Articles | Volume 18, issue 4
Hydrol. Earth Syst. Sci., 18, 1273–1288, 2014
https://doi.org/10.5194/hess-18-1273-2014
Hydrol. Earth Syst. Sci., 18, 1273–1288, 2014
https://doi.org/10.5194/hess-18-1273-2014

Research article 03 Apr 2014

Research article | 03 Apr 2014

Modelling overbank flood recharge at a continental scale

R. Doble et al.

Related authors

Unsaturated zone model complexity for the assimilation of evapotranspiration rates in groundwater modelling
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021,https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Impacts of climate change on groundwater flooding and ecohydrology in lowland karst
Patrick Morrissey, Paul Nolan, Ted McCormack, Paul Johnston, Owen Naughton, Saheba Bhatnagar, and Laurence Gill
Hydrol. Earth Syst. Sci., 25, 1923–1941, https://doi.org/10.5194/hess-25-1923-2021,https://doi.org/10.5194/hess-25-1923-2021, 2021
Short summary
How daily groundwater table drawdown affects the diel rhythm of hyporheic exchange
Liwen Wu, Jesus D. Gomez-Velez, Stefan Krause, Anders Wörman, Tanu Singh, Gunnar Nützmann, and Jörg Lewandowski
Hydrol. Earth Syst. Sci., 25, 1905–1921, https://doi.org/10.5194/hess-25-1905-2021,https://doi.org/10.5194/hess-25-1905-2021, 2021
Short summary
Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX)
Andreas Wunsch, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021,https://doi.org/10.5194/hess-25-1671-2021, 2021
Groundwater and baseflow drought responses to synthetic recharge stress tests
Jost Hellwig, Michael Stoelzle, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 1053–1068, https://doi.org/10.5194/hess-25-1053-2021,https://doi.org/10.5194/hess-25-1053-2021, 2021
Short summary
Determination of vadose zone and saturated zone nitrate lag times using long-term groundwater monitoring data and statistical machine learning
Martin J. Wells, Troy E. Gilmore, Natalie Nelson, Aaron Mittelstet, and John K. Böhlke
Hydrol. Earth Syst. Sci., 25, 811–829, https://doi.org/10.5194/hess-25-811-2021,https://doi.org/10.5194/hess-25-811-2021, 2021
Short summary

Cited articles

Bates, P. D. and De Roo, A. P. J.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54–77, https://doi.org/10.1016/S0022-1694(00)00278-X, 2000.
Brunner, P. and Simmons, C. T.: HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model, Ground Water, 50, 170–176, https://doi.org/10.1111/j.1745-6584.2011.00882.x, 2011.
Brunner, P., Cook, P. G., and Simmons, C. T.: Hydrogeologic controls on disconnection between surface water and groundwater, Water Resour. Res., 45, https://doi.org/10.1029/2008WR006953, 2009.
Collis-George, N. and Freebairn, D. M.: A laboratory and field study of border check irrigation, Aust. J. Soil Res., 17, 75–87, https://doi.org/10.1071/SR9790075, 1979.
Cook, F. J., Knight, J. H., Doble, R. C., and Raine, S. R.: An improved solution for the infiltration advance problem in irrigation hydraulics, Irrig. Sci., 31, 1113–1123, https://doi.org/10.1007/s00271-012-0392-7, 2013.
Download