Articles | Volume 28, issue 22
https://doi.org/10.5194/hess-28-5133-2024
https://doi.org/10.5194/hess-28-5133-2024
Research article
 | 
28 Nov 2024
Research article |  | 28 Nov 2024

On the cause of large daily river flow fluctuations in the Mekong River

Khosro Morovati, Keer Zhang, Lidi Shi, Yadu Pokhrel, Maozhou Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian

Related authors

Disrupted Flow Memory and Synchrony in the Mekong River under Dam Regulation and Climate Change: Implications for Tonle Sap Reverse Flow
Khosro Morovati, Hongling Zhao, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2025-3472,https://doi.org/10.5194/egusphere-2025-3472, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary

Cited articles

Burbano, M., Shin, S., Nguyen, K., and Pokhrel, Y.: Hydrologic changes, dam construction, and the shift in dietary protein in the Lower Mekong River Basin, J. Hydrol., 581, 124454, https://doi.org/10.1016/j.jhydrol.2019.124454, 2020. 
CGIAR CSI: SRTM Data, CGIAR CSI [data set], https://srtm.csi.cgiar.org/srtmdata/, last access: 26 November 2024. 
Chen, A., Liu, J., Kummu, M., Varis, O., Tang, Q., Mao, G., and Chen, D.: Multidecadal variability of the Tonle Sap Lake flood pulse regime, Hydrol. Process., 35, e14327, https://doi.org/10.1002/hyp.14327, 2021. 
Chua, S. D. X., Lu, X. X., Oeurng, C., Sok, T., and Grundy-Warr, C.: Drastic decline of flood pulse in the Cambodian floodplains (Mekong River and Tonle Sap system), Hydrol. Earth Syst. Sci., 26, 609–625, https://doi.org/10.5194/hess-26-609-2022, 2022. 
Cochrane, T. A., Arias, M. E., and Piman, T.: Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system, Hydrol. Earth Syst. Sci., 18, 4529–4541, https://doi.org/10.5194/hess-18-4529-2014, 2014. 
Download
Short summary

This study examines large daily river flow fluctuations in the dammed Mekong River, developing integrated 3D hydrodynamic and response time models alongside a hydrological model with an embedded reservoir module. This approach allows estimation of travel times between hydrological stations and contributions of subbasins and upstream regions. Findings show a power correlation between upstream discharge and travel time, and significant fluctuations occurred even before dam construction.

 
 
Share