Articles | Volume 17, issue 4
https://doi.org/10.5194/hess-17-1619-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/hess-17-1619-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climate change impact on groundwater levels: ensemble modelling of extreme values
J. Kidmose
Department of Hydrology, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
J. C. Refsgaard
Department of Hydrology, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
L. Troldborg
Department of Hydrology, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
L. P. Seaby
Department of Hydrology, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
M. M. Escrivà
Danish Road Directorate, Ministry of Transport, Skanderborg, Denmark
Related authors
Trine Enemark, Rasmus Bødker Madsen, Torben O. Sonnenborg, Lærke Therese Andersen, Peter B. E. Sandersen, Jacob Kidmose, Ingelise Møller, Thomas Mejer Hansen, Karsten Høgh Jensen, and Anne-Sophie Høyer
Hydrol. Earth Syst. Sci., 28, 505–523, https://doi.org/10.5194/hess-28-505-2024, https://doi.org/10.5194/hess-28-505-2024, 2024
Short summary
Short summary
In this study, we demonstrate an approach to evaluate the interpretation uncertainty within a manually interpreted geological model in a groundwater model. Using qualitative estimates of uncertainties, several geological realizations are developed and implemented in groundwater models. We confirm existing evidence that if the conceptual model is well defined, interpretation uncertainties within the conceptual model have limited impact on groundwater model predictions.
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023, https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary
Short summary
The study explores the effect of Anthropocene geology and the computational grid size on the simulation of shallow urban groundwater. Many cities are facing challenges with high groundwater levels close to the surface, yet urban planning and development seldom consider its impact on the groundwater resource. This study illustrates that the urban subsurface infrastructure significantly affects the groundwater flow paths and the residence time of shallow urban groundwater.
Catharina Simone Nisbeth, Federica Tamburini, Jacob Kidmose, Søren Jessen, and David William O'Connell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-469, https://doi.org/10.5194/hess-2019-469, 2019
Preprint withdrawn
Short summary
Short summary
Phosphorus contamination frequently causes eutrophication of freshwater lakes. However it is often difficult to establish the origin of the contaminating phosphorus. This study aims to contribute to the development and improvement of a method for tracing phosphorus in the freshwater environment, by using the oxygen-18 isotope of orthophosphate (δ18Op). The use of a coherent and common method across research groups may enable phosphorus tracing and better management of freshwater ecosystems.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 6591–6609, https://doi.org/10.5194/hess-22-6591-2018, https://doi.org/10.5194/hess-22-6591-2018, 2018
Short summary
Short summary
The present study evaluates the skill of a seasonal forecasting system for hydrological relevant variables in Denmark. Linear scaling and quantile mapping were used to correct the forecasts. Uncorrected forecasts tend to be more skillful than climatology, in general, for the first month lead time only. Corrected forecasts show a reduced bias in the mean; are more consistent; and show a level of accuracy that is closer to, although no higher than, that of ensemble climatology, in general.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 3601–3617, https://doi.org/10.5194/hess-22-3601-2018, https://doi.org/10.5194/hess-22-3601-2018, 2018
Short summary
Short summary
The skill of an experimental streamflow forecast system in the Ahlergaarde catchment, Denmark, is analyzed. Inputs to generate the forecasts are taken from the ECMWF System 4 seasonal forecasting system and an ensemble of observations (ESP). Reduction of biases is achieved by processing the meteorological and/or streamflow forecasts. In general, this is not sufficient to ensure a higher level of accuracy than the ESP, indicating a modest added value of a seasonal meteorological system.
Donghua Zhang, Henrik Madsen, Marc E. Ridler, Jacob Kidmose, Karsten H. Jensen, and Jens C. Refsgaard
Hydrol. Earth Syst. Sci., 20, 4341–4357, https://doi.org/10.5194/hess-20-4341-2016, https://doi.org/10.5194/hess-20-4341-2016, 2016
Short summary
Short summary
We present a method to assimilate observed groundwater head and soil moisture profiles into an integrated hydrological model. The study uses the ensemble transform Kalman filter method and the MIKE SHE hydrological model code. The proposed method is shown to be more robust and provide better results for two cases in Denmark, and is also validated using real data. The hydrological model with assimilation overall improved performance compared to the model without assimilation.
Trine Enemark, Rasmus Bødker Madsen, Torben O. Sonnenborg, Lærke Therese Andersen, Peter B. E. Sandersen, Jacob Kidmose, Ingelise Møller, Thomas Mejer Hansen, Karsten Høgh Jensen, and Anne-Sophie Høyer
Hydrol. Earth Syst. Sci., 28, 505–523, https://doi.org/10.5194/hess-28-505-2024, https://doi.org/10.5194/hess-28-505-2024, 2024
Short summary
Short summary
In this study, we demonstrate an approach to evaluate the interpretation uncertainty within a manually interpreted geological model in a groundwater model. Using qualitative estimates of uncertainties, several geological realizations are developed and implemented in groundwater models. We confirm existing evidence that if the conceptual model is well defined, interpretation uncertainties within the conceptual model have limited impact on groundwater model predictions.
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023, https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary
Short summary
The study explores the effect of Anthropocene geology and the computational grid size on the simulation of shallow urban groundwater. Many cities are facing challenges with high groundwater levels close to the surface, yet urban planning and development seldom consider its impact on the groundwater resource. This study illustrates that the urban subsurface infrastructure significantly affects the groundwater flow paths and the residence time of shallow urban groundwater.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Catharina Simone Nisbeth, Federica Tamburini, Jacob Kidmose, Søren Jessen, and David William O'Connell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-469, https://doi.org/10.5194/hess-2019-469, 2019
Preprint withdrawn
Short summary
Short summary
Phosphorus contamination frequently causes eutrophication of freshwater lakes. However it is often difficult to establish the origin of the contaminating phosphorus. This study aims to contribute to the development and improvement of a method for tracing phosphorus in the freshwater environment, by using the oxygen-18 isotope of orthophosphate (δ18Op). The use of a coherent and common method across research groups may enable phosphorus tracing and better management of freshwater ecosystems.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 6591–6609, https://doi.org/10.5194/hess-22-6591-2018, https://doi.org/10.5194/hess-22-6591-2018, 2018
Short summary
Short summary
The present study evaluates the skill of a seasonal forecasting system for hydrological relevant variables in Denmark. Linear scaling and quantile mapping were used to correct the forecasts. Uncorrected forecasts tend to be more skillful than climatology, in general, for the first month lead time only. Corrected forecasts show a reduced bias in the mean; are more consistent; and show a level of accuracy that is closer to, although no higher than, that of ensemble climatology, in general.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 3601–3617, https://doi.org/10.5194/hess-22-3601-2018, https://doi.org/10.5194/hess-22-3601-2018, 2018
Short summary
Short summary
The skill of an experimental streamflow forecast system in the Ahlergaarde catchment, Denmark, is analyzed. Inputs to generate the forecasts are taken from the ECMWF System 4 seasonal forecasting system and an ensemble of observations (ESP). Reduction of biases is achieved by processing the meteorological and/or streamflow forecasts. In general, this is not sufficient to ensure a higher level of accuracy than the ESP, indicating a modest added value of a seasonal meteorological system.
Donghua Zhang, Henrik Madsen, Marc E. Ridler, Jacob Kidmose, Karsten H. Jensen, and Jens C. Refsgaard
Hydrol. Earth Syst. Sci., 20, 4341–4357, https://doi.org/10.5194/hess-20-4341-2016, https://doi.org/10.5194/hess-20-4341-2016, 2016
Short summary
Short summary
We present a method to assimilate observed groundwater head and soil moisture profiles into an integrated hydrological model. The study uses the ensemble transform Kalman filter method and the MIKE SHE hydrological model code. The proposed method is shown to be more robust and provide better results for two cases in Denmark, and is also validated using real data. The hydrological model with assimilation overall improved performance compared to the model without assimilation.
Jørn Rasmussen, Henrik Madsen, Karsten Høgh Jensen, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 20, 2103–2118, https://doi.org/10.5194/hess-20-2103-2016, https://doi.org/10.5194/hess-20-2103-2016, 2016
Short summary
Short summary
In the paper, observations are assimilated into a hydrological model in order to improve the model performance. Two methods for detecting and correcting systematic errors (bias) in groundwater head observations are used leading to improved results compared to standard assimilation methods which ignores any bias. This is demonstrated using both synthetic (user generated) observations and real-world observations.
T. O. Sonnenborg, D. Seifert, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 19, 3891–3901, https://doi.org/10.5194/hess-19-3891-2015, https://doi.org/10.5194/hess-19-3891-2015, 2015
Short summary
Short summary
The impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Geology is the dominating uncertainty source for travel time and capture zones, while climate dominates for hydraulic heads and steam flow.
P. A. Marker, N. Foged, X. He, A. V. Christiansen, J. C. Refsgaard, E. Auken, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 19, 3875–3890, https://doi.org/10.5194/hess-19-3875-2015, https://doi.org/10.5194/hess-19-3875-2015, 2015
J. Rasmussen, H. Madsen, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015, https://doi.org/10.5194/hess-19-2999-2015, 2015
M. A. D. Larsen, J. C. Refsgaard, M. Drews, M. B. Butts, K. H. Jensen, J. H. Christensen, and O. B. Christensen
Hydrol. Earth Syst. Sci., 18, 4733–4749, https://doi.org/10.5194/hess-18-4733-2014, https://doi.org/10.5194/hess-18-4733-2014, 2014
Short summary
Short summary
The paper presents results from a novel dynamical coupling between a hydrology model and a regional climate model developed to include a wider range of processes, land-surface/atmosphere interaction and finer spatio-temporal scales. The coupled performance was largely dependent on the data exchange frequency between the two model components, and longer-term precipitation was somewhat improved by the coupled system whereas the short-term dynamics for a range of variables was less accurate.
J. Koch, X. He, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 18, 2907–2923, https://doi.org/10.5194/hess-18-2907-2014, https://doi.org/10.5194/hess-18-2907-2014, 2014
I. B. Karlsson, T. O. Sonnenborg, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 18, 595–610, https://doi.org/10.5194/hess-18-595-2014, https://doi.org/10.5194/hess-18-595-2014, 2014
H. Qin, G. Cao, M. Kristensen, J. C. Refsgaard, M. O. Rasmussen, X. He, J. Liu, Y. Shu, and C. Zheng
Hydrol. Earth Syst. Sci., 17, 3759–3778, https://doi.org/10.5194/hess-17-3759-2013, https://doi.org/10.5194/hess-17-3759-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Incorporating interpretation uncertainties from deterministic 3D hydrostratigraphic models in groundwater models
Adjoint subordination to calculate backward travel time probability of pollutants in water with various velocity resolutions
On the optimal level of complexity for the representation of groundwater-dependent wetland systems in land surface models
Estimation of groundwater age distributions from hydrochemistry: comparison of two metamodelling algorithms in the Heretaunga Plains aquifer system, New Zealand
Technical note: Novel analytical solution for groundwater response to atmospheric tides
Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties
On the challenges of global entity-aware deep learning models for groundwater level prediction
Disentangling coastal groundwater level dynamics on a global data set
Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River basin
Comparison of artificial neural networks and reservoir models for simulating karst spring discharge on five test sites in the Alpine and Mediterranean regions
A general model of radial dispersion with wellbore mixing and skin effects
Shannon Entropy of Transport Self-Organization Due to Dissolution/Precipitation Reaction at Varying Peclet Number in an Initially Homogeneous Porous Media
Estimation of hydraulic conductivity functions in karst regions by particle swarm optimization with application to Lake Vrana, Croatia
Current and future role of meltwater-groundwater dynamics in a proglacial Alpine outwash plain
The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Three-dimensional hydrogeological parametrization using sparse piezometric data
Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Characterizing groundwater heat transport in a complex lowland aquifer using paleo-temperature reconstruction, satellite data, temperature–depth profiles, and numerical models
Karst spring recession and classification: efficient, automated methods for both fast- and slow-flow components
Exploring river–aquifer interactions and hydrological system response using baseflow separation, impulse response modeling, and time series analysis in three temperate lowland catchments
Experimental study of non-Darcy flow characteristics in permeable stones
Karst spring discharge modeling based on deep learning using spatially distributed input data
HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling”
Spatiotemporal variations in water sources and mixing spots in a riparian zone
Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data
Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Improved understanding of regional groundwater drought development through time series modelling: the 2018–2019 drought in the Netherlands
Simulation of long-term spatiotemporal variations in regional-scale groundwater recharge: contributions of a water budget approach in cold and humid climates
Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields
Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment
Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach
Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape
Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe
Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data
Early hypogenic carbonic acid speleogenesis in unconfined limestone aquifers by upwelling deep-seated waters with high CO2 concentration: a modelling approach
Impacts of climate change on groundwater flooding and ecohydrology in lowland karst
How daily groundwater table drawdown affects the diel rhythm of hyporheic exchange
Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX)
Groundwater and baseflow drought responses to synthetic recharge stress tests
Determination of vadose zone and saturated zone nitrate lag times using long-term groundwater monitoring data and statistical machine learning
Modelling the hydrological interactions between a fissured granite aquifer and a valley mire in the Massif Central, France
A new criterion for determining the representative elementary volume of translucent porous media and inner contaminant
Physics-inspired integrated space–time artificial neural networks for regional groundwater flow modeling
Hydraulic and geochemical impact of occasional saltwater intrusions through a submarine spring in a karst and thermal aquifer (Balaruc peninsula near Montpellier, France)
Calibration of a lumped karst system model and application to the Qachqouch karst spring (Lebanon) under climate change conditions
Sensitivity of hydrologic and geologic parameters on recharge processes in a highly heterogeneous, semi-confined aquifer system
Basin-scale multi-objective simulation-optimization modeling for conjunctive use of surface water and groundwater in northwest China
Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 °C global warming in a mesoscale central German basin
Trine Enemark, Rasmus Bødker Madsen, Torben O. Sonnenborg, Lærke Therese Andersen, Peter B. E. Sandersen, Jacob Kidmose, Ingelise Møller, Thomas Mejer Hansen, Karsten Høgh Jensen, and Anne-Sophie Høyer
Hydrol. Earth Syst. Sci., 28, 505–523, https://doi.org/10.5194/hess-28-505-2024, https://doi.org/10.5194/hess-28-505-2024, 2024
Short summary
Short summary
In this study, we demonstrate an approach to evaluate the interpretation uncertainty within a manually interpreted geological model in a groundwater model. Using qualitative estimates of uncertainties, several geological realizations are developed and implemented in groundwater models. We confirm existing evidence that if the conceptual model is well defined, interpretation uncertainties within the conceptual model have limited impact on groundwater model predictions.
Yong Zhang, Graham E. Fogg, HongGuang Sun, Donald M. Reeves, Roseanna M. Neupauer, and Wei Wei
Hydrol. Earth Syst. Sci., 28, 179–203, https://doi.org/10.5194/hess-28-179-2024, https://doi.org/10.5194/hess-28-179-2024, 2024
Short summary
Short summary
Pollutant release history and source identification are helpful for managing water resources, but it remains a challenge to reliably identify such information for real-world, complex transport processes in rivers and aquifers. In this study, we filled this knowledge gap by deriving a general backward governing equation and developing the efficient solver. Field applications showed that this model and solver are applicable for a broad range of flow systems, dimensions, and spatiotemporal scales.
Mennatullah T. Elrashidy, Andrew M. Ireson, and Saman Razavi
Hydrol. Earth Syst. Sci., 27, 4595–4608, https://doi.org/10.5194/hess-27-4595-2023, https://doi.org/10.5194/hess-27-4595-2023, 2023
Short summary
Short summary
Wetlands are important ecosystems that store carbon and play a vital role in the water cycle. However, hydrological computer models do not always represent wetlands and their interaction with groundwater accurately. We tested different possible ways to include groundwater–wetland interactions in these models. We found that the optimal method to include wetlands and groundwater in the models is reliant on the intended use of the models and the characteristics of the land and soil being studied.
Conny Tschritter, Christopher J. Daughney, Sapthala Karalliyadda, Brioch Hemmings, Uwe Morgenstern, and Catherine Moore
Hydrol. Earth Syst. Sci., 27, 4295–4316, https://doi.org/10.5194/hess-27-4295-2023, https://doi.org/10.5194/hess-27-4295-2023, 2023
Short summary
Short summary
Understanding groundwater travel time (groundwater age) is crucial for tracking flow and contaminants. While groundwater age is usually inferred from age tracers, this study utilised two machine learning techniques with common groundwater chemistry data. The results of both methods correspond to traditional approaches. They are useful where hydrochemistry data exist but age tracer data are limited. These methods could help enhance our knowledge, aiding in sustainable freshwater management.
Jose M. Bastias Espejo, Chris Turnadge, Russell S. Crosbie, Philipp Blum, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 27, 3447–3462, https://doi.org/10.5194/hess-27-3447-2023, https://doi.org/10.5194/hess-27-3447-2023, 2023
Short summary
Short summary
Analytical models estimate subsurface properties from subsurface–tidal load interactions. However, they have limited accuracy in representing subsurface physics and parameter estimation. We derived a new analytical solution which models flow to wells due to atmospheric tides. We applied it to field data and compared our findings with subsurface knowledge. Our results enhance understanding of subsurface systems, providing valuable information on their behavior.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-192, https://doi.org/10.5194/hess-2023-192, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
We build a neural network to predict groundwater levels from monitoring wells. We want to predict all the wells at the same time, by learning the differences between wells with “static features”. Then it is an “entity aware global model”. We test different static features and find that the model doesn’t really use them to learn how exactly the wells are different, but only to uniquely identify them. So this model class isn’t actually entity aware, and we suggest next steps to make it so.
Annika Nolte, Ezra Haaf, Benedikt Heudorfer, Steffen Bender, and Jens Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-180, https://doi.org/10.5194/hess-2023-180, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
This study analyzes about 8,000 groundwater level (GWL) time series from five continents to explore similarities in groundwater systems at different scales. By applying statistical metrics and machine learning, we identify common GWL dynamics and their controlling factors. We also highlight the opportunities and barriers of using these approaches to improve our understanding of groundwater recharge and discharge processes.
Amanda Triplett and Laura E. Condon
Hydrol. Earth Syst. Sci., 27, 2763–2785, https://doi.org/10.5194/hess-27-2763-2023, https://doi.org/10.5194/hess-27-2763-2023, 2023
Short summary
Short summary
Accelerated melting in mountains is a global phenomenon. The Heihe River basin depends on upstream mountains for its water supply. We built a hydrologic model to examine how shifts in streamflow and warming will impact ground and surface water interactions. The results indicate that degrading permafrost has a larger effect than melting glaciers. Additionally, warming temperatures tend to have more impact than changes to streamflow. These results can inform other mountain–valley system studies.
Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde
Hydrol. Earth Syst. Sci., 27, 1961–1985, https://doi.org/10.5194/hess-27-1961-2023, https://doi.org/10.5194/hess-27-1961-2023, 2023
Short summary
Short summary
Numerous modelling approaches can be used for studying karst water resources, which can make it difficult for a stakeholder or researcher to choose the appropriate method. We conduct a comparison of two widely used karst modelling approaches: artificial neural networks (ANNs) and reservoir models. Results show that ANN models are very flexible and seem great for reproducing high flows. Reservoir models can work with relatively short time series and seem to accurately reproduce low flows.
Wenguang Shi, Quanrong Wang, Hongbin Zhan, Renjie Zhou, and Haitao Yan
Hydrol. Earth Syst. Sci., 27, 1891–1908, https://doi.org/10.5194/hess-27-1891-2023, https://doi.org/10.5194/hess-27-1891-2023, 2023
Short summary
Short summary
The mechanism of radial dispersion is important for understanding reactive transport in the subsurface and for estimating aquifer parameters required in the optimization design of remediation strategies. A general model and associated analytical solutions are developed in this study. The new model represents the most recent advancement on radial dispersion studies and incorporates a host of important processes that are not taken into consideration in previous investigations.
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-84, https://doi.org/10.5194/hess-2023-84, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
We investigate the coupling of transport with dissolution-precipitation, that occur widely in Earth science, as the reaction affect porosity and hydraulic conductivity. We show that the transport self-organization and the power required to maintain the driving pressure as the field becomes more heterogeneous, increases over time due to the interplay between transport and the reactive process. This self-organization is more pronounced in diffusion-dominated flows.
Vanja Travaš, Luka Zaharija, Davor Stipanić, and Siniša Družeta
Hydrol. Earth Syst. Sci., 27, 1343–1359, https://doi.org/10.5194/hess-27-1343-2023, https://doi.org/10.5194/hess-27-1343-2023, 2023
Short summary
Short summary
In order to model groundwater flow in karst aquifers, it is necessary to approximate the influence of the unknown and irregular structure of the karst conduits. For this purpose, a procedure based on inverse modeling is adopted. Moreover, in order to reconstruct the functional dependencies related to groundwater flow, the particle swarm method was used, through which the optimal solution of unknown functions is found by imitating the movement of ants in search of food.
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
EGUsphere, https://doi.org/10.5194/egusphere-2022-1503, https://doi.org/10.5194/egusphere-2022-1503, 2023
Short summary
Short summary
We investigate the role of a newly formed floodplain in an alpine glaciated catchment to store and release water. Based on field measurements, we built a numerical model to simulate the water fluxes and show that recharge occurs mainly due to the ice-melt fed river. We identify 3 future floodplains, which could emerge from glacier retreat and show that their combined storage lead to some additional groundwater storage but contribute to little additional baseflow for the downstream river.
Shouchuan Zhang, Zheming Shi, Guangcai Wang, Zuochen Zhang, and Huaming Guo
Hydrol. Earth Syst. Sci., 27, 401–415, https://doi.org/10.5194/hess-27-401-2023, https://doi.org/10.5194/hess-27-401-2023, 2023
Short summary
Short summary
We documented the step-like increases of water level, flow rate, and water temperatures in a confined aquifer following multiple earthquakes. By employing tidal analysis and a coupled temperature and flow rate model, we find that post-seismic vertical permeability changes and recharge model could explain the co-seismic response. And co-seismic temperature changes are caused by mixing of different volumes of water, with the mixing ratio varying according to each earthquake.
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023, https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary
Short summary
In a data-driven framework, groundwater levels can generally only be calculated 1 time step ahead. We discuss the advance prediction with longer forecast periods rather than single time steps by constructing a model based on a temporal convolutional network. Model accuracy and efficiency were further compared with an LSTM-based model. The two models derived in this study can help people cope with the uncertainty of what might occur in hydrological scenarios under the threat of climate change.
Dimitri Rambourg, Raphaël Di Chiara, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022, https://doi.org/10.5194/hess-26-6147-2022, 2022
Short summary
Short summary
The reproduction of flows and contaminations underground requires a good estimation of the parameters of the geological environment (mainly permeability and porosity), in three dimensions. While most researchers rely on geophysical methods, which are costly and difficult to implement in the field, this study proposes an alternative using data that are already widely available: piezometric records (monitoring of the water table) and the lithological description of the piezometric wells.
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022, https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Short summary
Hydrological models at high spatial resolution are computationally expensive. However, outputs from such models, such as the depth of the groundwater table, are often desired in high resolution. We developed a downscaling algorithm based on machine learning that allows us to increase spatial resolution of hydrological model outputs, alleviating computational burden. We successfully applied the downscaling algorithm to the climate-change-induced impacts on the groundwater table across Denmark.
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022, https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary
Short summary
Recharge, defining the renewal rate of groundwater resources, is difficult to estimate at basin scale. Here, recharge variations are inferred from water table variations recorded in boreholes. First, results show that aquifer-scale properties controlling these variations can be inferred from boreholes. Second, groundwater is recharged by both intense and seasonal rainfall. Third, the short-term contribution appears overestimated in recharge models and depends on the unsaturated zone thickness.
Alberto Casillas-Trasvina, Bart Rogiers, Koen Beerten, Laurent Wouters, and Kristine Walraevens
Hydrol. Earth Syst. Sci., 26, 5577–5604, https://doi.org/10.5194/hess-26-5577-2022, https://doi.org/10.5194/hess-26-5577-2022, 2022
Short summary
Short summary
Heat in the subsurface can be used to characterize aquifer flow behaviour. The temperature data obtained can be useful for understanding the groundwater flow, which is of particular importance in waste disposal studies. Satellite images of surface temperature and a temperature–time curve were implemented in a heat transport model. Results indicate that conduction plays a major role in the aquifer and support the usefulness of temperature measurements.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Min Lu, Bart Rogiers, Koen Beerten, Matej Gedeon, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 26, 3629–3649, https://doi.org/10.5194/hess-26-3629-2022, https://doi.org/10.5194/hess-26-3629-2022, 2022
Short summary
Short summary
Lowland rivers and shallow aquifers are closely coupled. We study their interactions here using a combination of impulse response modeling and hydrological data analysis. The results show that the lowland catchments are groundwater dominated and that the hydrological system from precipitation impulse to groundwater inflow response is a very fast response regime. This study also provides an alternative method to estimate groundwater inflow to rivers from the perspective of groundwater level.
Zhongxia Li, Junwei Wan, Tao Xiong, Hongbin Zhan, Linqing He, and Kun Huang
Hydrol. Earth Syst. Sci., 26, 3359–3375, https://doi.org/10.5194/hess-26-3359-2022, https://doi.org/10.5194/hess-26-3359-2022, 2022
Short summary
Short summary
Four permeable rocks with different pore sizes were considered to provide experimental evidence of Forchheimer flow and the transition between different flow regimes. The mercury injection technique was used to measure the pore size distribution, which is an essential factor for determining the flow regime, for four permeable stones. Finally, the influences of porosity and particle size on the Forchheimer coefficients were discussed.
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
Short summary
Modeling complex karst water resources is difficult enough, but often there are no or too few climate stations available within or close to the catchment to deliver input data for modeling purposes. We apply image recognition algorithms to time-distributed, spatially gridded meteorological data to simulate karst spring discharge. Our models can also learn the approximate catchment location of a spring independently.
Brian Berkowitz
Hydrol. Earth Syst. Sci., 26, 2161–2180, https://doi.org/10.5194/hess-26-2161-2022, https://doi.org/10.5194/hess-26-2161-2022, 2022
Short summary
Short summary
Extensive efforts have focused on quantifying conservative chemical transport in geological formations. We assert that an explicit accounting of temporal information, under uncertainty, in addition to spatial information, is fundamental to an effective modeling formulation. We further assert that efforts to apply chemical transport equations at large length scales, based on measurements and model parameter values relevant to significantly smaller length scales, are an unattainable
holy grail.
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022, https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
Short summary
In near-stream aquifers, mixing between stream water and ambient groundwater can lead to dilution and the removal of substances that can be harmful to the water ecosystem at high concentrations. We used a numerical model to track the spatiotemporal evolution of different water sources and their mixing around a stream, which are rather difficult in the field. Results show that mixing mainly develops as narrow spots, varying In time and space, and is affected by magnitudes of discharge events.
Jacques Bodin, Gilles Porel, Benoît Nauleau, and Denis Paquet
Hydrol. Earth Syst. Sci., 26, 1713–1726, https://doi.org/10.5194/hess-26-1713-2022, https://doi.org/10.5194/hess-26-1713-2022, 2022
Short summary
Short summary
Assessment of the karst network geometry is an important challenge in the accurate modeling of karst aquifers. In this study, we propose an approach for the identification of effective three-dimensional discrete karst conduit networks conditioned on tracer tests and geophysical data. The applicability of the proposed approach is illustrated through a case study at the Hydrogeological Experimental Site in Poitiers, France.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Esther Brakkee, Marjolein H. J. van Huijgevoort, and Ruud P. Bartholomeus
Hydrol. Earth Syst. Sci., 26, 551–569, https://doi.org/10.5194/hess-26-551-2022, https://doi.org/10.5194/hess-26-551-2022, 2022
Short summary
Short summary
Periods of drought often lead to groundwater shortages in large regions, which cause damage to nature and the economy. To take measures, we need a good understanding of where and when groundwater shortage occurs. In this study, we have tested a method that can combine large amounts of groundwater measurements in an automated way and provide detailed maps of how groundwater shortages develop during a drought period. This information can help water managers to limit future groundwater shortages.
Emmanuel Dubois, Marie Larocque, Sylvain Gagné, and Guillaume Meyzonnat
Hydrol. Earth Syst. Sci., 25, 6567–6589, https://doi.org/10.5194/hess-25-6567-2021, https://doi.org/10.5194/hess-25-6567-2021, 2021
Short summary
Short summary
This work demonstrates the relevance of using a water budget model to understand long-term transient and regional-scale groundwater recharge (GWR) in cold and humid climates where groundwater observations are scarce. Monthly GWR is simulated for 57 years on 500 m x 500 m cells in Canada (36 000 km2 area) with limited uncertainty due to a robust automatic calibration method. The increases in precipitation and temperature since the 1960s have not yet produced significant changes in annual GWR.
Yaniv Edery, Martin Stolar, Giovanni Porta, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 5905–5915, https://doi.org/10.5194/hess-25-5905-2021, https://doi.org/10.5194/hess-25-5905-2021, 2021
Short summary
Short summary
The interplay between dissolution, precipitation and transport is widely encountered in porous media, from CO2 storage to cave formation in carbonate rocks. We show that dissolution occurs along preferential flow paths with high hydraulic conductivity, while precipitation occurs at locations close to yet separated from these flow paths, thus further funneling the flow and changing the probability density function of the transport, as measured on the altered conductivity field at various times.
Karina Y. Gutierrez-Jurado, Daniel Partington, and Margaret Shanafield
Hydrol. Earth Syst. Sci., 25, 4299–4317, https://doi.org/10.5194/hess-25-4299-2021, https://doi.org/10.5194/hess-25-4299-2021, 2021
Short summary
Short summary
Understanding the hydrologic cycle in semi-arid landscapes includes knowing the physical processes that govern where and why rivers flow and dry within a given catchment. To gain this understanding, we put together a conceptual model of what processes we think are important and then tested that model with numerical analysis. The results broadly confirmed our hypothesis that there are three distinct regions in our study catchment that contribute to streamflow generation in quite different ways.
Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler
Hydrol. Earth Syst. Sci., 25, 4041–4059, https://doi.org/10.5194/hess-25-4041-2021, https://doi.org/10.5194/hess-25-4041-2021, 2021
Short summary
Short summary
We compare two approaches for coupling a 2D groundwater model with multiple 1D models for the unsaturated zone. One is non-iterative and very fast. The other one is iterative and involves a new way of treating the specific yield, which is crucial for obtaining a consistent solution in both model compartments. Tested on different scenarios, this new method turns out to be slower than the non-iterative approach but more accurate and still very efficient compared to fully integrated 3D model runs.
Vince P. Kaandorp, Hans Peter Broers, Ype van der Velde, Joachim Rozemeijer, and Perry G. B. de Louw
Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021, https://doi.org/10.5194/hess-25-3691-2021, 2021
Short summary
Short summary
We reconstructed historical and present-day tritium, chloride, and nitrate concentrations in stream water of a catchment using
land-use-based input curves and calculated travel times of groundwater. Parameters such as the unsaturated zone thickness, mean travel time, and input patterns determine time lags between inputs and in-stream concentrations. The timescale of the breakthrough of pollutants in streams is dependent on the location of pollution in a catchment.
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021, https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Short summary
This study utilized spatiotemporally continuous precipitation anomaly (pra) and water table depth anomaly (wtda) data from integrated hydrologic simulation results over Europe in combination with Long Short-Term Memory (LSTM) networks to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain reliable models to estimate wtda at the individual pixel level.
Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk
Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, https://doi.org/10.5194/hess-25-2931-2021, 2021
Short summary
Short summary
This study explores the use of nonlinear transfer function noise (TFN) models to simulate groundwater levels and estimate groundwater recharge from observed groundwater levels. A nonlinear recharge model is implemented in a TFN model to compute the recharge. The estimated recharge rates are shown to be in good agreement with the recharge observed with a lysimeter present at the case study site in Austria. The method can be used to obtain groundwater recharge rates at
sub-yearly timescales.
Franci Gabrovšek and Wolfgang Dreybrodt
Hydrol. Earth Syst. Sci., 25, 2895–2913, https://doi.org/10.5194/hess-25-2895-2021, https://doi.org/10.5194/hess-25-2895-2021, 2021
Short summary
Short summary
The evolution of karst aquifers is often governed by solutions gaining their aggressiveness in depth. Although the principles of
hypogene speleogenesisare known, modelling studies based on reactive flow in fracture networks are missing. We present a model where dissolution at depth is triggered by the mixing of waters of different origin and chemistry. We show how the initial position of the mixing zone and flow instabilities therein determine the position and shape of the final conduits.
Patrick Morrissey, Paul Nolan, Ted McCormack, Paul Johnston, Owen Naughton, Saheba Bhatnagar, and Laurence Gill
Hydrol. Earth Syst. Sci., 25, 1923–1941, https://doi.org/10.5194/hess-25-1923-2021, https://doi.org/10.5194/hess-25-1923-2021, 2021
Short summary
Short summary
Lowland karst aquifers provide important wetland habitat resulting from seasonal flooding on the land surface. This flooding is controlled by surcharging of the karst system, which is very sensitive to changes in rainfall. This study investigates the predicted impacts of climate change on a lowland karst catchment in Ireland and highlights the relative vulnerability to future changing climate conditions of karst systems and any associated wetland habitats.
Liwen Wu, Jesus D. Gomez-Velez, Stefan Krause, Anders Wörman, Tanu Singh, Gunnar Nützmann, and Jörg Lewandowski
Hydrol. Earth Syst. Sci., 25, 1905–1921, https://doi.org/10.5194/hess-25-1905-2021, https://doi.org/10.5194/hess-25-1905-2021, 2021
Short summary
Short summary
With a physically based model that couples flow and heat transport in hyporheic zones, the present study provides the first insights into the dynamics of hyporheic responses to the impacts of daily groundwater withdrawal and river temperature fluctuations, allowing for a better understanding of transient hyporheic exchange processes and hence an improved pumping operational scheme.
Andreas Wunsch, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, https://doi.org/10.5194/hess-25-1671-2021, 2021
Jost Hellwig, Michael Stoelzle, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 1053–1068, https://doi.org/10.5194/hess-25-1053-2021, https://doi.org/10.5194/hess-25-1053-2021, 2021
Short summary
Short summary
Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to altered recharge conditions. With three generic scenarios, we found different sensitivities across Germany driven by hydrogeology. While changes in drought hazard due to seasonal recharge shifts will be rather low, a lengthening of dry spells could cause stronger responses in regions with slow groundwater response to precipitation, urging local water management to prepare for more severe droughts.
Martin J. Wells, Troy E. Gilmore, Natalie Nelson, Aaron Mittelstet, and John K. Böhlke
Hydrol. Earth Syst. Sci., 25, 811–829, https://doi.org/10.5194/hess-25-811-2021, https://doi.org/10.5194/hess-25-811-2021, 2021
Short summary
Short summary
Groundwater in many agricultural areas contains high levels of nitrate, which is a concern for drinking water supplies. The rate at which nitrate moves through the subsurface is a critical piece of information for predicting how quickly groundwater nitrate levels may improve after agricultural producers change their approach to managing crop water and fertilizers. In this study, we explored a new statistical modeling approach to determine rates at which nitrate moves into and through an aquifer.
Arnaud Duranel, Julian R. Thompson, Helene Burningham, Philippe Durepaire, Stéphane Garambois, Robert Wyns, and Hervé Cubizolle
Hydrol. Earth Syst. Sci., 25, 291–319, https://doi.org/10.5194/hess-25-291-2021, https://doi.org/10.5194/hess-25-291-2021, 2021
Short summary
Short summary
Peat-forming wetlands (mires) provide multiple ecosystem services, which depend on peat remaining waterlogged. Using hydrological modelling, we show that, contrary to a common assumption, groundwater inflow can be a quantitatively important and functionally critical element of the water balance of mires in hard-rock upland and mountain areas. This influence is such that patterns of groundwater upwelling and seepage explain the spatial distribution of mires in the landscape.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 24, 5903–5917, https://doi.org/10.5194/hess-24-5903-2020, https://doi.org/10.5194/hess-24-5903-2020, 2020
Short summary
Short summary
A new criterion (χi) is proposed to estimate representative elementary volume (REV) of a translucent material based on light transmission techniques. This study is essential for quantitative investigation of the scale effect of porous media and contaminant transformation. The fluid and contaminant migration and transform in porous media can be simulated accurately according to the REV estimation results using the light transmission technique and the appropriate criterion χi.
Ali Ghaseminejad and Venkatesh Uddameri
Hydrol. Earth Syst. Sci., 24, 5759–5779, https://doi.org/10.5194/hess-24-5759-2020, https://doi.org/10.5194/hess-24-5759-2020, 2020
Short summary
Short summary
While artificial neural networks (ANNs) have been used to forecast groundwater levels at single wells, they have not been constructed to forecast hydraulic heads in both space and time. This seminal study presents a modeling framework, guided by the governing physical laws, for building an integrated space–time ANN (IST–ANN) model for regional groundwater level predictions. IST–ANN shows promise for parsimoniously modeling regional-scale groundwater levels using available surrogate information.
Marie-Amélie Pétré, Bernard Ladouche, Jean-Luc Seidel, Romain Hemelsdaël, Véronique de Montety, Christelle Batiot-Guilhe, and Claudine Lamotte
Hydrol. Earth Syst. Sci., 24, 5655–5672, https://doi.org/10.5194/hess-24-5655-2020, https://doi.org/10.5194/hess-24-5655-2020, 2020
Short summary
Short summary
We studied the impact of occasional saltwater intrusions into the karst aquifer of the Balaruc peninsula (France). Using hydrogeological and geochemical data, this study shows that the hydraulic impact on the aquifer is rapid and of regional extent, whereas the geochemical impact is observed at the local scale and is temporally persistent. This research supports groundwater management by providing a better understanding of the hydrodynamics and recovery of the aquifer after saltwater intrusions.
Emmanuel Dubois, Joanna Doummar, Séverin Pistre, and Marie Larocque
Hydrol. Earth Syst. Sci., 24, 4275–4290, https://doi.org/10.5194/hess-24-4275-2020, https://doi.org/10.5194/hess-24-4275-2020, 2020
Short summary
Short summary
The simulation of flow in a karst aquifer in a Mediterranean region using a semi-distributed linear reservoir model (geometry and parameterization) is calibrated and validated based on the analysis of high-resolution time series. The model is used to predict the effect of climatic variation. Although the spring is highly sensitive to rainfall variations, it is also resilient to warming temperature. Finally, this integrated conceptual method is reproducible for karst in semiarid regions.
Stephen R. Maples, Laura Foglia, Graham E. Fogg, and Reed M. Maxwell
Hydrol. Earth Syst. Sci., 24, 2437–2456, https://doi.org/10.5194/hess-24-2437-2020, https://doi.org/10.5194/hess-24-2437-2020, 2020
Short summary
Short summary
In this study, we use a combination of local- and global-sensitivity analyses to evaluate the relative importance of (1) the configuration of subsurface alluvial geology and (2) the hydraulic properties of geologic facies on recharge processes. Results show that there is a large variation of recharge rates possible in a typical alluvial aquifer system and that the configuration proportion of sand and gravel deposits in the subsurface have a large impact on recharge rates.
Jian Song, Yun Yang, Xiaomin Sun, Jin Lin, Ming Wu, Jianfeng Wu, and Jichun Wu
Hydrol. Earth Syst. Sci., 24, 2323–2341, https://doi.org/10.5194/hess-24-2323-2020, https://doi.org/10.5194/hess-24-2323-2020, 2020
Short summary
Short summary
We proposed a novel many-objective simulation-optimization framework for conjunctive use of surface water and groundwater in Yanqi Basin, northwest China. The management model involving socioeconomic and environmental objectives was constructed to explore optimal water-use schemes. Three runoff scenarios were then specified to quantify the effect of runoff reduction related to climate change on water management. Results provide Pareto-optimal solutions for basin-scale water management.
Miao Jing, Rohini Kumar, Falk Heße, Stephan Thober, Oldrich Rakovec, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020, https://doi.org/10.5194/hess-24-1511-2020, 2020
Short summary
Short summary
This study investigates the response of regional groundwater system to the climate change under three global warming levels (1.5, 2, and 3 °C) in a central German basin. A comprehensive uncertainty analysis is also presented. This study indicates that the variability of responses increases with the amount of global warming, which might affect the cost of managing the groundwater system.
Cited articles
Abbott, M. B., Bathurst, J. C., Cunge, J. A., Oconnell, P. E., and Rasmussen, J.: An introduction to the european hydrological system – systeme hydrologique European, She .2. Structure of a physically-based, distributed modeling system, J. Hydrol., 87, 61–77, 1986.
Allen, D. M., Cannon, A. J., Toews, M. W., and Scibek, J.: Variability in simulated recharge using different GCMs, Water Resour. Res., 46, W00f03, https://doi.org/10.1029/2009wr008932, 2010.
Allerup, P., Madsen, H., and Vejen, F.: Standard values of precipitation corrections, Danish Meterological Institute, Technical report, 98–10, 1998.
Bordi, I., Fraedrich, K., Petitta, M., and Sutera, A.: Extreme value analysis of wet and dry periods in Sicily, Theor. Appl. Climatol., 87, 61–71, 2007.
Burke, E. B., Perry, R. H. J., and Brown, S. J.: An extreme value analysis of UK drought and projections of change in the future, J. Hydrol., 388, 131–143, 2010.
Candela, L., von Igel, W., Javier Elorza, F., and Aronica, G.: Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain), J. Hydrol., 376, 510–527, 2009.
Christensen, J. H., Rummukainen, M., and Lenderink, G.: Formulation of very-high-resolution regional climate model ensembles for Europe [Research Theme 3]. ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, UK, 47–58 pp., 2009.
Deque, M. and Somot, S.: Weighted frequency distributions express modeling uncertainties in the ensembles regional climate experiments, Clim. Res., 44, 195–209, 2010.
Doherty, J.: PEST, Model-independent parameter estimation, User manual: 5th Edn., Watermark Numerical Computing, 2010.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modeling to impact studies: recent advances in downscaling techniques for hydrological modeling, Int. J. Climatol., 27, 1547–1578, 2007.
Graham, L. P., Andreasson, J., and Carlsson, B.: Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods – a case study on the Lule River basin, Clim. Change, 81, 293–307, 2007.
Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., and Allen, D. M.: Beneath the surface of global change: Impacts of climate change on groundwater, J. Hydrol., 405, 532–560, 2011.
Gumbel, E. J.: Statistics of extremes, Columbia University Press, 1958.
Guo, Y. and Adams, B. J.: Hydrologic analysis of urban catchments with event-based probabilistic model, 1. Runoff volume, Water Resour. Res., 34, 3421–3431, 1998a.
Guo, Y. and Adams, B. J.: Hydrologic analysis of urban catchments with event-based probabilistic model, 2. Peak discharge rate, Water Resour. Res., 34, 3433–3443, 1998b.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in projections of regional precipitation change, Clim. Dynam., 37, 407–418, 2011.
Henriksen, J. H., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C., and Madsen, B.: Methodology for construction, calibration and validation of a national hydrological model for Denmark, J. Hydrol., 280, 52–71, 2003.
Holman, I. P., Allen, D. M., Cuthbert, M. O., and Goderniaux, P.: Towards best practice for assessing the impacts of climate change on groundwater, Hydrogeol. J., 20, 1–4, 2012.
Hughes, A. G.: Flood risk from groundwater: examples from a Chalk catchment in southern England, J. Flood Risk Manage., 4, 143–155, 2011.
Højberg, A. L., Nyegaard, P., Stisen, S., Troldborg, L., Ondracek, M., and Christensen, B. S. B.: Model setup and calibration of Middle Jutland, DK-model2009, Geological Survey of Denmark Greenland investigations report, 2010/78, 2010.
Højberg, A. L., Troldborg, L., Stisen, S., Christensen, B. S. B., and Henriksen, H. J.: Stakeholder driven update and improvement of a national water resources model, Environ. Modell. Softw., 40, 202–213, 2013.
Jackson, C. R., Meister, R., and Prudhomme, C.: Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections, J. Hydrol., 399, 12–28, 2011.
Jørgensen, F. and Sandersen, P.: Kortlægning af begravede dale i Danmark – opdatering 2007–2009. GEUS særudgivelse ISBN: 978-87-7871-259-2, available at: www.begravede-dale.dk, 2009.
Morris, S. E., Cobby, D., and Parkes, A.: Towards groundwater flood risk mapping, Q. J. Eng. Geol. Hydroge., 40, 203–211, 2007.
Najib, K., Jourde, H., and Pistre, S.: A methodology for extreme groundwater surge predetermination in carbonate aquifers: Groundwater flood frequency analysis, J. Hydrol., 352, 1–15, 2008.
Palynchuk. B. and Guo, Y.: Treshold analysis of rainstorm depth and duration statistics at Toronto, Canada, J. Hydrol., 348, 335–345, 2008.
Pinault, J. L., Amraoui, N., and Golaz, C.: Groundwater-induced flooding in macropore-dominated hydrological system in the context of climate changes, Water Resour. Res., 41, W05001, https://doi.org/10.1029/2004wr003169, 2005.
Piani, C., Haerter, J. O., and Coppola, E.: Statistical bias correction for daily precipitation in regional climate models over Europe, Theor. Appl. Climatol., 99, 187–192, 2010.
Refsgaard, J. C. and Storm, B.: MIKE SHE, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, 809–846, 1995.
Scharling, M.: Climate grid – Denmark, norms 1961–90, month and annual values, Danish Meteorological Institute, Ministry of Transport, Technical report 00-11, 2000.
Scibek, J. and Allen, D. M.: Modeled impacts of predicted climate change on recharge and groundwater levels, Water Resour. Res., 42, W11405, https://doi.org/10.1029/2005wr004742, 2006.
Seaby, L. P., Refsgaard, J. C., Sonnenborg, T. O., Stisen, S., Christensen, J. H. and Jensen, K. H.: Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections, J. Hydrol., 486, 479–493, https://doi.org/10.1016/j.hydrol.2013.02.015, 2013.
Smith, L., Tebaldi, C., Nychka, D., and Mearns L. O.: Bayesian modelling of uncertainty in ensembles o climate models, J. Am. Stat. Assoc., 104, 97–116, 2009.
Stoll, S., Hendricks Franssen, H. J., Butts, M., and Kinzelbach, W.: Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods, Hydrol. Earth Syst. Sci., 15, 21–38, https://doi.org/10.5194/hess-15-21-2011, 2011.
Stisen, S., Højberg, A. L., Troldborg, L., Refsgaard, J. C., Christensen, B. S. B., Olsen, M., and Henriksen, H. J.: On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes, Hydrol. Earth Syst. Sci., 16, 4157–4176, https://doi.org/10.5194/hess-16-4157-2012, 2012.
Sunyer, M. A., Madsen, H., and Ang, P. H.: A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change, Atmos. Res., 130, 119–128, 2011.
Tebaldi, C., Smith, R. L., Nychka, D., and Mearns, L. O.: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles, J. Climate, 18, 1524–1540, 2005.
Tinch, J. W., Bradford, R. B., and Hudson, J. A.: The spatial distribution of groundwater flooding in a chalk catchment in southern England, Hydrolog. Process., 18, 959–971, 2004.
Toews, M. W. and Allen, D. M.: Simulated response of groundwater to predicted recharge in a semi-arid region using a scenario of modelled climate change, Environ. Res. Lett., 4, 035003, https://doi.org/10.1088/1748-9326/4/3/035003, 2009.
Yusoff, I., Hiscock, K. M., and Conway, D.: Simulation of the impacts of climate change on groundwater resources in eastern England, Geological Society, London, Special Publications 193, 325–344, 2002.
van Roosmalen, L., Christensen, B. S. B., and Sonnenborg, T. O.: Regional diffences in climate change impacts on groundwater and stream discharge in Denmark, Vadoze Zone J., 5, 554–571, 2007.
van Roosmalen, L., Sonnenborg, T. O., and Jensen, K. H.: Impact of climate and land use change on the hydrology of a large-scale agricultural catchment, Water Resour. Res., 45, W00A15, https://doi.org/10.1029/2007WR006760, 2009.
van Roosmalen, L., Sonnenborg, T. O., Jensen, K. H., and Christensen, J. H.: Comparison of Hydrological Simulations of Climate Change Using Perturbation of Observations and Distribution-Based Scaling, Vadose Zone J., 10, 136–150, 2011.
Upton, K. A. and Jackson, C. R.: Simulation of the spatio-temporal extent of groundwater flooding using statistical methods of hydrograph classification and lumped parameter models, Hydrol. Process., 25, 1949–1963, 2011.