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Abstract. Many 3D hydrostratigraphic models of the sub-
surface are interpreted as deterministic models, where an ex-
perienced modeler combines relevant geophysical and geo-
logical information with background geological knowledge.
Depending on the quality of the information from the input
data, the interpretation phase will typically be accompanied
by an estimated qualitative interpretation uncertainty. Given
the qualitative nature of uncertainty, it is difficult to propa-
gate the uncertainty to groundwater models. In this study, a
stochastic-simulation-based methodology to characterize in-
terpretation uncertainty within a manual-interpretation-based
layer model is applied in a groundwater modeling setting.
Three scenarios with different levels of interpretation uncer-
tainty are generated, and three locations representing differ-
ent geological structures are analyzed in the models. The im-
pact of interpretation uncertainty on predictions of capture
zone area and median travel time is compared to the im-
pact of parameter uncertainty in the groundwater model. The
main result is that in areas with thick and large aquifers and
low geological uncertainty, the impact of interpretation un-
certainty is negligible compared to the hydrogeological pa-
rameterization, while it may introduce a significant contribu-
tion in areas with thinner and smaller aquifers with high ge-
ologic uncertainty. The influence of the interpretation uncer-
tainties is thus dependent on the geological setting as well as
the confidence of the interpreter. In areas with thick aquifers,
this study confirms existing evidence that if the conceptual
model is well defined, interpretation uncertainties within the

conceptual model have limited impact on groundwater model
predictions.

1 Introduction

Hydrostratigraphic models are the backbone of a groundwa-
ter model. They define the physical structure and the param-
eter zonation according to which the movement of water,
storage and solute transport take place in the groundwater
model. A hydrostratigraphic model is subject to uncertainty,
and it is well known that it is a large source of uncertainty in
groundwater model predictions (e.g., Huysmans and Dassar-
gues, 2009; Moore and Doherty, 2005; Troldborg et al., 2007;
Poeter and Anderson, 2005). Characterizing these uncertain-
ties is important as it can provide decision-makers with in-
formation about the accuracy of model predictions, and this
has been the subject of numerous studies (e.g., Barfod et al.,
2018; Feyen and Caers, 2006; Li et al., 2016; Zhang et al.,
2021).

Generally, hydrostratigraphic modeling can be divided
into two main groups in which uncertainties are char-
acterized differently: interpretation-based approaches and
geostatistical approaches. In the interpretation-based ap-
proaches, a single deterministic geological or hydrostrati-
graphic model is constructed manually through the modeler’s
co-interpretation of all available data (e.g., Høyer et al., 2015;
Jørgensen et al., 2013; Royse, 2010). The resulting model is
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viewed as the “best possible” representation of the subsur-
face given the available data and information. The main ad-
vantage of such a model is that it is directly based on ex-
pert knowledge, thereby ensuring geological realism. This
has traditionally been the favored method for producing geo-
logical models. However, a common criticism is that both the
final hydrostratigraphic model and the interpretation uncer-
tainties are inherently subjective and biased in nature (Well-
mann and Caumon, 2018). In contrast, it has also been argued
that if a proper description of the subjective information is
provided, the subjective element becomes a strength rather
than a weakness (Curtis, 2012).

In geostatistical simulation approaches, multiple realiza-
tions are generated in order to represent a span of “equally
possible” models of the subsurface (e.g., Høyer et al., 2017;
Madsen et al., 2021; Mariethoz and Caers, 2015; Stafleu et
al., 2011) and thus account for the inherent uncertainty of the
geological model. Based on a set of assumptions, the equally
possible models are generated automatically to represent the
unstructured uncertainty within the conceptual model. Geo-
statistical simulations have been used in a number of studies
to analyze the effects of combined geological and parame-
ter uncertainty in relation to groundwater modeling (e.g., He
et al., 2013; Refsgaard et al., 2012), just like other studies
have focused on how the groundwater modeling can be op-
timized when simulating both hydrostratigraphic units and
hydraulic conductivity uncertainty (e.g., Benoit et al., 2021).
As the uncertainty modeling is already well established and a
more natural consequence of geostatistical modeling, this pa-
per aims at addressing the issue that the interpretation models
lack a clear way to characterize uncertainties quantitatively.

In the interpretation-based geological models, a qualita-
tive measure of uncertainty may be assigned to each inter-
pretation point by the modeler. These uncertainties are based
on several factors related both to the geological interpreta-
tion and the data (data type, resolution, density, and qual-
ity) (Høyer et al., 2023; Sandersen et al., 2018). Due to the
qualitative and subjective nature of the uncertainty measure,
which is related to the perceived uncertainty of the geologist
when producing the deterministic interpretation model, this
information has previously been lost and, hence, not incor-
porated in subsequent modeling, such as groundwater mod-
eling. Thus, the uncertainties have only been discussed qual-
itatively when the purpose of the model requires it; for in-
stance, in relation to landfill leachate risk assessment (Høyer
et al., 2019) or groundwater vulnerability mapping (Hansen
et al., 2016; Sandersen, 2008).

One attempt to consider the uncertainties of the manual in-
terpretation models focus on the uncertainties related to the
difference in conceptual geological understanding between
different modelers. To consider this, some studies have en-
gaged multiple teams of geological modelers to interpret the
same data with an unknown conceptual model to come up
with what they believe is the most likely model (e.g., Har-
rar et al., 2003; Hills and Wierenga, 1994; Refsgaard et al.,

2006; Seifert et al., 2012). This approach is not widely ap-
plied as it is labor intensive and it is difficult to analyze the
resulting uncertainty captured through the multiple models.

However, recently, approaches have been developed that
transform the qualitative uncertainties of an interpretation-
based hydrostratigraphic model into an ensemble of differ-
ent realizations of the subsurface configuration through geo-
statistical simulation. In Troldborg et al. (2021), borehole
interpretations were perturbed by assuming a normal dis-
tribution with a standard deviation reflecting a predefined
groupwise uncertainty. Different sequential Gaussian simula-
tion (SGS) realizations were generated by conditioning them
on different perturbed borehole interpretations. The realiza-
tions were applied in an impact assessment of sheet piles on
the water table. Further, Madsen et al. (2022) presented the
geology-driven modeling approach, where a deterministic-
interpretation-based hydrostratigraphic model can be trans-
formed into a set of hydrostratigraphic realizations through
SGS and interpretation uncertainties defined by the inter-
preter. The underlying probability distributions used in the
SGS are inferred using a likelihood function, as opposed to
the variogram-based modeling of Troldborg et al. (2021),
which enables correlated effects of the interpretation uncer-
tainty to be considered.

In this study, the method of Madsen et al. (2022) is im-
plemented in a groundwater modeling context for an area
in central Denmark. The interpretation-based hydrostrati-
graphic model is based on information from boreholes, air-
borne electromagnetic data and geoelectrical data (Enemark
et al., 2022; Madsen et al., 2022). To our knowledge, the in-
terpretation uncertainty for all layer boundaries in a manual-
interpretation-based model has never been analyzed system-
atically in a groundwater model. Specifically, the influence of
interpretation uncertainty on groundwater model predictions
is evaluated in terms of the extent of the capture zones and the
median travel times of water. The investigation is performed
for three well fields in the study area that represent differ-
ent geological structures and different levels of uncertainty.
Three scenarios with diverse levels of uncertainty are investi-
gated, ranging from an overconfident interpreter to a cautious
one. Overconfident interpreters will generally assign low un-
certainties to their interpretations, while the opposite is the
case for cautious interpreters. Because the resulting ground-
water models are affected by uncertainties in both the hy-
drostratigraphic and hydrological domains, the overall effect
and significance of propagating the interpretation uncertain-
ties are compared to uncertainties in the parameters of the
groundwater model, such as hydraulic conductivity.
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2 Study area

2.1 Hydrological and geological setting

The study area covers 127 km2 and is located just north of
Horsens Fjord in Jutland, Denmark (Fig. 1). The catchment
is delineated by a topography that ranges from 170 m above
sea level (m a.s.l.) in the north to 0 m a.s.l. at the fjord. Ap-
proximately 2.7 M m3 yr−1 of groundwater are abstracted for
drinking water from 20 different well fields within the study
area. The groundwater system is restricted to the geologi-
cal succession above the Paleogene clay, which is assumed
to be impermeable and has a large thickness apart from areas
where deep-buried valleys are eroded into the Paleogene clay.
In parts of the model area, erosional remnants of Miocene
sand, silt and clay exist on the plateaus, although the Pa-
leogene clay is directly overlaid by Quaternary deposits in
most of the area. The Quaternary succession is influenced by
glacial erosion, and both glaciotectonics and multiple cross-
cutting buried valleys have previously been mapped (Fig. 1;
Jørgensen et al., 2010; Sandersen and Jørgensen, 2016). The
Quaternary deposits consist of glacial and interglacial de-
posits of till, meltwater clay and sand, freshwater clay, sand
and gyttja.

A deterministic and manually interpreted hydrostrati-
graphic model has been constructed for the area (Andersen
and Sandersen, 2020), following the national guidelines de-
scribed in Sandersen et al. (2018). The manual modeling is
performed in the geological modeling software Geoscene3D
(GeoScene3D, 2023) along a grid of fixed interpretation pro-
files placed such that they cross important geological struc-
tures and data. Three of these interpretation profiles are
shown in Fig. 2. The figure shows the interpretation points
together with the gridded layer surfaces and borehole data
within a buffer of 50 m of the profile. Each of the layers in
the manual model is constituted by a top and a bottom 2D
surface.

Interpretation points were manually placed along the in-
terpretation profiles. The aim was an even spacing of a few
hundred meters between points but a closer spacing in ar-
eas with marked variations. Subsequently, the layers were in-
terpolated using kriging with adjusted semivariograms ded-
icated to each surface. To ensure that surfaces do not cross,
they were adjusted using a dedicated tool in the modeling
software after the gridding. The modeler set up rules of suc-
cession based on the erosional and depositional setting. Each
interpretation point was attributed a qualitative uncertainty
measure during the interpretation process, as shown with
color-coded horizontal ovals in Fig. 2. The categories were
defined as follows:

– Category 1: points with the most certain interpretation;
these are typically related to high-quality borehole in-
formation

– Category 2: points for which the interpretation is cer-
tain; these are based on good-quality geophysical data
and/or data obtained close to a borehole

– Category 3: points with intermediate uncertainty; these
are based on geophysical or borehole data of less good
quality or ambiguous information

– Category 4: uncertain information; this is based on the
interpretation of data of poor quality, extrapolated data,
or no data at all.

In the rest of this paper, the deterministic, manually gener-
ated, interpretation-based layered hydrostratigraphic model
(Andersen and Sandersen, 2020) will be referred to as the
manual interpretation model.

The manual interpretation model covers five pre-
Quaternary layers and nine Quaternary layers. The pre-
Quaternary layers consist of limestone, Paleogene clay, lower
Miocene clay, Miocene sand, and upper Miocene clay. The
Quaternary layers are divided into alternating clay and sand
layers. The lowermost Quaternary layers are exclusively in-
terpreted as valley infill deposits, whereas the upper Quater-
nary layers exist throughout the modeled area. The hydros-
tratigraphic model was constructed to focus on the hydrolog-
ical properties of the deposits and does not distinguish be-
tween lithologies deposited in different geological environ-
ments, such as meltwater clay and clay till deposits.

2.2 Selected investigation sites

The study concentrates on two well fields in the area, Højbal-
legård and Hovedgård, and a synthetic well field (see Fig. 1).
The two real well fields (Højballegård and Hovedgård) were
chosen because they represent different geological structures
from which water is abstracted. The synthetic well field does
not exist in the real world but was introduced into the anal-
ysis to represent an area with low data availability and thus
a higher level of geological uncertainty. In the following, the
geology and hydrostratigraphy of the three areas are summa-
rized based on details described in previous studies (Ander-
sen and Sandersen, 2020; Enemark et al., 2022; Madsen et
al., 2022).

2.2.1 Højballegård well field

Højballegård well field, with 17 abstraction wells, is situated
in the central part of the catchment (Fig. 1) and is the largest
well field in the area, responsible for 87 % of the ground-
water abstraction. The water is abstracted from a deep SW–
NE-oriented buried valley structure that shows widths of up
to 2 km and depths of up to 220 m. According to the bore-
hole information, the valley infill deposits are relatively com-
plex, with varying deposits of glacial origin, including melt-
water sand, meltwater clay and clay till as well as thick oc-
currences of interglacial clay, sand and gyttja. In the man-
ual interpretation model (Fig. 2a), the valley infill is divided
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Figure 1. Locations of the catchment, water abstraction wells, main rivers, glacial tectonics, buried valleys, profiles shown in Figs. 2, 5 and
6, and areas and zoom extents used in Figs. 9 and 10.

into Quaternary sand and clay. The groundwater at Højbal-
legård is abstracted from two different Quaternary sand lay-
ers (see the arrows in Fig. 2) separated by a clayey aquitard.
In the model, the upper abstraction layer groups the meltwa-
ter sand deposited as valley infill and the Quaternary sand on
the plateaus and can therefore serve as a hydraulic connec-
tion between the plateaus and the valley. The layer is later-
ally extensive (Fig. 2a, profile distance 2–8.5 km) and has a
varying but usually substantial thickness (around 30 m at the
well field). The lower abstraction layer is dedicated valley in-
fill sand and is thus solely present in the buried valleys, with
a thickness of about 40 m around the well field.

2.2.2 Hovedgård well field

Hovedgård well field is situated in the northeastern part of the
catchment (Fig. 1) and is a small well field with four wells
responsible for 3 % of the water abstraction in the area. The
well field is located on the western flank of a SSW–NNE-
oriented buried valley (Fig. 2b). The valley is up to 3 km
wide but only 120 m deep. The valley infill at Hovedgård
is less well described compared to Højballegård well field,
with many lithological descriptions only indicating the lithol-
ogy (sand or clay) rather than the depositional environment.
According to the manual interpretation model (Fig. 2b), the

valley infill is characterized by thin alternating layers of sand
and clay. Water at Hovedgård well field is abstracted from
deep sand layers (see the arrows in Fig. 2) modeled as val-
ley infill. The abstraction layers are therefore restricted to the
area of the buried valley and only locally present in the north-
ern and southern parts of the valley.

2.2.3 Synthetic well field

To simulate the response of the models in an area with larger
uncertainty, a synthetic well field was included in the south-
eastern part of the model area, with an appropriate distance
to the boundaries of the groundwater model (Fig. 1). Here,
the data are relatively sparse, and the interpretation points
are generally assigned high uncertainties. In the groundwa-
ter model water is abstracted from the Miocene sand layer
and is set to the same rate as for Hovedgård well field. At
this location, the Miocene sand is interpreted to be relatively
thin (10 m) (Fig. 2c). The Miocene layers are interpreted to
dip towards the south due to the deep-seated fault structure
in the southernmost part of the area.
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Figure 2. Interpretation profiles through the catchment showing the manual interpretation model with interpretation points and their uncer-
tainty categories. Interpretation points and boreholes within a buffer of 50 m from the profile are shown. (a) Interpretation profile crossing
Højballegård well field. (b) Interpretation profile crossing Hovedgård well field. (c) Interpretation profile closest to the synthetic borehole
(placed 900 m from the profile). The interpolated position of the borehole is marked at the profile. The locations of the profiles are shown in
Fig. 1. The vertical exaggeration is 10×.

3 Methods

The workflow of the paper is summarized in Fig. 3. To evalu-
ate the interpretation uncertainty of an initial interpreted hy-
drostratigraphic model, the hydrostratigraphic model is per-
turbed in three different uncertainty scenarios to produce
50 realizations in each scenario. In a groundwater model

that uses the original interpreted hydrostratigraphic model,
200 parameter realizations are selected in a generalized like-
lihood uncertainty estimation (GLUE) approach. The 200 be-
havioral parameter sets are applied using the hydrostrati-
graphic realizations. In the following, a detailed description
of the methodology is provided.

https://doi.org/10.5194/hess-28-505-2024 Hydrol. Earth Syst. Sci., 28, 505–523, 2024



510 T. Enemark et al.: Incorporating interpretation uncertainties

Figure 3. Summary of the workflow in the current paper.

3.1 Hydrostratigraphic modeling

The geostatistical modeling described in Madsen et al. (2022,
2021) is based on the qualitative uncertainties evaluated at
each interpretation point during manually interpreted hy-
drostratigraphic modeling (Andersen and Sandersen, 2020)
(Sect. 2.1). To apply the methodology, the interpreter must
provide (1) a quantitative estimate of the interpretation point
uncertainty based on the qualitatively evaluated uncertain-
ties and (2) a factor to balance the small-scale variability and
large-scale structures (see Sect. 3.1.2). These preparational
steps are described in the two following sections.

3.1.1 Point uncertainty estimates

In the applied methodology, each of the qualitative uncer-
tainty categories is quantified using a Gaussian distribution,
with the elevations of the interpretation points characterized
by a mean and a standard deviation specified by the inter-
preter. The standard deviation for each uncertainty category
is set to increase proportionally with depth and the resolution
of the geoelectrical and electromagnetic inversion results. In
layers with special properties where depth cannot be used
as a direct proxy for uncertainty, an interpreted value is pro-
vided manually based on other information. For instance, the
deep-lying Paleogene clay is well resolved with electromag-
netic methods due to its low electrical resistivity, so it has
low interpretation uncertainty in the manual interpretation
model (see, e.g., Danielsen et al., 2003). However, it is essen-
tial to note that, even with this comparatively low interpre-
tation uncertainty at the well-resolved boundary, the chosen
uncertainty level should still reflect the uncertainties related
to the processing and inversion of the geophysical data, es-
pecially as resolution decreases with depth (Madsen et al.,
2022; Viezzoli et al., 2013). Specifically for geoelectrical
models, the depth of investigation (DOI) can be introduced
to help assess the validity of the geophysical model at depth
(Christiansen and Auken, 2012). Below the DOI, it is appro-

priate to assign a high level of uncertainty, even for an appar-
ently well-resolved layer such as the deep-lying Paleogene
clay. Above the DOI, the quantification of standard devia-
tions should factor in the resolution decrease of the inversion
model with depth due to the increasing volume of subsurface
that is being averaged over and the chosen regularization (Vi-
gnoli et al., 2015). Ideally, the standard deviation should also
account for the possibility of inversion equivalences related
to different parameterizations of the inversion scheme (Høyer
et al., 2014).

3.1.2 Balancing small-scale variability and large-scale
structures

The spatial variability between interpretation points is quan-
tified by extracting (1) the large-scale structures of the inter-
pretation points in a low-frequency (LF) model and (2) cap-
turing the small-scale variability of the residuals with a Gaus-
sian distribution. As Gaussian simulation rarely leads to a
realistic geology (Journel and Zhang, 2006), this separation
of the point information is introduced in order to improve
the geological realism of the stochastic hydrostratigraphy by
keeping the main geological features intact. In the current
setup, the LF model is obtained by performing linear in-
terpolation between interpretation points and then applying
a smoothing kernel via a sliding window approach on the
interpolated grid. To provide a balance between the small-
scale variability and large-scale structures, the interpreter
must provide a factor ε determining the width of a smooth-
ing kernel used to construct the LF model. Figure 4 illus-
trates the structural input provided in the LF model. In one
extreme, the interpretation model is used directly without ap-
plying any smoothing (Fig. 4a), giving all structural weight
to the interpretation model. In the other extreme, the inter-
pretation model is smoothed such that the LF content merely
becomes the average depths of the layers providing the max-
imal weight to the small-scale variability (Fig. 4c).
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Figure 4. Schematic overview of the effect of applying smoothing to a three-layer interpretation model based on interpretation points to
obtain the overall structures in an LF model. (a) The interpretation model has no smoothing (ε= 0). (b) The interpretation model is smoothed
(0 < ε <∞). (c) The interpretation model is smoothed to a degree that only represents the expected average depth of each layer (ε→∞).
The resulting residuals for each scenario are shown underneath in (d–f).

As the significance of geological features varies across the
modeling domain, the kernel width ε, and hence the level
of smoothing, also varies at different locations. The mod-
eler only provides the base level ε and the kernel width is
then scaled according to the principle of locally assessing
the changes in surface elevations. In a layer-based model,
significant geological characteristics can correspond to sud-
den shifts in interpretation point elevations. These shifts will
not arise through interpolation unless specific interpretation
points are strategically positioned to guide the surface behav-
ior accordingly. Thus, sudden shifts in interpretation point
elevations are a good proxy for geological features that are
worth extracting in the LF model. The variance amongst the
interpretation points within the sliding window is calculated
for the entire surface. If the variance is high, then the mod-
eler has tried to convey large changes in the elevation and
the smoothing becomes low to allow the LF model to follow
these structures. In the other case, a low variance of eleva-
tion amongst the points within the sliding window leads to
more smoothing of the LF model. In many places with a low
variance in elevation, high uncertainty is attributed to the in-
terpretation points by the modeler. We attribute this appar-
ent correlation to the fact that a modeler would likely be un-
willing to make bold structural interpretations in areas where
there are no data to support such claims. Thus, the LF model
will indirectly carry less information in areas with high un-
certainty, which is desirable, although the LF model is based
on the spatial structure of the interpretation points and not
the uncertainty attributed to them.

Once an LF model is established, a statistical model for
the small-scale variability is inferred from the residuals such

that a set of realizations of each boundary can be simulated
using the quantified spatial variability instead of being inter-
polated (as in traditional modeling). Ultimately, it is up to the
modeler to choose a suitable smoothing that keeps important
structural input in the LF model but allows for the desired
spatial variability to be mapped in the residuals (Fig. 4b and
e).

3.1.3 Uncertainty scenarios

In this study, three uncertainty scenarios are developed with
different point uncertainty quantifications, each consisting of
50 realizations of the subsurface. Furthermore, the manual
interpretation model does not serve as the ground truth; it
can be thought of as one possible representation of the sub-
surface. Thus, the trust in the large-scale structures of the in-
terpretation model is also varied between the three scenarios
by varying the applied smoothing factor ε.

First, the uncertainty configuration of Madsen et al. (2022)
is adopted as the medium uncertainty scenario, where
ε = 700 m. Second, a low uncertainty scenario representing
an overconfident interpreter is introduced. To emulate this,
all interpretation uncertainties at point scale are reduced by
a factor of 3 compared to the medium scenario, and the
smoothing factor ε is subsequently decreased by 500 m to
ε = 200 m, thus making the LF model very similar to the in-
terpretation model. Finally, an insecure interpreter that esti-
mates a high degree of uncertainty in his or her interpreta-
tions is introduced. The standard deviations at point scale of
the high scenario are scaled up by a factor of 3, while the
smoothing factor ε is increased by 500 m to ε = 1200 m to
make sure that layers can deviate substantially from the man-
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ual interpretation model. The standard variations assigned to
the different uncertainty scenarios are illustrated in Sect. S3
in the Supplement.

3.2 Groundwater modeling

Applying the same setup as in Enemark et al. (2022), steady-
state MODFLOW-NWT (Niswonger et al., 2011) models are
developed using the Flopy platform (Bakker et al., 2016).
Two outputs of the groundwater model are evaluated: the ex-
tent of the capture zones and the median travel times of water
particles from the water table to the well screen. These pre-
dictions are chosen, as they are not part of the calibration but
will be affected by the calibrated parameter zonation. The
discretization, boundary conditions and parameterization of
the groundwater are described in the following.

3.2.1 Discretization

The horizontal discretization is specified as 100 m by 100 m,
while the vertical discretization is based on the vertical extent
of the hydrostratigraphic units from 165 to−250 m a.s.l.; i.e.,
each hydrostratigraphic realization has a distinct model grid.
By grouping together three plateau sand units, two plateau
clay units, two sand units in the buried valleys and two clay
units in the buried valleys, we get eight hydrostratigraphic
units in the groundwater model. The grouped units have the
same or similar lithological descriptions as in the manual in-
terpretation model but differ in their position in the geologi-
cal sequence. The hydrostratigraphic units are parameterized
by horizontal hydraulic conductivity, vertical anisotropy and
porosity.

3.2.2 Boundary conditions

Using MODFLOW’s Recharge (RCH) package, the recharge
to the water table is represented as a diffusive source – a spec-
ified flux distributed over the top of the model. The well ab-
straction in the model is represented by the Well (WEL) spec-
ified flux package. In all models, regardless of the geometry
of the model grid, the wells are set in the same layer to ensure
model predictions can be compared; i.e., the depths of the
210 abstraction wells may vary between realizations, but the
layer and therefore the lithology will be the same in all mod-
els. The lakes and fjord in the southern part of the model area
are represented by the General Head Boundary (GHB) head-
dependent flux boundary package. To simulate inflows to
streams as well as subsurface tile drains and smaller ditches,
the Drain (DRN) head-dependent flux boundary package is
applied. The flux to the river cells is used as a calibration
target.

3.2.3 Parameterization

Realizations of the parameterization to be used for the indi-
vidual hydrostratigraphic realizations are generated by Latin

hypercube sampling of parameter values within specified
ranges. Five parameters and their prior parameter ranges,
which are sampled, are presented in Table 1. A differentia-
tion between buried valley sand and clay and plateau sand
and clay is introduced, as the buried valley and plateau sed-
iments may have different hydrogeological properties. Uni-
form distributions described by a minimum and a maximum
value are applied, representing prior information on the pa-
rameter values. As the sampled parameters range over sev-
eral orders of magnitude, the sampling was performed from
log-uniform distributions. The remaining parameters are not
subject to sampling and thus have fixed values, as they were
shown to be insensitive in initial runs of the manual interpre-
tation model.

To obtain a range of posterior parameter sets, a gener-
alized likelihood uncertainty estimation (GLUE) approach
(Beven and Binley, 1992) is applied. Applying this approach,
a subset of parameter sets that satisfy a set of predefined
constraints simultaneously is obtained. Using the manual in-
terpretation model, 10 000 realizations are run based on the
prior parameter ranges presented in Table 1. Of these simu-
lations, 200 parameter sets are retained according to the cri-
teria below. Initial model runs in the manual interpretation
model showed that the predictions of interest – the capture
zone area and travel time – do not change significantly after
200 model runs (Sect. S1 in the Supplement). Thresholds for
selected performance metrics based on values in the Danish
groundwater modeling guideline (Henriksen et al., 2017) are
applied. The following thresholds are applied: 0.9 m for the
mean error of hydraulic heads, 5 % for the river observation
error, and 9 m for the root mean square error of hydraulic
heads. Initial model runs showed that the same parameter
values in different uncertainty scenarios attained similar per-
formance. Therefore, these parameter sets were then applied
to the other uncertainty scenarios. The posterior parameter
distributions are presented Sect. S2 in the Supplement.

3.2.4 Particle tracking

Particle tracking simulations are performed using MOD-
PATH 6 (Pollock, 2012). In each topmost active cell, 10 parti-
cles are tracked forward to discharge points, and the particles
that are discharged into the well fields of interest (Sect. 2.2)
are extracted. Initial simulations in Enemark et al. (2022)
showed that the capture zone area stabilizes when around 10
particles are inserted into the upper cells of the layer model
in a layer grid. Only particles with a travel time of less than
200 years are retained, as 200 years is the typical value for
determining capture zone areas in Denmark (Iversen et al.,
2009).
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Table 1. Parameter value ranges and distributions used in the manual interpretation groundwater models. “Kh” refers to the horizontal
hydraulic conductivity, while “cond” refers to conductance.

Parameter Alias Sampling/fixed Minimum Maximum Unit

Kh Quaternary plateau sand Kh QPS Sampling 1 100 m d−1

Kh Quaternary plateau clay Kh QPC Sampling 0.01 2 m d−1

Kh Quaternary valley sand Kh QVS Sampling 1 100 m d−1

Kh Quaternary valley clay Kh QVC Sampling 0.01 2 m d−1

Kh Miocene sand Kh MS Sampling 1 100 m d−1

Kh Miocene clay – Fixed 0.01 m d−1

Kh Paleogene clay – Fixed 0.01 m d−1

Kh Limestone – Fixed 1 m d−1

Drain cond – Fixed 0.05 m2 d−1

General head boundary cond – Fixed 0.05 m2 d−1

River cond – Fixed 5 m2 d−1

Vertical anisotropy – Fixed 3 –
Porosity – Fixed 0.3 –

4 Results

4.1 Hydrostratigraphic model

The quantified boundary uncertainties in four cross sections
around the three well fields are illustrated in Figs. 5 and 6.
The topmost profiles (Figs. 5a, e and 6a, e) show the cross
sections through the manual interpretation model. The three
profiles below illustrate the boundary uncertainties in the
low, medium and high uncertainty scenarios in terms of mode
and entropy. The mode represents the most probable value,
while the entropy is a measure of the uncertainty associated
with the mode. In Figs. 5 and 6, the mode is represented by
the boundaries where the color changes, and the entropy is
superimposed such that the colors become increasingly trans-
parent when the entropy is high (i.e., the uncertainty is high)
and, conversely, the true color is present when the entropy
is zero. Overall, the large differences in interpretation uncer-
tainty between the three uncertainty scenarios manifest as in-
creasingly thick zones of uncertainty around the boundaries
upon going from the low to the medium to the high uncer-
tainty scenario (e.g., the black ellipses in Fig. 6b–d). The
overall conceptual model consists of a thick base of imper-
meable Paleogene clay and alternating layers of Quaternary
clay and sand situated on top and is preserved in all scenar-
ios. If either of these mode models were to be presented as
the sole model to be used for groundwater modeling, it would
be hard to dismiss it as being any less true or useful than
the manual interpretation model. Thus, the important over-
all structures carried over from the LF model are considered
a fair representation of the overall geology, while the inter-
pretation uncertainty at the boundaries is showcased by the
entropy.

In the real well fields (Højballegård and Hovedgård;
Figs. 5 and 6a–d), where the abundance of data and inter-
pretation points is high, the difference in entropy is larger

between the low and medium scenarios than between the
medium and high scenarios. This can be attributed to the
lack of spatial freedom of the layer boundaries, which are
naturally constrained by the sheer number of interpreta-
tion points. In contrast, when the number of interpretation
points is small, as is the case around the synthetic well field
(Fig. 6d–f), increasing or decreasing the uncertainty level has
a significant impact on the resulting hydrostratigraphic real-
izations.

A slight change in mode can be observed between the three
uncertainty scenarios (Figs. 5 and 6), which is a result of
changing the smoothing in the LF model, reflecting a lower
information level. This difference is apparent in regions with
a low density of interpretation points, where the model may
deviate significantly from the manual interpretation model.
For example, in Fig. 6h, the average depiction of Quaternary
sand deposits (red colors) is higher compared to Fig. 6f–g.
However, in areas with high interpretation point density, as
seen around the well in Fig. 5b–h, each uncertainty scenario
has a similar mode model.

In general, borehole information (for which the uncer-
tainty is rather low in all three scenarios) is easily identi-
fied for all three scenarios as vertical parts of the proba-
bilistic model that are associated with low uncertainties near
the layer boundaries of the model (e.g., the white ellipse in
Fig. 5b–d). Despite the lowered uncertainty in these vertical
sections, the trend of a varying uncertainty between the sce-
narios can also be spotted at these locations. All the above-
mentioned observations are in accordance with expectations
regarding the behavior of the model for the three uncertainty
scenarios.

4.2 Groundwater model

In each of the three hydrostratigraphic uncertainty scenarios,
the 50 hydrostratigraphic realizations are run with the same
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Figure 5. Two intersecting cross sections of summary statistics for the hydrostratigraphic model realizations: Højballegård A (a–d) and
Højballegård B (e–h). The locations of the cross sections can be seen in Fig. 1. The intersection between the cross sections is marked with
dotted lines. Abstraction boreholes from the well field are marked with a solid black line, and the inlet filters are marked with a black
rectangle. The colors become increasingly transparent when the entropy is high. (b, f) Summary statistics from the low uncertainty scenario,
(c, g) summary statistics from the medium uncertainty scenario, and (d, h) summary statistics from the high uncertainty scenario. The black
ellipses are examples allowing a comparison of the boundary uncertainties in the three scenarios, and the white ellipse shows an example of
how borehole information lowers the uncertainty at the boundaries.

200 groundwater parameter realizations in the groundwater
model. In the following, the results of the groundwater mod-
els are presented. In the low, medium and high uncertainty
scenarios, respectively, 7 %, 4 % and 3 % of the realizations
did not converge and are therefore not included in the anal-
ysis. In Sect. 4.1 it was observed that the realizations of the
low uncertainty scenario are not necessarily more like that
of the original manual interpretation model than the realiza-
tions of the high uncertainty scenario, which may explain the
difference in the convergence rates. The convergence rate is
likely influenced by the model grid (which is unique for each

realization), as it follows the layer elevations. The model grid
is thereby influenced by the smoothing of the hydrostrati-
graphic model (Fig. 3). The low smoothing of the low uncer-
tainty scenario allows larger changes in layer elevations than
the high smoothing in the high uncertainty scenario does. In
areas where the layers are thin, this may result in a lack of
lateral continuity between adjacent cells, which causes an in-
ability to simulate flow between cells in the same layer. Fur-
ther, at the synthetic well field, the water table falls below the
screen top in 46 %, 6 % and 1 % of the realizations, respec-
tively, in the low, medium and high uncertainty scenarios,
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Figure 6. Two cross sections of summary statistics for the hydrostratigraphic model realizations at Hovedgård (a–d) and the synthetic well
field (e–h). The locations of the profiles can be seen in Fig. 1. Abstraction boreholes from the well fields are marked with a black line,
and the inlet filters are marked with black rectangles. Note that the filter is missing from the cross sections at the synthetic borehole as it
is not fixed in space but placed in the Miocene sand during groundwater modeling. The colors become increasingly transparent when the
entropy is high. (b, f) Summary statistics from the low uncertainty scenario, (c, g) summary statistics from the medium uncertainty scenario,
and (d, h) summary statistics from the high uncertainty scenario. The black ellipses are examples allowing a comparison of the boundary
uncertainties in the three scenarios.

which we will elaborate on in Sect. 4.2.5. These realizations
are excluded from further analyses.

4.2.1 Ensemble performance

The performance of the model realizations in the three un-
certainty scenarios is shown in Fig. 7. The evaluated perfor-
mance metrics consist of the root mean square error (RMS)
and mean error (ME) of the hydraulic head and the river flow
error. The gray area illustrates ranges for the performance
metrics that are beyond the threshold values. In the manual
interpretation model, thresholds have been applied directly to

the performance metrics. In the other uncertainty scenarios,
the same parameters retained from the manual interpretation
model have been applied. For each performance metric, the
range covered by the manual interpretation model is there-
fore the lowest, while it increases with the level of uncer-
tainty introduced into the uncertainty scenario. It is shown
that almost 90 % of the realizations (between the 5th and
95th percentiles) are within the threshold values for the low
and medium scenarios, while this percentage is a bit less for
the high uncertainty scenario. Therefore, the uncertainty as-
sociated with assuming that the same parameter sets are ap-
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plicable for the other hydrostratigraphic realizations is illus-
trated. The simulations from the high uncertainty scenario
have larger ranges of variation for all performance criteria,
while the simulations from the low uncertainty scenario have
smaller variations.

4.2.2 Predictions

A summary of the uncertainties of the groundwater model
predictions is presented in Fig. 8. The mean normalized
standard deviation of the median travel time and the mean
normalized standard deviation of the capture zone area are
shown on the x and y axes, respectively. The mean standard
deviation is a measure of the uncertainty within the predic-
tions; it is normalized to the predictions to enable a compar-
ison between them. To obtain the normalized standard de-
viation, the standard deviation of a parameter or a hydros-
tratigraphic realization (comprising 50 different hydrostrati-
graphic realizations or 200 different parameter realizations,
respectively) is divided by the ensemble mean prediction.
The mean of the normalized standard deviation of the pa-
rameter or hydrostratigraphic ensembles is then calculated.
Marginal predictions are shown for the hydrostratigraphic re-
alizations (orange) and parameter realizations (blue). Also,
the three well fields are shown with different marker types
and the three uncertainty scenarios are shown with different
marker sizes in Fig. 8.

At least three effects can be observed in Fig. 8. First,
upon comparing the parameter and hydrostratigraphic real-
izations (different marker colors), the parameter uncertainty
is seen to introduce a higher mean normalized standard de-
viation than the hydrostratigraphic interpretation uncertainty.
This is except for the synthetic well field, where the uncer-
tainties introduced into the predictions from the parameters
and from the hydrostratigraphy become comparable. Sec-
ond, when comparing the results across well fields (different
marker types), we see that the mean normalized standard de-
viation of Højballegård well field is lower than that of Hov-
edgård well field, which is again lower than that of the syn-
thetic well field. Also, upon comparing the results within the
different uncertainty scenarios, we see that the scenarios with
higher uncertainty generally introduce a higher mean nor-
malized standard deviation for the predictions. Third, when
comparing the results for the synthetic well field (square
markers) to those for the other two well fields (circle and
triangle markers), the difference in the results of the hydros-
tratigraphic realizations between the uncertainty scenarios is
larger in the synthetic well field. Further, the travel time vari-
ance does not increase from the medium to the high uncer-
tainty scenario, which is the case for the other two well fields.
In the following, these three observations will be elaborated.

4.2.3 Hydrostratigraphic vs. parameter realizations

To illustrate the influence of the hydrostratigraphic realiza-
tions on the capture zones, the capture zones in the Højbal-
legård and synthetic well fields for randomly selected real-
izations are presented in Figs. 9 and 10, respectively. The
capture zone areas are shown as probability maps where a
value of 100 % signifies that particles placed in that cell are
captured by the extraction well for all selected realizations.
For each parameter realization (Figs. 9b–e and 10b–e), the
results are based on 50 hydrostratigraphic realizations. For
each hydrostratigraphic realization (Figs. 9g–j and 10g–j),
the results are based on 200 parameter realizations. The cap-
ture zone areas for the manual interpretation model (Figs. 9f
and 10f) and for all realizations (Figs. 9a and 10a) are also
shown for reference.

The results for Højballegård shown in Fig. 9 represent the
low uncertainty scenario. The simulated capture zone areas
for the parameter realizations are dominated by high proba-
bility values, implying that the responses from the hydros-
tratigraphic realizations are similar. Correspondingly, the
capture zone areas of the four hydrostratigraphic realizations
are similar in extent and shape. On the other hand, the extents
covered by the four parameter realizations are more diverse,
illustrating a higher degree of disagreement between the pa-
rameter realizations. This is also seen for the four hydrostrati-
graphic realizations, where large parts of the capture zone
area are dominated by low probabilities. The capture zone
area of the synthetic well field in the high uncertainty sce-
nario (Fig. 10) is at the other end of the spectrum – large parts
of the capture zone area have low probabilities in both the
hydrostratigraphic and parameter realizations. Correspond-
ingly, the extent of the selected realizations covers different
areas for hydrostratigraphic and parameter realizations, indi-
cating that both have a noticeable impact on the extent of the
capture zone area.

4.2.4 Well fields

All capture zone areas in the high uncertainty scenario are
illustrated in Fig. 11. The results for the individual param-
eter realizations are shown in the columns of the matrices
while the hydrostratigraphic realizations are shown in the
rows. In the legend, two endmembers of the expected vari-
ation when the parameter uncertainty dominates and when
the hydrostratigraphic uncertainty dominates are shown. Red
realization numbers correspond to the randomly selected re-
alizations in Fig. 10. The selected realization of Fig. 9 is not
marked here, as it was selected in the low uncertainty sce-
nario. For the Højballegård well field, the matrix has dom-
inant vertical structure, suggesting that the uncertainty is
dominated by parameter uncertainty. In contrast, for the syn-
thetic well field, the hydrostratigraphic realizations exert a
stronger influence on the capture zone area, with no visu-
ally dominant row or column directions. The results for Hov-
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Figure 7. Performance in terms of root mean square error (RMS) and mean error (ME) of the hydraulic head and the river error at the
discharge station of the realizations within the three uncertainty scenarios (low, medium and high) and the manual interpretation (“Manual
Interp”) model. The boxes show the interquartile range between the 25th and 75th percentiles, while the whiskers mark the 5th and 95th
percentiles. The median is indicated by the solid orange line. The manual interpretation scenario consists of 200 parameter realizations,
while the remaining scenarios each consist of the same 200 parameter realizations combined with 50 hydrostratigraphic realizations.

Figure 8. Mean normalized standard deviations of the capture zone
area and median travel time for all uncertainty scenarios (low,
medium and high) and all well fields (Højballegård, Hovedgård and
the synthetic well field). The predictions have been marginalized
on either parameter realizations (orange) or hydrostratigraphic re-
alizations (blue). For the synthetic well field in the low uncertainty
scenario, half of the hydrostratigraphic realizations had to be dis-
carded, and the predictions are therefore placed in parentheses.

edgård well field are in between those for the other two well
fields.

Figure 2 illustrates the density of each interpretation point
category in each well field. At Højballegård, there is a high
density of high-certainty (category 1) interpretation points
around the well field. The density of interpretation points is
lower in Hovedgård and lower still in the synthetic well field.
However, as is also evident in Fig. 2, the hydrostratigraphies
of the three well fields are different; i.e., Højballegård well
field is characterized by large aquifers, while Hovedgård and
the synthetic well field have thinner aquifers. Therefore, we
cannot isolate the effect that contributes to the highest impact
of interpretation uncertainty for the synthetic well field and
the lowest impact for Højballegård. We can only conclude
that both the hydrostratigraphic structure and the certainty
with which it has been described impacts the interpretation
uncertainty.

4.2.5 Synthetic well field

Figure 6d–f illustrates the impacts of the uncertainty scenar-
ios on the hydrostratigraphic models, with the yellow layer
marking the Miocene sand from where the synthetic well
is pumping. In the low uncertainty scenario (Fig. 6d), the
Miocene layer has a relatively high elevation compared to
the manual interpretation model (Fig. 6e) and other uncer-
tainty scenarios. This is explained by a lack of interpretation
points in the area to constrain the hydrostratigraphic model
realizations. In half of the realizations, the elevation of the
Miocene layer is above the water table (not shown), which
means that predictions based on particle tracking cannot be
calculated. The impact of the hydrostratigraphic realizations
on the predictions in the low uncertainty scenario is therefore
underestimated. This explains the large difference in results
between the uncertainty scenarios in the synthetic well field
(Fig. 8).

Also, in Fig. 6 it can be observed that a red Quaternary
sand layer appears in the medium uncertainty scenario and
becomes even more prominent in the high uncertainty sce-
nario. Because of the relatively few interpretation points in
this area (Fig. 2), the stratigraphy changes between the un-
certainty scenarios as the smoothing factor is changed. This
may explain why the mean normalized standard deviation
does not react the same way in response to the uncertainty
scenarios in the synthetic well field as it does in the two real
well fields (Fig. 8).

5 Discussion

This study demonstrates a methodology to quickly and sys-
tematically characterize the interpretation uncertainty of a
manual interpretation model and to propagate the character-
ized interpretation uncertainty to a groundwater model. In the
following, the results of the hydrostratigraphic and ground-
water modeling will be discussed and will be translated into
practical lessons.
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Figure 9. The capture zone area of the Højballegård well field in the low uncertainty scenario, as shown on maps of the percentage of
realizations. The location of the plot is seen in Fig. 1. Four parameter realizations (“Par real”, b–e) and hydrostratigraphic realizations (“Geol
real”, g–j) were randomly selected. In the hydrostratigraphic realizations as well as the manual interpretation model (f), the ensemble consists
of 200 parameter realizations, while the ensemble consists of 50 hydrostratigraphic realizations in the parameter realizations. In the “all real”
scenario, the ensemble consists of 50 hydrostratigraphic realizations and 200 parameter realizations.

Figure 10. The capture zone area of the synthetic well field in the high uncertainty scenario, as shown on maps of the percentage of
realizations. The location of the plot is seen in Fig. 1. Four parameter realizations (“Par real”, b–e) and hydrostratigraphic realizations (“Geol
real”, g–j) were randomly selected. In the hydrostratigraphic realizations as well as the manual interpretation model (f), the ensemble consists
of 200 parameter realizations, while the ensemble consists of 50 hydrostratigraphic realizations in the parameter realizations. In the “all real”
scenario, the ensemble consists of 50 hydrostratigraphic realizations and 200 parameter realizations.

5.1 Assessment of the hydrostratigraphic model

Expectations of the relative impact of the interpretation un-
certainty were met by the results; i.e., the interpretation un-
certainty in areas of high certainty in the hydrostratigraphic

model (Højballegård well field) was shown to have a rel-
atively small impact on predictions, while the impact was
more pronounced in areas with less geological certainty (syn-
thetic well field). The results showed that scenarios with
higher geological uncertainty generate higher variation of
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Figure 11. Simulated capture zone areas in Højballegård well field, Hovedgård well field and the synthetic well field, as shown in plots of
the parameter realizations (columns) versus the hydrostratigraphic realizations (rows) in the high uncertainty scenario.

predictions. The results support the expected applicability of
the method for incorporating geological interpretation uncer-
tainty in groundwater models.

Nevertheless, the results from the synthetic well field were
not as expected. The synthetic well field was shown to give
rise to the largest predictive variance. As opposed to the real
well fields, borehole information from the well does not in-
form the geology in this well field. The modeled uncertainty
in this area is therefore higher than what would be expected
in most real-case well fields. It was shown that the layer se-
quence in the synthetic well field area is different from that
in the original manual interpretation model in the hydros-

tratigraphic realizations (Fig. 6), while the layer sequence
does not differ in the other well fields. Thus, the character-
ized uncertainty within the hydrostratigraphic realizations in
the synthetic well field had a different character from that
in the other well fields. To limit the risk of changes to the
stratigraphy in areas with a low density of interpretation
points, the applied methodology could be extended as fol-
lows: (1) an expert knowledge filter could be applied to the
resulting hydrostratigraphic realizations to ensure that the re-
alizations comply with a set of stratigraphic rules in specific
areas or (2) nonstationarity could be introduced such that the
expected small-scale variability in the model can vary across
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the study area. This would likely add more uncertainty in ar-
eas of high interpretation uncertainty, thus making synthetic
wells behave more predictably.

5.2 Assessment of the groundwater model

The predictions from the groundwater models were calcu-
lated with a suite of parameters, which allowed the orig-
inal interpretation model to replicate the measured system
behavior. To obtain the suite of parameters, the GLUE ap-
proach was applied, which is an informal Bayesian approach.
According to Vrugt et al. (2009), the parameter uncertainty
from a GLUE approach is larger than that from a formal
Bayesian approach. The parameter uncertainty may therefore
be inflated compared to what it would have been if a formal
Bayesian approach had been applied. However, only a few
parameters were involved in the analysis of the parameter
uncertainty. The inclusion of more parameters in the uncer-
tainty analysis would likely lead to an increase in estimated
parameter uncertainty.

When applying the parameters from the original manual
interpretation model, the replication of system behavior was
shown to deteriorate slightly as more interpretation uncer-
tainty was introduced into the uncertainty scenarios (Fig. 7).
This in turn gave rise to an increase in predictive variance be-
tween geological uncertainty scenarios (Fig. 8). Thus, some
inaccuracies must be anticipated if we assume that the pos-
terior parameter range from the interpretation model is ap-
plicable to other hydrostratigraphic realizations. However,
this assumption was deemed necessary to make the problem
computationally tractable, as the alternative is to perform a
calibration of all hydrostratigraphic realizations. Another al-
ternative is simulation-based learning to obtain the posterior
distribution for the different scenarios (Hermans et al., 2023;
Thibaut et al., 2021).

As only one out of many possible parameter uncer-
tainty estimation methods were applied, and considering the
uniqueness of the study area in terms of geology and data
density, no general conclusions will be drawn here about the
relative importance of geological interpretation uncertainty
and parameter uncertainty. However, in this study, a limited
influence of the interpretation uncertainty compared to the
parameter uncertainty for predictions of capture zone area
and median travel time was found in a geologically well-
defined area with thick aquifers. In a geologically poorly
defined area with thin aquifers, the influence of interpreta-
tion uncertainty and the influence of parameter uncertainty
became comparable. Other studies testing the uncertainty of
the hydrostratigraphic model have concluded that the model
structure is dominant compared to the parameter uncertainty
(e.g., Højberg and Refsgaard, 2005). The difference is that, in
this study, only the interpretation uncertainty within a given
conceptual model was characterized, not the conceptual un-
certainty itself. Given that the presented level of uncertainty
is a fair representation, our results thereby confirm exist-

ing evidence (e.g., Neuman and Wierenga, 2003; Rojas et
al., 2010) that the choice of the conceptual model has a far
greater impact on the groundwater model predictions than
the interpretation uncertainty within the manually interpreted
model.

5.3 Lessons of a practical nature

This study’s generalizability is restricted by the specific char-
acteristics of the study area. Egebjerg is geologically very
complex, with several generations of buried valleys crossing
each other, glaciotectonic disturbed layers, and a deep fault
zone disturbing the layers. So, even though the area is rel-
atively data dense and a well-defined conceptual model has
been developed, the hydrostratigraphic connections between
the layers are uncertain due to the geological complexity of
the area. It has therefore been questioned whether the area
can be accurately represented by a simple layer model (En-
emark et al., 2022). This geological complexity of the area
also results in relatively poor performance of the groundwa-
ter model, with the best root mean square error being around
7 m, indicating potential flaws in the conceptual understand-
ing.

For practical purposes, at least in Denmark, a buffer
zone is often added to the capture zone area simulated by
a groundwater model based on a single hydrostratigraphic
model to take account of unspecified uncertainty (Iversen
et al., 2009). Two problems relate to the application of the
buffer-zone approach: (1) the necessary width of the buffer
zone is determined based on a subjective assessment of the
uncertainty in the area, and (2) a simple buffer zone cannot
capture spatial trends in the capture zone area that do not
expand radially. From a management point of view, this is
not ideal, as areas that are not part of the real capture zone
may be included, while other relevant areas may be excluded.
However, in the case where the impact of the interpretation
uncertainty is low (Fig. 9a), the buffer approach with, e.g.,
a 200 m buffer around the manual interpretation model from
Fig. 9f appears to be sufficient to capture the uncertainty in
the capture zone area. The approach presented in this study
offers an alternative to the buffer-zone approach at the ex-
pense of an increase in computational time but with the ben-
efit of higher certainty that a more realistic capture zone area
has been obtained.

From an interpretation point of view, our results indicate
limited differences between the low, medium and high uncer-
tainty scenario. This suggests that the geological interpreter
can feel more at ease during interpretation as to whether the
exact location of the layer boundary has been identified cor-
rectly. The impact of interpretation uncertainty within a con-
ceptual model is highly dependent on the geological struc-
tures and complexity, implying that precise interpretations
are needed more in areas with thin aquifers (such as the
area around the synthetic well field) than in areas with thick
and laterally extensive aquifers (such as around Højballegård
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well field). The scale of the influence is also dependent on
the data density and quality for the area. As the Egebjerg
study area is a data-dense area, future work should include
areas with data availabilities that are closer to the average or
even low, where the influence of interpretation uncertainty
will likely be higher.

6 Conclusions

While the interpretation uncertainty of a deterministic hy-
drostratigraphic model is a known accessory, it has until re-
cently been difficult to propagate these uncertainties from
the hydrostratigraphic model to a groundwater model. This
study has shown an approach to systematically characterize
the impact of hydrostratigraphic model interpretation uncer-
tainties in groundwater modeling. The applied groundwater
model was a full 3D model in which the vertical discretiza-
tion follows the hydrostratigraphic units. Results showed that
it is possible to represent the interpretation uncertainty in ar-
eas with low geological uncertainty containing thick, large
aquifers with a buffer zone; however, in areas of high geolog-
ical uncertainty with thinner, smaller aquifers, the interpreta-
tion uncertainty could be just as significant as the parameter
uncertainty. This study confirms that if the uncertainty of the
conceptual model is small, the small-scale variability within
the conceptual model is of less importance. This suggests
that, in a geological modeling exercise, it is more worth-
while to invest time in developing a clearly defined concep-
tual model or even better multiple conceptual models. The
actual interpretation of data using the conceptual model(s) is
of less importance for the groundwater model predictions.
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