Articles | Volume 28, issue 14
https://doi.org/10.5194/hess-28-3327-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-3327-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Athanasios Tsiokanos
CORRESPONDING AUTHOR
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Department of Operational Water Management and Early Warning, Unit of Inland Water Systems, Deltares, Delft, the Netherlands
Martine Rutten
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Ruud J. van der Ent
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Remko Uijlenhoet
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Related authors
No articles found.
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 29, 3447–3480, https://doi.org/10.5194/hess-29-3447-2025, https://doi.org/10.5194/hess-29-3447-2025, 2025
Short summary
Short summary
The review highlights the need to integrate urban land surface and hydrological models to better predict and manage compound climate events in cities. We find that inadequate representation of water surfaces, hydraulic systems and detailed building representations are key areas for improvement in future models. Coupled models show promise but face challenges at regional and neighbourhood scales. Interdisciplinary communication is crucial to enhance urban hydrometeorological simulations.
Peter Kalverla, Imme Benedict, Chris Weijenborg, and Ruud J. van der Ent
Geosci. Model Dev., 18, 4335–4352, https://doi.org/10.5194/gmd-18-4335-2025, https://doi.org/10.5194/gmd-18-4335-2025, 2025
Short summary
Short summary
We introduce a new version of WAM2layers (Water Accounting Model – 2 layers), a computer program that tracks how the weather brings water from one place to another. It uses data from weather and climate models, whose resolution is steadily increasing. Processing the latest data had become a challenge, and the updates presented here ensure that WAM2layers runs smoothly again. We also made it easier to use the program and to understand its source code. This makes it more transparent, reliable, and easier to maintain.
Claudia C. Brauer, Ruben O. Imhoff, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1712, https://doi.org/10.5194/egusphere-2025-1712, 2025
Short summary
Short summary
In lowland catchments, flood severity is determined by both the amount of rain and how wet the soil is prior to the rain event. We investigated the trade-off between these two factors and how this affects peaks in the river discharge, for both the current and future climate. We found that with climate change floods will increase in winter and spring, but decease in fall. The total number and severity of floods will increase. This can help water managers to design climate robust water management.
Nathalie Rombeek, Markus Hrachowitz, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1502, https://doi.org/10.5194/egusphere-2025-1502, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
On 29 October 2024 Valencia (Spain) was struck by torrential rainfall, triggering devastating floods in this area. In this study, we quantify and describe the spatial and temporal structure of this rainfall event using personal weather stations (PWSs). These PWSs provide near real-time observations at a temporal resolution of ~5 min. This study shows the potential of PWSs for real-time rainfall monitoring and potentially flood early warning systems by complementing dedicated rain gauge networks.
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1128, https://doi.org/10.5194/egusphere-2025-1128, 2025
Short summary
Short summary
Commercial microwave links (CMLs), part of mobile phone networks, transmit comparable signals as instruments specially designed to estimate evaporation. Therefore, we investigate if CMLs could be used to estimate evaporation, even though they have not been designed for this purpose. Our results illustrate the potential of using CMLs to estimate evaporation, especially given their global coverage, but also outline some major drawbacks, often a consequence of unfavourable design choices for CMLs.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025, https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Short summary
The quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantifies deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, Bas Walraven, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2974, https://doi.org/10.5194/egusphere-2024-2974, 2025
Short summary
Short summary
Commercial microwave links (CMLs), part of mobile phone networks, transmit comparable signals as instruments specially designed to estimate evaporation. Therefore, we investigate if CMLs could be used to estimate evaporation, even though they have not been designed for this purpose. Our results illustrate the potential of using CMLs to estimate evaporation, especially given their global coverage, but also outline some major drawbacks, often a consequence of unfavourable design choices for CMLs.
Chandrakant Singh, Ruud van der Ent, Ingo Fetzer, and Lan Wang-Erlandsson
Earth Syst. Dynam., 15, 1543–1565, https://doi.org/10.5194/esd-15-1543-2024, https://doi.org/10.5194/esd-15-1543-2024, 2024
Short summary
Short summary
Tropical rainforests risk tipping to savanna under future climate change. By analysing ecosystem root zone dynamics using hydroclimate data from Earth system models, we project the tipping risks for these rainforests. Our findings suggest that although some transition risks may be inevitable, most can still be mitigated by adapting to less severe climate change scenarios. Limiting global surface temperatures to meet the Paris Agreement targets is critical to preserving these ecosystems.
Nathalie Rombeek, Markus Hrachowitz, Arjan Droste, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-3207, https://doi.org/10.5194/egusphere-2024-3207, 2024
Short summary
Short summary
Rain gauge networks from personal weather stations (PWSs) have a network density 100 times higher than dedicated rain gauge networks in the Netherlands. However, PWSs are prone to several sources of error, as they are generally not installed and maintained according to international guidelines. This study systematically quantifies and describes the uncertainties arising from PWS rainfall estimates. In particular, the focus is on the highest rainfall accumulations.
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024, https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for data quality control.
Fransje van Oorschot, Ruud J. van der Ent, Andrea Alessandri, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 2313–2328, https://doi.org/10.5194/hess-28-2313-2024, https://doi.org/10.5194/hess-28-2313-2024, 2024
Short summary
Short summary
Vegetation plays a crucial role in regulating the water cycle by transporting water from the subsurface to the atmosphere via roots; this transport depends on the extent of the root system. In this study, we quantified the effect of irrigation on roots at a global scale. Our results emphasize the importance of accounting for irrigation in estimating the vegetation root extent, which is essential to adequately represent the water cycle in hydrological and climate models.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Louise J. Schreyers, Tim H. M. van Emmerik, Thanh-Khiet L. Bui, Khoa L. van Thi, Bart Vermeulen, Hong-Q. Nguyen, Nicholas Wallerstein, Remko Uijlenhoet, and Martine van der Ploeg
Hydrol. Earth Syst. Sci., 28, 589–610, https://doi.org/10.5194/hess-28-589-2024, https://doi.org/10.5194/hess-28-589-2024, 2024
Short summary
Short summary
River plastic emissions into the ocean are of global concern, but the transfer dynamics between fresh water and the marine environment remain poorly understood. We developed a simple Eulerian approach to estimate the net and total plastic transport in tidal rivers. Applied to the Saigon River, Vietnam, we found that net plastic transport amounted to less than one-third of total transport, highlighting the need to better integrate tidal dynamics in plastic transport and emission models.
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 247–259, https://doi.org/10.5194/amt-17-247-2024, https://doi.org/10.5194/amt-17-247-2024, 2024
Short summary
Short summary
Algorithms merge satellite radiometer data from various frequency channels, each tied to a different footprint size. We studied the uncertainty associated with sampling (over the Netherlands using 4 years of data) as precipitation is highly variable in space and time by simulating ground-based data as satellite footprints. Though sampling affects precipitation estimates, it doesn’t explain all discrepancies. Overall, uncertainties in the algorithm seem more influential than how data is sampled.
Bich Ngoc Tran, Johannes van der Kwast, Solomon Seyoum, Remko Uijlenhoet, Graham Jewitt, and Marloes Mul
Hydrol. Earth Syst. Sci., 27, 4505–4528, https://doi.org/10.5194/hess-27-4505-2023, https://doi.org/10.5194/hess-27-4505-2023, 2023
Short summary
Short summary
Satellite data are increasingly used to estimate evapotranspiration (ET) or the amount of water moving from plants, soils, and water bodies into the atmosphere over large areas. Uncertainties from various sources affect the accuracy of these calculations. This study reviews the methods to assess the uncertainties of such ET estimations. It provides specific recommendations for a comprehensive assessment that assists in the potential uses of these data for research, monitoring, and management.
Fransje van Oorschot, Ruud J. van der Ent, Markus Hrachowitz, Emanuele Di Carlo, Franco Catalano, Souhail Boussetta, Gianpaolo Balsamo, and Andrea Alessandri
Earth Syst. Dynam., 14, 1239–1259, https://doi.org/10.5194/esd-14-1239-2023, https://doi.org/10.5194/esd-14-1239-2023, 2023
Short summary
Short summary
Vegetation largely controls land hydrology by transporting water from the subsurface to the atmosphere through roots and is highly variable in space and time. However, current land surface models have limitations in capturing this variability at a global scale, limiting accurate modeling of land hydrology. We found that satellite-based vegetation variability considerably improved modeled land hydrology and therefore has potential to improve climate predictions of, for example, droughts.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023, https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary
Short summary
This research scrutinized predicted changes in root zone soil moisture dynamics across different climate scenarios and different climate regions globally between 2021 and 2100. The Mediterranean and most of South America stood out as regions that will likely experience permanently drier conditions, with greater severity observed in the no-climate-policy scenarios. These findings underscore the impact that possible future climates can have on green water resources.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Femke A. Jansen, Remko Uijlenhoet, Cor M. J. Jacobs, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 26, 2875–2898, https://doi.org/10.5194/hess-26-2875-2022, https://doi.org/10.5194/hess-26-2875-2022, 2022
Short summary
Short summary
We studied the controls on open water evaporation with a focus on Lake IJssel, the Netherlands, by analysing eddy covariance observations over two summer periods at two locations at the borders of the lake. Wind speed and the vertical vapour pressure gradient can explain most of the variation in observed evaporation, which is in agreement with Dalton's model. We argue that the distinct characteristics of inland waterbodies need to be taken into account when parameterizing their evaporation.
Wagner Wolff, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 15, 485–502, https://doi.org/10.5194/amt-15-485-2022, https://doi.org/10.5194/amt-15-485-2022, 2022
Short summary
Short summary
The existing infrastructure for cellular communication is promising for ground-based rainfall remote sensing. Rain-induced signal attenuation is used in dedicated algorithms for retrieving rainfall depth along commercial microwave links (CMLs) between cell phone towers. This processing is a source of many uncertainties about input data, algorithm structures, parameters, CML network, and local climate. Application of a stochastic optimization method leads to improved CML rainfall estimates.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
Ruben Imhoff, Claudia Brauer, Klaas-Jan van Heeringen, Hidde Leijnse, Aart Overeem, Albrecht Weerts, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, https://doi.org/10.5194/hess-25-4061-2021, 2021
Short summary
Short summary
Significant biases in real-time radar rainfall products limit the use for hydrometeorological forecasting. We introduce CARROTS (Climatology-based Adjustments for Radar Rainfall in an OperaTional Setting), a set of fixed bias reduction factors to correct radar rainfall products and to benchmark other correction algorithms. When tested for 12 Dutch basins, estimated rainfall and simulated discharges with CARROTS generally outperform those using the operational mean field bias adjustments.
Fransje van Oorschot, Ruud J. van der Ent, Markus Hrachowitz, and Andrea Alessandri
Earth Syst. Dynam., 12, 725–743, https://doi.org/10.5194/esd-12-725-2021, https://doi.org/10.5194/esd-12-725-2021, 2021
Short summary
Short summary
The roots of vegetation largely control the Earth's water cycle by transporting water from the subsurface to the atmosphere but are not adequately represented in land surface models, causing uncertainties in modeled water fluxes. We replaced the root parameters in an existing model with more realistic ones that account for a climate control on root development and found improved timing of modeled river discharge. Further extension of our approach could improve modeled water fluxes globally.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Jolijn van Engelenburg, Erik van Slobbe, Adriaan J. Teuling, Remko Uijlenhoet, and Petra Hellegers
Drink. Water Eng. Sci., 14, 1–43, https://doi.org/10.5194/dwes-14-1-2021, https://doi.org/10.5194/dwes-14-1-2021, 2021
Short summary
Short summary
This study analysed the impact of extreme weather events, water quality deterioration, and a growing drinking water demand on the sustainability of drinking water supply in the Netherlands. The results of the case studies were compared to sustainability issues for drinking water supply that are experienced worldwide. This resulted in a set of sustainability characteristics describing drinking water supply on a local scale in terms of hydrological, technical, and socio-economic characteristics.
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi
Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020, https://doi.org/10.5194/gmd-13-6011-2020, 2020
Short summary
Short summary
Precipitation over East Asia simulated in the Met Office Unified Model is compared with observations. Moisture sources of EA precipitation are traced using a moisture tracking model. Biases in moisture sources are linked to biases in precipitation. Using the tracking model, changes in moisture sources can be attributed to changes in SST, circulation and associated evaporation. This proves that the method used in this study is useful to identify the causes of biases in regional precipitation.
Cited articles
Agor, M. L. C.: Assessment of the long-term rainfall runoff relation of the Geul catchment, Masters thesis, UNESCO – IHE Institute for Water Education, the Netherlands, https://ihedelftrepository.contentdm.oclc.org/digital/collection/masters2/id/43685/rec/7 (last access: 7 November 2023), 2003. a
Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, 1986. a
Alexandersson, H. and Moberg, A.: Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends, Int. J. Climatol., 17, 25–34, 1997. a
Andrés-Doménech, I., García-Bartual, R., Montanari, A., and Marco, J. B.: Climate and hydrological variability: the catchment filtering role, Hydrol. Earth Syst. Sci., 19, 379–387, https://doi.org/10.5194/hess-19-379-2015, 2015. a
Asselman, N., van Heeringen, K.-J., de Jong, J., and Geertsema, T.: Juli 2021 overstroming en wateroverlast in Zuid-Limburg: Eerste bevindingen voor Valkenburg, Geulmonding, Roermonding en Eygelshoven, Tech. rep., report 11207700-000-ZWS-0019, Deltares, the Netherlands, https://www.waterschaplimburg.nl/publish/pages/7013/juli_2021_overstroming_en_wateroverlast_in_zuid-limburg.pdf (last access: 7 November 2023), 2022. a, b
Bertola, M., Viglione, A., Lun, D., Hall, J., and Blöschl, G.: Flood trends in Europe: are changes in small and big floods different?, Hydrol. Earth Syst. Sci., 24, 1805–1822, https://doi.org/10.5194/hess-24-1805-2020, 2020. a, b
Bischiniotis, K., van den Hurk, B., Jongman, B., Coughlan de Perez, E., Veldkamp, T., de Moel, H., and Aerts, J.: The influence of antecedent conditions on flood risk in sub-Saharan Africa, Nat. Hazards Earth Syst. Sci., 18, 271–285, https://doi.org/10.5194/nhess-18-271-2018, 2018. a
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger, M., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A., Volpi, E., Wilson, D., Zaimi, K., and Živković, N.: Changing climate shifts timing of European floods, Science, 357, 588–590, 2017. a
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and Živković, N.: Changing climate both increases and decreases European river floods, Nature, 573, 108–111, 2019. a, b
Brauer, C., van der Velde, Y., Teuling, A., and Uijlenhoet, R.: The hupsel brook catchment: Insights from five decades of lowland observations, Vadose Zone J., 17, 1–8, 2018. a
Buishand, T. A.: Tests for detecting a shift in the mean of hydrological time series, J. Hydrol., 73, 51–69, 1984. a
Buishand, T. A., De Martino, G., Spreeuw, J., and Brandsma, T.: Homogeneity of precipitation series in the Netherlands and their trends in the past century, Int. J. Climatol., 33, 815–833, 2013. a
Cao, Q., Mehran, A., Ralph, F. M., and Lettenmaier, D. P.: The role of hydrological initial conditions on Atmospheric River floods in the Russian River basin, J. Hydrometeorol., 20, 1667–1686, 2019. a
Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009. a
Douinot, A., Iffly, J. F., Tailliez, C., Meisch, C., and Pfister, L.: Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events, Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022, 2022. a
Dunn, R. J. H., Alexander, L. V., Donat, M. G., Zhang, X., Bador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A. A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T. M., Wan Ibadullah, W. M., Bin Ibrahim, M. K. I., Khoshkam, M., Kruger, A., Kubota, H., Leng, T. W., Lim, G., Li-Sha, L., Marengo, J., Mbatha, S., McGree, S., Menne, M., de los Milagros Skansi, M., Ngwenya, S., Nkrumah, F., Oonariya, C., Pabon-Caicedo, J. D., Panthou, G., Pham, C., Rahimzadeh, F., Ramos, A., Salgado, E., Salinger, J., Sané, Y., Sopaheluwakan, A., Srivastava, A., Sun, Y., Timbal, B., Trachow, N., Trewin, B., van der Schrier, G., Vazquez-Aguirre, J., Vasquez, R., Villarroel, C., Vincent, L., Vischel, T., Vose, R., and Bin Hj Yussof, M. N. A.: Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3, J. Geophys. Res.-Atmos., 125, e2019JD032263, https://doi.org/10.1029/2019JD032263, 2020. a
Garg, S. and Mishra, V.: Role of extreme precipitation and initial hydrologic conditions on floods in Godavari river basin, India, Water Resour. Res., 55, 9191–9210, 2019. a
Haan, C. T.: Statistical methods in hydrology, in: 2nd Edn., Wiley-Blackwell, ISBN 13:978-0813815039, 2002. a
Hannaford, J., Buys, G., Stahl, K., and Tallaksen, L. M.: The influence of decadal-scale variability on trends in long European streamflow records, Hydrol. Earth Syst. Sci., 17, 2717–2733, https://doi.org/10.5194/hess-17-2717-2013, 2013. a
Hussain, M. and Mahmud, I.: pyMannKendall: a python package for non parametric Mann Kendall family of trend tests, Journal of Open Source Software, 4, 1556, https://doi.org/10.21105/joss.01556, 2019. a
Ivancic, T. J. and Shaw, S. B.: Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge, Climatic Change, 133, 681–693, 2015. a
Journée, M., Goudenhoofdt, E., Vannitsem, S., and Delobbe, L.: Quantitative rainfall analysis of the 2021 mid-July flood event in Belgium, Hydrol. Earth Syst. Sci., 27, 3169–3189, https://doi.org/10.5194/hess-27-3169-2023, 2023. a
Kendall, M. G.: Rank Correlation Methods, Hafner Publishing Company, New York, 196 pp., 1955. a
Klein, A., Rutten, M. M., van Heeringen, K.-J., and Uijlenhoet, R.: Reconstruction of the hydrological response of the Geul catchment to the extreme rainfall in July 2021, in preparation, 2024. a
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., KernHansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A. F. V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., Antonio López, J. A., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L. V., and Petrovic, P.: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, Int. J. Climatol., 22, 1441–1453, 2002. a
Kreienkamp, F., Philip, S. Y., Tradowsky, J. S., Kew, S. F., Lorenz, P., Arrighi, J., Belleflamme, A., Bettmann, T., Caluwaerts, S., Chan, S. C., Ciavarella, A., Cruz, L. D., de Vries, H., Demuth, N., Ferrone, A., Fischer, E. M., Fowler, H. J., Goergen, K., Heinrich, D., Henrichs, Y., Lenderink, G., Kaspar, F., Nilson, E., Otto, F. E. L., Ragone, F., Seneviratne, S. I., Singh, R. K., Skålevåg, A., Termonia, P., Thalheimer, L., van Aalst, M., den Bergh, J. V., de Vyver, H. V., Vannitsem, S., van Oldenborgh, G. J., Van Schaeybroeck, B., Vautard, R., Vonk, D., and Wanders, N.: Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021, WWA – World Weather Attribution, https://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Western-Europe-floods-2021-attribution.pdf (last access: 7 November 2023), 2021. a
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, 1945. a
Mohr, S., Ehret, U., Kunz, M., Ludwig, P., Caldas-Alvarez, A., Daniell, J. E., Ehmele, F., Feldmann, H., Franca, M. J., Gattke, C., Hundhausen, M., Knippertz, P., Küpfer, K., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Scheibel, M., Seidel, F., and Wisotzky, C.: A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis, Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, 2023. a
MunichRe: Hurricanes, cold waves, tornadoes: Weather disasters in USA dominate natural disaster losses in 2021, Europe: Extreme flash floods with record losses, https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2022/natural-disaster-losses-2021.html (last access: 7 November 2023), 2022. a
Murphy, C., Wilby, R. L., Matthews, T. K. R., Thorne, P., Broderick, C., Fealy, R., Hall, J., Harrigan, S., Jones, P., McCarthy, G., MacDonald, N., Noone, S., and Ryan, C.: Multi-century trends to wetter winters and drier summers in the England and Wales precipitation series explained by observational and sampling bias in early records, Int. J. Climatol., 40, 610–619, 2020. a, b
Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E., and Anquetin, S.: Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins, J. Hydrol., 362, 274–290, 2008. a
Royal Netherlands Meteorological Institute: Daily precipitation time series for the manual rain gauge network in the Netherlands, https://www.knmi.nl/nederland-nu/klimatologie/monv/reeksen (last access: 30 September 2023), 2023a. a
Royal Netherlands Meteorological Institute: Time series for the meteorological stations in the Netherlands, https://daggegevens.knmi.nl/klimatologie/daggegevens (last access: 30 September 2023), 2023b. a
Schär, C., Ban, N., Fischer, E. M., Rajczak, J., Schmidli, J., Frei, C., Giorgi, F., Karl, T. R., Kendon, E. J., Klein Tank, A. M. G., O'Gorman, P. A., Sillmann, J., Zhang, X., and Zwiers, F. W.: Percentile indices for assessing changes in heavy precipitation events, Climatic Change, 137, 201–216, 2016. a
Sharma, A., Wasko, C., and Lettenmaier, D. P.: If Precipitation Extremes Are Increasing, Why Aren't Floods?, Water Resour. Res., 54, 8545–8551, 2018. a
Slager, K.: Gevolgen overstromingen Limburg: Inventarisatie en duiding, Tech. rep. 11207700-007-ZWS-0011, Deltares, the Netherlands, https://publications.deltares.nl/11207700_007_0011.pdf (last access: 7 November 2023), 2023. a
Sperna-Weiland, F., Hegnauer, M., Bouaziz, L., and Beersma, J.: Implications of the KNMI'14 Climatescenarios for the Discharge of the Rhine and Meuse: Comparison with Earlier Scenario Studies, Deltares, https://cdn.knmi.nl/system/data_center_publications/files/000/069/856/original/1220042000zws0004rimplications_of_the_knmi14_climate_scenarios_for_the_discharge_of_the_rhine_and_meuse_definitief3.pdf?1495622005 (last access: 7 November 2023), 2015. a
Squintu, A. A., van der Schrier, G., van den Besselaar, E., van der Linden, E., Putrasahan, D., Roberts, C., Roberts, M., Scoccimarro, E., Senan, R., and Klein Tank, A. M. G.: Evaluation of trends in extreme temperatures simulated by HighResMIP models across Europe, Clim. Dynam., 56, 2389–2412, 2021. a
Tramblay, Y., Villarini, G., El Khalki, E. M., Gründemann, G., and Hughes, D.: Evaluation of the drivers responsible for flooding in Africa, Water Resour. Res., 57, e2021WR029595, https://doi.org/10.1029/2021WR029595, 2021. a, b
Tsiokanos, A.: Investigation of the Impacts of Climate Variability and Land Use Changes on the Hydrology of the Geul River Catchment, Masters thesis, Delft University of Technology, the Netherlands, http://resolver.tudelft.nl/uuid:bf03fedd-88a1-4cb0-a72a-1487dcf56402, (last access: 7 November 2023), 2022. a, b
Tu, M.: Assessment of the effects of climate variability and land use change on the hydrology of the Meuse river basin, PhD dissertation, Vrije Universiteit Amsterdam, the Netherlands and UNESCO-IHE Institute for Water Education, the Netherlands, https://research.vu.nl/ws/portalfiles/portal/80382579/complete+dissertation.pdf (last access: 7 November 2023), 2006. a, b, c, d
van der Deijl, E.: Validatie hoogwater Maas juli 2021, Tech. rep., report 11208053-002-ZWS-0006, Deltares, the Netherlands, https://publications.deltares.nl/11208053_002_0006.pdf (last access: 7 November 2023), 2023. a
van Heeringen, K.-J., Asselman, N., Overeem, A., Beersma, J., and Philip, S.: Analyse overstroming Valkenburg. Watersysteemevaluatie Waterschap Limburg, Tech. rep., report 11207700-000-ZWS-0014, Deltares, the Netherlands, https://www.waterschaplimburg.nl/actueel/nieuws/@7103/resultaten-case-studies-vier/, (last access: 7 November 2023), 2022. a
Wasko, C. and Nathan, R.: Influence of changes in rainfall and soil moisture on trends in flooding, J. Hydrol., 575, 432–441, 2019. a
Wasko, C., Nathan, R., and Peel, M. C.: Changes in antecedent soil moisture modulate flood seasonality in a changing climate, Water Resour. Res., 56, e2019WR026300, https://doi.org/10.1029/2019WR026300, 2020. a, b
Waterschap Limburg: https://www.waterschaplimburg.nl/ (last access: 19 July 2024), 2024. a
Woldemeskel, F. and Sharma, A.: Should flood regimes change in a warming climate? The role of antecedent moisture conditions, Geophys. Res. Lett., 43, 7556–7563, 2016. a
Yang, L., Yang, Y., Villarini, G., Li, X., Hu, H., Wang, L., Blöschl, G., and Tian, F.: Climate more important for Chinese flood changes than reservoirs and land use, Geophys. Res. Lett., 48, e2021GL093061, 2021. a
Zanon, F., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., Bonnifait, L., and Delrieu, G.: Hydrological analysis of a flash flood across a climatic and geologic gradient: The September 18, 2007 event in Western Slovenia, J. Hydrol., 394, 182–197, 2010. a
Short summary
We focus on past high-flow events to find flood drivers in the Geul. We also explore flood drivers’ trends across various timescales and develop a new method to detect the main direction of a trend. Our results show that extreme 24 h precipitation alone is typically insufficient to cause floods. The combination of extreme rainfall and wet initial conditions determines the chance of flooding. Precipitation that leads to floods increases in winter, whereas no consistent trends are found in summer.
We focus on past high-flow events to find flood drivers in the Geul. We also explore flood...