Articles | Volume 28, issue 3
https://doi.org/10.5194/hess-28-505-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-505-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Incorporating interpretation uncertainties from deterministic 3D hydrostratigraphic models in groundwater models
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, 1350, Denmark
Rasmus Bødker Madsen
Geological Survey of Denmark and Greenland, Land and Marine Geology, Aarhus, 8000, Denmark
Torben O. Sonnenborg
Geological Survey of Denmark and Greenland, Hydrology, Copenhagen, 1350, Denmark
Lærke Therese Andersen
Geological Survey of Denmark and Greenland, Land and Marine Geology, Aarhus, 8000, Denmark
Peter B. E. Sandersen
Geological Survey of Denmark and Greenland, Land and Marine Geology, Aarhus, 8000, Denmark
Jacob Kidmose
Geological Survey of Denmark and Greenland, Hydrology, Copenhagen, 1350, Denmark
Ingelise Møller
Geological Survey of Denmark and Greenland, Land and Marine Geology, Aarhus, 8000, Denmark
Thomas Mejer Hansen
Department of Geoscience, University of Aarhus, Aarhus, 8000, Denmark
Karsten Høgh Jensen
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, 1350, Denmark
Anne-Sophie Høyer
Geological Survey of Denmark and Greenland, Land and Marine Geology, Aarhus, 8000, Denmark
Related authors
No articles found.
Liming Guo, Thomas Hermans, Nicolas Benoit, David Dudal, Ellen Van De Vijver, Rasmus Madsen, Jesper Nørgaard, and Wouter Deleersnyder
EGUsphere, https://doi.org/10.5194/egusphere-2025-3160, https://doi.org/10.5194/egusphere-2025-3160, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Understanding what lies beneath the ground is often difficult due to limited drilling data. Our research combines geostatistical method with large-scale geophysical surveys to create more realistic underground maps. We developed a method that merges both data sources to better predict underground layers, helping improve decisions in groundwater management and future geological studies.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023, https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary
Short summary
The study explores the effect of Anthropocene geology and the computational grid size on the simulation of shallow urban groundwater. Many cities are facing challenges with high groundwater levels close to the surface, yet urban planning and development seldom consider its impact on the groundwater resource. This study illustrates that the urban subsurface infrastructure significantly affects the groundwater flow paths and the residence time of shallow urban groundwater.
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Rasmus Bødker Madsen, Hyojin Kim, Anders Juhl Kallesøe, Peter B. E. Sandersen, Troels Norvin Vilhelmsen, Thomas Mejer Hansen, Anders Vest Christiansen, Ingelise Møller, and Birgitte Hansen
Hydrol. Earth Syst. Sci., 25, 2759–2787, https://doi.org/10.5194/hess-25-2759-2021, https://doi.org/10.5194/hess-25-2759-2021, 2021
Short summary
Short summary
The protection of subsurface aquifers from contamination is an ongoing environmental challenge. Some areas of the underground have a natural capacity for reducing contaminants. In this research these areas are mapped in 3D along with information about, e.g., sand and clay, which indicates whether contaminated water from the surface will travel through these areas. This mapping technique will be fundamental for more reliable risk assessment in water quality protection.
Cited articles
Andersen, L. T. and Sandersen, P. B. E.: GeoConcept – 3D hydrostratigrafisk lagmodel for Egebjerg (GEUS report 2020/59), 64 pp., https://doi.org/10.22008/gpub/34556, 2020.
Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., and Fienen, M. N.: Scripting MODFLOW Model Development Using Python and FloPy, Groundwater, 54, 733–739, https://doi.org/10.1111/gwat.12413, 2016.
Barfod, A. A. S., Vilhelmsen, T. N., Jørgensen, F., Christiansen, A. V., Høyer, A.-S., Straubhaar, J., and Møller, I.: Contributions to uncertainty related to hydrostratigraphic modeling using multiple-point statistics, Hydrol. Earth Syst. Sci., 22, 5485–5508, https://doi.org/10.5194/hess-22-5485-2018, 2018.
Benoit, N., Marcotte, D., and Molson, J.: Stochastic correlated hydraulic conductivity tensor calibration using gradual deformation, J. Hydrol., 594, 125880, https://doi.org/10.1016/j.jhydrol.2020.125880, 2021.
Beven, K. J. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Christiansen, A. V. and Auken, E.: A global measure for depth of investigation, Geophysics, 77, 4, https://doi.org/10.1190/geo2011-0393.1, 2012.
Curtis, A.: The science of subjectivity, Geology, 40, 95–96, https://doi.org/10.1130/focus012012.1, 2012.
Danielsen, J. E., Auken, E., Jørgensen, F., Søndergaard, V. H., and Sørensen, K. I.: The application of the transient electromagnetic method in hydrogeophysical surveys, J. Appl. Geophys., 53, 181–198, 2003.
Enemark, T., Andersen, L. T., Høyer, A.-S., Jensen, K. H., Kidmose, J., Sandersen, P. B. E., and Sonnenborg, T. O.: The influence of layer and voxel geological modelling strategy on groundwater modelling results, Hydrogeol. J., 30, 617–635, https://doi.org/10.1007/s10040-021-02442-9, 2022.
Feyen, L. and Caers, J.: Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations, Adv. Water Resour., 29, 912–929, https://doi.org/10.1016/j.advwatres.2005.08.002, 2006.
GeoScene3D: http://www.geoscene3d.com, last access: 16 March 2023.
Hansen, B., Sonnenborg, T. O., Møller, I., Bernth, J. D., Høyer, A. S., Rasmussen, P., Sandersen, P. B. E., and Jørgensen, F.: Nitrate vulnerability assessment of aquifers, Environ. Earth Sci., 75, 999, https://doi.org/10.1007/s12665-016-5767-2, 2016.
Harrar, W. G., Sonnenborg, T. O., and Henriksen, H. J.: Capture zone, travel time, and solute-transport predictions using inverse modeling and different geological models, Hydrogeol. J., 11, 536–548, https://doi.org/10.1007/s10040-003-0276-2, 2003.
He, X., Sonnenborg, T. O., Jørgensen, F., Høyer, A.-S., Møller, R. R., and Jensen, K. H.: Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time, Hydrol. Earth Syst. Sci., 17, 3245–3260, https://doi.org/10.5194/hess-17-3245-2013, 2013.
Henriksen, H. J., Troldborg, L., Sonnenborg, T., Højberg, A. L., Stisen, S., Kidmose, J. B., and Refsgaard, J. C.: Hydrologisk geovejledning: God praksis i hydrologisk modellering, GEUS, 130 pp., https://doi.org/10.22008/gpub/38284, 2017 (in Danish).
Hermans, T., Goderniaux, P., Jougnot, D., Fleckenstein, J. H., Brunner, P., Nguyen, F., Linde, N., Huisman, J. A., Bour, O., Lopez Alvis, J., Hoffmann, R., Palacios, A., Cooke, A.-K., Pardo-Álvarez, Á., Blazevic, L., Pouladi, B., Haruzi, P., Fernandez Visentini, A., Nogueira, G. E. H., Tirado-Conde, J., Looms, M. C., Kenshilikova, M., Davy, P., and Le Borgne, T.: Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology, Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, 2023.
Hills, R. G. and Wierenga, P. J.: INTRAVAL Phase II Model Testing at the Las Cruces Trench Site, NUREG/CR-6063, https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/intraval2wg1.pdf (last access: 22 January 2024), 1994.
Højberg, A. L. and Refsgaard, J. C.: Model uncertainty – parameter uncertainty versus conceptual models, Water Sci. Technol., 52, 177–186, 2005.
Høyer, A.-S., Jørgensen, F., Lykke-Andersen, H., and Christiansen, A. V.: Iterative modelling of AEM data based on a priori information from seismic and borehole data, Near Surf. Geophys., 12, 635–650, 2014.
Høyer, A.-S., Jørgensen, F., Sandersen, P. B. E., Viezzoli, A., and Møller, I.: 3D geological modelling of a complex buried-valley network delineated from borehole and AEM data, J. Appl. Geophys., 122, 94–102, https://doi.org/10.1016/j.jappgeo.2015.09.004, 2015.
Høyer, A.-S., Vignoli, G., Hansen, T. M., Vu, L. T., Keefer, D. A., and Jørgensen, F.: Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies, Hydrol. Earth Syst. Sci., 21, 6069–6089, https://doi.org/10.5194/hess-21-6069-2017, 2017.
Høyer, A.-S., Klint, K. E. S., Fiandaca, G., Maurya, P. K., Christiansen, A. V., Balbarini, N., Bjerg, P. L., Hansen, T. B., and Møller, I.: Development of a high-resolution 3D geological model for landfill leachate risk assessment, Eng. Geol., 249, 45–59, https://doi.org/10.1016/j.enggeo.2018.12.015, 2019.
Høyer, A.-S., Sandersen, P. B. E., Andersen, L. T., Madsen, R. B., Mortensen, M. H., and Møller, I.: Uncertainty Assessments in 3D Geological Modelling of Complex Unconsolidated Sediments – with Emphasis on Handling Subjectivity in the Entire Workflow, https://doi.org/10.2139/ssrn.4444386, 2023.
Huysmans, M. and Dassargues, A.: Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium), Hydrogeol. J., 17, 1901–1911, https://doi.org/10.1007/s10040-009-0495-2, 2009.
Iversen, C. H., Lauritsen, L. U., Nyholm, T., and Kürstein, J.: Geo-Vejledning 2: Udpegning af indvindings- og grundvandsdannende oplande (Del 1) – Vejledning i oplandsberegninger i forbindelse med den nationale grundvandskortlægning, GEUS Special Publication, Copenhagen, Denmark, 1–105 pp., https://doi.org/10.22008/gpub/43084, 2009 (in Danish).
Jørgensen, F., Møller, R. R., Sandersen, P. B. E., and Nebel, L.: 3-D Geological Modelling of the Egebjerg Area, Denmark, Based on Hydrogeophysical Data, Geol. Surv. Den. Greenl., 20, 27–30, https://doi.org/10.34194/geusb.v20.4892, 2010.
Jørgensen, F., Møller, R. R., Nebel, L., Jensen, N. P., Christiansen, A. V., and Sandersen, P. B. E.: A method for cognitive 3D geological voxel modelling of AEM data, B. Eng. Geol. Environ., 72, 421–432, https://doi.org/10.1007/s10064-013-0487-2, 2013.
Journel, A. and Zhang, T.: The necessity of a multiple-point prior model, Math. Geol., 38, 591–610, https://doi.org/10.1007/s11004-006-9031-2, 2006.
Li, Z., Wang, X., Wang, H., and Liang, R. Y.: Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field, Eng. Geol., 201, 106–122, 2016.
Madsen, R. B., Kim, H., Kallesøe, A. J., Sandersen, P. B. E., Vilhelmsen, T. N., Hansen, T. M., Christiansen, A. V., Møller, I., and Hansen, B.: 3D multiple-point geostatistical simulation of joint subsurface redox and geological architectures, Hydrol. Earth Syst. Sci., 25, 2759–2787, https://doi.org/10.5194/hess-25-2759-2021, 2021.
Madsen, R. B., Høyer, A. S., Andersen, L. T., Møller, I., and Hansen, T. M.: Geology-driven modeling: A new probabilistic approach for incorporating uncertain geological interpretations in 3D geological modeling, Eng. Geol., 309, 106833, https://doi.org/10.1016/j.enggeo.2022.106833, 2022.
Madsen, R. B.: Replication Data for: “Incorporating interpretation uncertainties from deterministic 3D hydrostratigraphic models in groundwater models” – (https://doi.org/10.5194/hess-2023-74)), Dataverse [data set] https://doi.org/10.22008/FK2/EA0OET, 2023.
Mariethoz, G. and Caers, J.: Multiple-point geostatistics: Stochastic modeling with training images, 1st edn., John Wiley & Sons, 360 pp., https://doi.org/10.1002/9781118662953, 2015.
Moore, C. and Doherty, J.: Role of the calibration process in reducing model predictive error, Water Resour. Res., 41, 1–14, https://doi.org/10.1029/2004WR003501, 2005.
Neuman, S. P. and Wierenga, P. J.: A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites, NUREG/CR-6805, 311 pp., https://www.nrc.gov/docs/ML0324/ML032470827.pdf (last access: 22 January 2024), 2003.
Niswonger, R. G., Panday, S., and Motomu, I.: MODFLOW-NWT, A Newton Formulation for MODFLOW-2005, U.S. Geological Survey Techniques and Methods 6-A37, MODFLOW-NWT, 44 pp. https://doi.org/10.3133/tm6A37, 2011.
Poeter, E. and Anderson, D.: Multimodel ranking and inference in ground water modeling, Ground Water, 43, 597–605, https://doi.org/10.1111/j.1745-6584.2005.0061.x, 2005.
Pollock, D. W.: User Guide for MODPATH Version 6 – A Particle-Tracking Model for MODFLOW: U.S. Geological Survey Techniques and Methods 6-A41, 58 pp., https://doi.org/10.3133/tm6A41, 2012.
Refsgaard, J. C., van der Sluijs, J. P., Brown, J., and van der Keur, P.: A framework for dealing with uncertainty due to model structure error, Adv. Water Resour., 29, 1586–1597, https://doi.org/10.1016/j.advwatres.2005.11.013, 2006.
Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., and Troldborg, L.: Review of strategies for handling geological uncertainty in groundwater flow and transport modeling, Adv. Water Resour., 36, 36–50, https://doi.org/10.1016/j.advwatres.2011.04.006, 2012.
Rojas, R., Batelaan, O., Feyen, L., and Dassargues, A.: Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal – North Chile, Hydrol. Earth Syst. Sci., 14, 171–192, https://doi.org/10.5194/hess-14-171-2010, 2010.
Royse, K. R.: Combining numerical and cognitive 3D modelling approaches in order to determine the structure of the Chalk in the London Basin, Comput. Geosci., 36, 500–511, https://doi.org/10.1016/j.cageo.2009.10.001, 2010.
Sandersen, P. B. E.: Uncertainty assessment of geological models – A qualitative approach, IAHS-AISH Publ., 345–349, 2008.
Sandersen, P. B. E. and Jørgensen, F.: Kortlægning af begravede dale i Danmark (Mapping of Buried Valleys in Denmark), Opdatering 2015 (Update 2015), Vol. 1 and 2, GEUS Special Publication, Copenhagen, Denmark, ISBN 978-87-7871-451-0, 2016 (in Danish).
Sandersen, P. B. E., Jørgensen, F., Kallesøe, A. J., and Møller, I.: Geo-vejledning 2018/1 – Opstilling af geologiske modeller til grundvandsmodellering, GEUS Special Publication, Copenhagen, Denmark, 1–224 pp., https://doi.org/10.22008/gpub/38283, 2018 (in Danish).
Seifert, D., Sonnenborg, T. O., Refsgaard, J. C., Højberg, A. L., and Troldborg, L.: Assessment of hydrological model predictive ability given multiple conceptual geological models, Water Resour. Res., 48, 1–16, https://doi.org/10.1029/2011WR011149, 2012.
Stafleu, J., Maljers, D., Gunnink, J. L., Menkovic, A., and Busschers, F. S.: 3D modelling of the shallow subsurface of Zeeland, the Netherlands, Geol. en Mijnbouw/Netherlands J. Geosci., 90, 293–310, https://doi.org/10.1017/S0016774600000597, 2011.
Thibaut, R., Laloy, E., and Hermans, T.: A new framework for experimental design using Bayesian Evidential Learning: The case of wellhead protection area, J. Hydrol., 603, 126903, https://doi.org/10.1016/j.jhydrol.2021.126903, 2021.
Troldborg, L., Refsgaard, J. C., Jensen, K. H., and Engesgaard, P.: The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system, Hydrogeol. J., 15, 843–860, https://doi.org/10.1007/s10040-007-0192-y, 2007.
Troldborg, L., Ondracek, M., Koch, J., Kidmose, J., and Refsgaard, J. C.: Quantifying stratigraphic uncertainty in groundwater modelling for infrastructure design, Hydrogeol. J., 29, 1075–1089, https://doi.org/10.1007/s10040-021-02303-5, 2021.
Viezzoli, A., Jørgensen, F., and Sørensen, C.: Flawed Processing of Airborne EM Data Affecting Hydrogeological Interpretation, Groundwater, 51, 191–202, https://doi.org/10.1111/j.1745-6584.2012.00958.x, 2013.
Vignoli, G., Fiandaca, G., Christiansen, A. V., Kirkegaard, C., and Auken, E.: Sharp spatially constrained inversion with applications to transient electromagnetic data, Geophys. Prospect., 63, 243–255, 2015.
Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson, B. A.: Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?, Stoch. Environ. Res. Risk Assess., 23, 1011–1026, https://doi.org/10.1007/s00477-008-0274-y, 2009.
Wellmann, F. and Caumon, G.: 3-D Structural Geological Models: Concepts, Methods, and Uncertainties, Adv. Geophys., 59, 1–121, https://doi.org/10.1016/bs.agph.2018.09.001, 2018.
Zhang, J. Z., Huang, H. W., Zhang, D. M., Phoon, K. K., Liu, Z. Q., and Tang, C.: Quantitative evaluation of geological uncertainty and its influence on tunnel structural performance using improved coupled Markov chain, Acta Geotech., 16, 3709–3724, 2021.
Short summary
In this study, we demonstrate an approach to evaluate the interpretation uncertainty within a manually interpreted geological model in a groundwater model. Using qualitative estimates of uncertainties, several geological realizations are developed and implemented in groundwater models. We confirm existing evidence that if the conceptual model is well defined, interpretation uncertainties within the conceptual model have limited impact on groundwater model predictions.
In this study, we demonstrate an approach to evaluate the interpretation uncertainty within a...