kuparuk Watershed, Alaska, USA, 2005.
Euskirchen, E. S., Bret-Harte, M. S., Scott, G. J., Edgar, C., and Shaver, G. R.: Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska, Ecosphere, 3, 1–19, https://doi.org/10.1890/es11-00202.1, 2012.
Falge, E., Reth, S., Bruggemann, N., Butterbach-Bahl, K., Goldberg, V., Oltchev, A., Schaaf, S., Spindler, G., Stiller, B., Queck, R., Kostner, B., and Bernhofer, C.: Comparison of surface energy exchange models with eddy flux data in forest and grassland ecosystems of Germany, Ecol. Model., 188, 174–216, https://doi.org/10.1016/j.ecolmodel.2005.01.057, 2005.
Fisher, J. B., Tu, K. P., and Baldocchi, D. D.: Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ., 112, 901–919, https://doi.org/10.1016/j.rse.2007.06.025, 2008.
Foken, T.: The energy balance closure problem: an overview, Ecol. Appl., 18, 1351–1367, https://doi.org/10.1890/06-0922.1, 2008.
Foken, T., Aubinet, M., Finnigan, J. J., Leclerc, M. Y., Mauder, M., and Paw U, K. T.: Results of a Panel Discussion About the Energy Balance Closure Correction for Trace Gases, B. Am. Meteorol. Soc., 92, Es13–Es18, https://doi.org/10.1175/2011BAMS3130.1, 2011.
Frank, J. M., Massman, W. J., and Ewers, B. E.: Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers, Agr. Forest Meteorol., 171, 72–81, https://doi.org/10.1016/j.agrformet.2012.11.005, 2013.
Gao, F., Morisette, J. T., Wolfe, R. E., Ederer, G., Pedelty, J., Masuoka, E., Myneni, R., Tan, B., and Nightingale, J.: An algorithm to produce temporally and spatially continuous MODIS-LAI time series, IEEE Geosci. Remote S., 5, 60–64, https://doi.org/10.1109/Lgrs.2007.907971, 2008.
Guzinski, R., Anderson, M. C., Kustas, W. P., Nieto, H., and Sandholt, I.: Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day-night MODIS observations, Hydrol. Earth Syst. Sci., 17, 2809–2825, https://doi.org/10.5194/hess-17-2809-2013, 2013.
Hain, C. R., Crow, W. T., Anderson, M. C., and Yilmaz, M. T.: Diagnosing Neglected Soil Moisture Source-Sink Processes via a Thermal Infrared-Based Two-Source Energy Balance Model, J. Hydrometeorol., 16, 1070–1086, https://doi.org/10.1175/Jhm-D-14-0017.1, 2015.
Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Isaac, P., Pickett-Heaps, C., Roxburgh, S. H., van Gorsel, E., Viscarra Rossel, R. A., and Wang, Z.: Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water cycles, Biogeosciences, 10, 2011–2040, https://doi.org/10.5194/bg-10-2011-2013, 2013.
Hinzman, L. D., Goering, D. J., and Kane, D. L.: A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions, J. Geophys. Res.-Atmos., 103, 28975–28991, https://doi.org/10.1029/98jd01731, 1998.
IPCC: Climate Change 2014, Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pachauri, R. K. and Meyer, L. A., IPCC, Geneva, Switzerland, 2014.
Jacobsen, A. and Hansen, B. U.: Estimation of the soil heat flux net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas, Int. J. Remote Sens., 20, 445–461, https://doi.org/10.1080/014311699213532, 1999.
Jia, G. J., Epstein, H. E., and Walker, D. A.: Greening of arctic Alaska, 1981–2001, Geophys. Res. Lett., 30, 2067, https://doi.org/10.1029/2003gl018268, 2003.
Jiang, Y. Y., Rocha, A. V., O'Donnell, J. A., Drysdale, J. A., Rastetter, E. B., Shaver, G. R., and Zhuang, Q. L.: Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest, J. Geophys. Res.-Earth, 120, 363–378, https://doi.org/10.1002/2014JF003180, 2015.
Jin, X., Barber, D., and Papakyriakou, T.: A new clear-sky downward longwave radiative flux parameterization for Arctic areas based on rawinsonde data, J. Geophys. Res.-Atmos., 111, D24104, https://doi.org/10.1029/2005jd007039, 2006.
Jönsson, P. and Eklundh, L.: TIMESAT—a program for analyzing time-series of satellite sensor data, Comput. Geosci.-UK, 30, 833–845, https://doi.org/10.1016/j.cageo.2004.05.006, 2004.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline in the global land evapotranspiration trend due to limited moisture supply, Nature, 467, 951–954, https://doi.org/10.1038/nature09396, 2010.
Kade, A., Bret-Harte, M. S., Euskirchen, E. S., Edgar, C., and Fulweber, R. A.: Upscaling of CO2 fluxes from heterogeneous tundra plant communities in Arctic Alaska, J. Geophys. Res., 117, G04007, https://doi.org/10.1029/2012jg002065, 2012.
Kalma, J. D., McVicar, T. R., and McCabe, M. F.: Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data, Surv. Geophys., 29, 421–469, https://doi.org/10.1007/s10712-008-9037-z, 2008.
Kane, D. L., Gieck, R. E., and Hinzman, L. D.: Evapotranspiration from a Small Alaskan Arctic Watershed, Nord. Hydrol., 21, 253–272, 1990.
Kane, D. L., Hinzman, L. D., McNamara, J. P., Zhang, Z., and Benson, C. S.: An overview of a nested watershed study in Arctic Alaska, Nord. Hydrol., 31, 245–266, 2000.
Kane, D. L., Gieck, R. E., Kitover, D. C., Hinzman, L. D., Mcnamara, J. P., and Yang, D.: Hydrologic Cycle on the North Slope of Alaska, Northern Research Basins Water Balance, Victoria, Canada, 2004, 224–236, 2004.
Kochendorfer, J., Meyers, T. P., Frank, J., Massman, W. J., and Heuer, M. W.: How Well Can We Measure the Vertical Wind Speed? Implications for Fluxes of Energy and Mass, Bound.-Lay. Meteorol., 145, 383–398, https://doi.org/10.1007/s10546-012-9738-1, 2012.
Kochendorfer, J., Meyers, T. P., Frank, J. M., Massman, W. J., and Heuer, M. W.: Reply to the Comment by Mauder on “How Well Can We Measure the Vertical Wind Speed? Implications for Fluxes of Energy and Mass”, Bound.-Lay. Meteorol., 147, 337–345, https://doi.org/10.1007/s10546-012-9792-8, 2012.
Kodama, Y., Sato, N., Yabuki, H., Ishii, Y., Nomura, M., and Ohata, T.: Wind direction dependency of water and energy fluxes and synoptic conditions over a tundra near Tiksi, Siberia, Hydrol. Process., 21, 2028–2037, https://doi.org/10.1002/hyp.6712, 2007.
Kustas, W. P. and Daughtry, C. S. T.: Estimation of the Soil Heat-Flux Net-Radiation Ratio from Spectral Data, Agr. Forest Meteorol., 49, 205–223, https://doi.org/10.1016/0168-1923(90)90033-3, 1990.
Kustas, W. P. and Norman, J. M.: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover, Agr. Forest Meteorol., 94, 13–29, https://doi.org/10.1016/S0168-1923(99)00005-2, 1999.
Kustas, W. P. and Norman, J. M.: A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces, Agron. J., 92, 847–854, 2000.
Kustas, W. P., Zhan, X., and Schmugge, T. J.: Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed, Remote Sens. Environ., 64, 116–131, https://doi.org/10.1016/S0034-4257(97)00176-4, 1998.
Langer, M., Westermann, S., Muster, S., Piel, K., and Boike, J.: The surface energy balance of a polygonal tundra site in northern Siberia – Part 1: Spring to fall, The Cryosphere, 5, 151–171, https://doi.org/10.5194/tc-5-151-2011, 2011.
Li, F., Kustas, W. P., Anderson, M. C., Prueger, J. H., and Scott, R. L.: Effect of remote sensing spatial resolution on interpreting tower-based flux observations, Remote Sens. Environ., 112, 337–349, https://doi.org/10.1016/j.rse.2006.11.032, 2008.
Li, F. Q., Kustas, W. P., Prueger, J. H., Neale, C. M. U., and Jackson, T. J.: Utility of remote sensing-based two-source energy balance model under low- and high-vegetation cover conditions, J. Hydrometeorol., 6, 878–891, https://doi.org/10.1175/Jhm464.1, 2005.
LI-COR Inc.: LI-7500 CO2 ∕ H2O analyzer instruction manual, LI-COR, Lincoln, Nebraska, USA, 2004.
Loranty, M. M., Goetz, S. J., Rastetter, E. B., Rocha, A. V., Shaver, G. R., Humphreys, E. R., and Lafleur, P. M.: Scaling an Instantaneous Model of Tundra NEE to the Arctic Landscape, Ecosystems, 14, 76–93, https://doi.org/10.1007/s10021-010-9396-4, 2010.
Lund, M., Hansen, B. U., Pedersen, S. H., Stiegler, C., and Tamstorf, M. P.: Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010, Tellus B, 66, 1–14, https://doi.org/10.3402/Tellusb.V66.21631, 2014.
Lynch, A. H., Chapin, F. S., Hinzman, L. D., Wu, W., Lilly, E., Vourlitis, G., and Kim, E.: Surface energy balance on the arctic tundra: Measurements and models, J. Climate, 12, 2585–2606, https://doi.org/10.1175/1520-0442(1999)012<2585:SEBOTA>2.0.CO;2, 1999.
Massman, W. J.: A simple method for estimating frequency response corrections for eddy covariance systems, Agr. Forest Meteorol., 104, 185–198, https://doi.org/10.1016/S0168-1923(00)00164-7, 2000.
Mendez, J., Hinzman, L. D., and Kane, D. L.: Evapotranspiration from a wetland complex on the Arctic coastal plain of Alaska, Nord. Hydrol., 29, 303–330, 1998.
Mu, Q. Z., Jones, L. A., Kimball, J. S., McDonald, K. C., and Running, S. W.: Satellite assessment of land surface evapotranspiration for the pan-Arctic domain, Water Resour. Res., 45, W09420, https://doi.org/10.1029/2008wr007189, 2009.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K. D., Macias-Fauria, M., Sass-Klaassen, U., Levesque, E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S., Weijers, S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub, G., Wipf, S., Rixen, C., Menard, C. B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P., Epstein, H. E., and Hik, D. S.: Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities, Environ. Res. Lett., 6, 1–15, https://doi.org/10.1088/1748-9326/6/4/045509, 2011.
Norman, J. M., Kustas, W. P., and Humes, K. S.: Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface-Temperature, Agr. Forest Meteorol., 77, 263–293, https://doi.org/10.1016/0168-1923(95)02265-Y, 1995.
Norman, J. M., Kustas, W. P., Prueger, J. H., and Diak, G. R.: Surface flux estimation using radiometric temperature: A dual-temperature-difference method to minimize measurement errors, Water Resour. Res., 36, 2263, https://doi.org/10.1029/2000wr900033, 2000.
Overduin, P. P. and Kane, D. L.: Frost boils and soil ice content: Field observations, Permafrost. Periglac., 17, 291–307, https://doi.org/10.1002/Ppp.567, 2006.
Pons, X. and Ninyerola, M.: Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data, Int. J. Climatol., 28, 1821–1834, https://doi.org/10.1002/Joc.1676, 2008.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, 1972.
Rannik, Ü.: A comment on the paper by W.J. Massman “A simple method for estimating frequency response corrections for eddy covariance systems”, Agr. Forest Meteorol., 107, 241–245, https://doi.org/10.1016/S0168-1923(00)00236-7, 2001.
Rawlins, M. A., Steele, M., Holland, M. M., Adam, J. C., Cherry, J. E., Francis, J. A., Groisman, P. Y., Hinzman, L. D., Huntington, T. G., Kane, D. L., Kimball, J. S., Kwok, R., Lammers, R. B., Lee, C. M., Lettenmaier, D. P., McDonald, K. C., Podest, E., Pundsack, J. W., Rudels, B., Serreze, M. C., Shiklomanov, A., Skagseth, O., Troy, T. J., Vorosmarty, C. J., Wensnahan, M., Wood, E. F., Woodgate, R., Yang, D. Q., Zhang, K., and Zhang, T. J.: Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations, J. Climate, 23, 5715–5737, https://doi.org/10.1175/2010jcli3421.1, 2010.
Rocha, A. V. and Shaver, G. R.: Burn severity influences postfire CO2 exchange in arctic tundra, Ecol. Appl., 21, 477–489, https://doi.org/10.1890/10-0255.1, 2011.
Romanovsky, V. E., Osterkamp, T. E., and Duxbury, N. S.: An evaluation of three numerical models used in simulations of the active layer and permafrost temperature regimes, Cold Reg. Sci. Technol., 26, 195–203, https://doi.org/10.1016/S0165-232x(97)00016-5, 1997.
Rouse, W. R.: Microclimate of Arctic Tree Line .2. Soil Microclimate of Tundra and Forest, Water Resour. Res., 20, 67–73, https://doi.org/10.1029/Wr020i001p00067, 1984.
Sánchez, J. M., Caselles, V., Niclòs, R., Coll, C., and Kustas, W. P.: Estimating energy balance fluxes above a boreal forest from radiometric temperature observations, Agr. Forest Meteorol., 149, 1037–1049, https://doi.org/10.1016/j.agrformet.2008.12.009, 2009.
Santanello, J. A. and Friedl, M. A.: Diurnal covariation in soil heat flux and net radiation, J. Appl. Meteorol., 42, 851–862, 2003.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shaver, G. R. and Chapin, F. S.: Production – Biomass Relationships and Element Cycling in Contrasting Arctic Vegetation Types, Ecol. Monogr., 61, 1–31, https://doi.org/10.2307/1942997, 1991.
Shaver, G. R., Street, L. E., Rastetter, E. B., Van Wijk, M. T., and Williams, M.: Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden, J. Ecol., 95, 802–817, https://doi.org/10.1111/j.1365-2745.2007.01259.x, 2007.
Shippert, M. M., Walker, D. A., Auerbach, N. A., and Lewis, B. R.: Biomass and leaf-area index maps derived from SPOT images for Toolik Lake and Imnavait Creek areas, Alaska, Polar Rec., 31, 147–154, 1995.
Shutov, V., Gieck, R. E., Hinzman, L. D., and Kane, D. L.: Evaporation from land surface in high latitude areas: a review of methods and study results, Nordic Hydrol., 37, 393–411, https://doi.org/10.2166/Nh.2006.022, 2006.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space, Global Ecol. Biogeogr., 10, 621–637, https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.
Soegaard, H., Hasholt, B., Friborg, T., and Nordstroem, C.: Surface energy- and water balance in a high-arctic environment in NE Greenland, Theor. Appl. Climatol., 70, 35–51, https://doi.org/10.1007/s007040170004, 2001.
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M. A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H., McCaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M., Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F., and Varlagin, A.: A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity, Agr. Forest Meteorol., 171, 137–152, https://doi.org/10.1016/j.agrformet.2012.11.004, 2013.
Stoy, P. C., Williams, M., Spadavecchia, L., Bell, R. A., Prieto-Blanco, A., Evans, J. G., and van Wijk, M. T.: Using Information Theory to Determine Optimum Pixel Size and Shape for Ecological Studies: Aggregating Land Surface Characteristics in Arctic Ecosystems, Ecosystems, 12, 574–589, https://doi.org/10.1007/s10021-009-9243-7, 2009.
Street, L. E., Shaver, G. R., Williams, M., and Van Wijk, M. T.: What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems?, J. Ecol., 95, 139–150, https://doi.org/10.1111/j.1365-2745.2006.01187.x, 2007.
Sturm, M., Racine, C., and Tape, K.: Climate change. Increasing shrub abundance in the Arctic, Nature, 411, 546–547, https://doi.org/10.1038/35079180, 2001.
Tang, R. L., Li, Z. L., Jia, Y. Y., Li, C. R., Sun, X. M., Kustas, W. P., and Anderson, M. C.: An intercomparison of three remote sensing-based energy balance models using Large Aperture Scintillometer measurements over a wheat-corn production region, Remote Sens. Environ., 115, 3187–3202, https://doi.org/10.1016/j.rse.2011.07.004, 2011.
Tanner, C. B. and Jury, W. A.: Estimating evaporation and transpiration from a row crop during incomplete cover, Agron. J., 68, 239–242, 1976.
Timmermans, W. J., Kustas, W. P., Anderson, M. C., and French, A. N.: An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes, Remote Sens. Environ., 108, 369–384, https://doi.org/10.1016/j.rse.2006.11.028, 2007.
Trochim, E. D., Jorgenson, M. T., Prakash, A., and Kane, D. L.: Geomorphic and biophysical factors affecting water tracks in northern Alaska, Earth and Space Science, 3, 123–141, https://doi.org/10.1002/2015ea000111, 2016.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol., 103, 279–300, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
Vinukollu, R. K., Sheffield, J., Wood, E. F., Bosilovich, M. G., and Mocko, D.: Multimodel Analysis of Energy and Water Fluxes: Intercomparisons between Operational Analyses, a Land Surface Model, and Remote Sensing, J. Hydrometeorol., 13, 3–26, https://doi.org/10.1175/2011JHM1372.1, 2012.
Vörösmarty, C. J., Hinzman, L. D., Peterson, B. J., Bromwich, D. H., Hamilton, L. C., Morison, J., Romanovsky, V. E., Sturm, M., and Webb, R. S.: The Hydrologic Cycle and its Role in Arctic and Global Environmental Change: A Rationale and Strategy for Synthesis Study, Fairbanks, Alaska, 84 pp., 2001.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of Flux Measurements for Density Effects Due to Heat and Water-Vapor Transfer, Q. J. Roy. Meteor. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Westermann, S., Lüers, J., Langer, M., Piel, K., and Boike, J.: The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway, The Cryosphere, 3, 245–263, https://doi.org/10.5194/tc-3-245-2009, 2009.
Williams, M., Street, L. E., van Wijk, M. T., and Shaver, G. R.: Identifying differences in carbon exchange among arctic ecosystem types, Ecosystems, 9, 288–304, https://doi.org/10.1007/s10021-005-0146-y, 2006.
Williamson, S. N., Barrio, I. C., Hik, D. S., and Gamon, J. A.: Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic, Glob. Change Biol., 22, 3621–3631, https://doi.org/10.1111/gcb.13297, 2016.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Williams, M., Rastetter, E. B., Shaver, G. R., Hobbie, J. E., Carpino, E., and Kwiatkowski, B. L.: Primary production of an arctic watershed: An uncertainty analysis, Ecol. Appl., 11, 1800–1816, https://doi.org/10.1890/1051-0761(2001)011[1800:PPOAAW]2.0.CO;2, 2001.
Wolf, A., Saliendra, N., Akshalov, K., Johnson, D. A., and Laca, E.: Effects of different eddy covariance correction schemes on a energy balance closure and comparisons with the modified Bowen ratio system, Agr. Forest Meteorol., 148, 942–952, https://doi.org/10.1016/j.agrformet.2008.01.005, 2008.
Xu, L., Myneni, R. B., Chapin, F. S., Callaghan, T. V., Pinzon, J. E., Tucker, C. J., Zhu, Z., Bi, J., Ciais, P., Tommervik, H., Euskirchen, E. S., Forbes, B. C., Piao, S. L., Anderson, B. T., Ganguly, S., Nemani, R. R., Goetz, S. J., Beck, P. S. A., Bunn, A. G., Cao, C., and Stroeve, J. C.: Temperature and vegetation seasonality diminishment over northern lands, Nature Climate Change, 3, 581–586, https://doi.org/10.1038/Nclimate1836, 2013.
Yao, J. M., Zhao, L., Gu, L. L., Qiao, Y. P., and Jiao, K. Q.: The surface energy budget in the permafrost region of the Tibetan Plateau, Atmos. Res., 102, 394–407, https://doi.org/10.1016/j.atmosres.2011.09.001, 2011.
Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006, Water Resour. Res., 46, W09522, https://doi.org/10.1029/2009wr008800, 2010.
Zhang, Z., Kane, D. L., and Hinzman, L. D.: Development and application of a spatially-distributed Arctic hydrological and thermal process model (ARHYTHM), Hydrol. Process., 14, 1017–1044, 2000.
Zhuang, Q., Romanovsky, V. E., and McGuire, A. D.: Incorporation of a permafrost model into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics, J. Geophys. Res.-Atmos., 106, 33649–33670, https://doi.org/10.1029/2001jd900151, 2001.
Short summary
Quantifying trends in surface energy fluxes is crucial for forecasting ecological responses in Arctic regions.
An extensive evaluation using a thermal-based remote sensing model and ground measurements was performed in Alaska's Arctic tundra for 5 years. Results showed an accurate temporal trend of surface energy fluxes in concert with vegetation dynamics. This work builds toward a regional implementation over Arctic ecosystems to assess response of surface energy fluxes to climate change.
Quantifying trends in surface energy fluxes is crucial for forecasting ecological responses in...