Articles | Volume 21, issue 2
https://doi.org/10.5194/hess-21-1321-2017
https://doi.org/10.5194/hess-21-1321-2017
Research article
 | 
02 Mar 2017
Research article |  | 02 Mar 2017

Voxel inversion of airborne electromagnetic data for improved groundwater model construction and prediction accuracy

Nikolaj Kruse Christensen, Ty Paul A. Ferre, Gianluca Fiandaca, and Steen Christensen

Related authors

Testing alternative uses of electromagnetic data to reduce the prediction error of groundwater models
Nikolaj Kruse Christensen, Steen Christensen, and Ty Paul A. Ferre
Hydrol. Earth Syst. Sci., 20, 1925–1946, https://doi.org/10.5194/hess-20-1925-2016,https://doi.org/10.5194/hess-20-1925-2016, 2016
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024,https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024,https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024,https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary

Cited articles

Abraham, J. D., Cannia, J. C., Bedrosian, P. A., Johnson, M. R., Ball, L. B., and Sibray, S. S.: Airborne Electromagnetic Mapping of the Base of Aquifer in Areas of Western Nebraska, US Geol. Surv. Sci. Investig. Rep. 2011–5219, available at: http://pubs.usgs.gov/sir/2011/5219/ (last access: 4 January 2016), 2012.
Archie, G. E.: The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Trans AIME, 146, 54–62, https://doi.org/10.2118/942054-G, 1942.
Auken, E., Christiansen, A. V., Jacobsen, L. H., and Sørensen, K. I.: A resolution study of buried valleys using laterally constrained inversion of TEM data, J. Appl. Geophys., 65, 10–20, 2008.
Auken, E. and Christiansen, A. V.: Layered and laterally constrained 2D inversion of resistivity data, Geophysics, 69, 752–761, https://doi.org/10.1190/1.1759461, 2004.
Auken, E., Christiansen, A. V., Westergaard, H. J., Kirkegaard, C., Foged, N., and Viezzoli, A.: An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system, Explor Geophys., 40, 184–192, https://doi.org/10.1071/EG08128, 2009.
Download
Short summary
This study presents a new method for coupling a 3-D geophysical model with a 3-D groundwater model for improved groundwater model construction and prediction accuracy. The hydrological data consist of 35 hydraulic head measurements and one river discharge measurement, while the geophysical data set consists of 6300 measurement positions. The results demonstrate that the geophysical inversion strategy significantly affects the construction and prediction capability of the groundwater model.