

Supplement of

Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century

Athanasios Tsiokanos et al.

Correspondence to: Athanasios Tsiokanos (athanasios.tsiokanos@deltares.nl)

The copyright of individual parts of the supplement might differ from the article licence.

S1 Sensitivity of the extreme discharge event-based analysis to $P_{\rm MD}$ duration

Table S1: Mean relative frequencies for all stations of high flow events preceded by the defined extreme precipitation indicators for different P_{MD} accumulation periods.

$P_{\rm MD}$ duration	P ₉₉ [%]	Р _{МD} [%]	P _{WAC} [%]	Compound I [%]	Compound II [%]	Compound III [%]
4-day	27.7	74.7	47.8	12.6	40.0	12.6
5-day		65.3			38.4	12.2
6-day		64.5			39.6	12.2
7-day		61.6			39.6	12.2
8-day		57.9			38.4	12.6
9-day		61.2			41.6	12.6
10-day		58.4			39.2	12.6

S2 Multi-temporal trend analysis

S2.1 Winter half-year

Figure S1. Multi-temporal trend analysis for the developed (extreme) precipitation indices at Vaals for winter half-year. Each pixel presents a fixed period, and the color indicates the resulted Z-statistic value using the Mann-Kendall test.

Figure S2. Multi-temporal trend analysis for the developed (extreme) precipitation indices at Valkenburg for winter halfyear. Each pixel presents a fixed period, and the color indicates the resulted Z-statistic value using the Mann-Kendall test.

Figure S3. Multi-temporal trend analysis for the developed (extreme) precipitation indices at Ubachsberg for winter halfyear. Each pixel presents a fixed period, and the color indicates the resulted Z-statistic value using the Mann-Kendall test.

Figure S4. Multi-temporal trend analysis for the developed (extreme) precipitation indices at Noorbeek for winter half-year. Each pixel presents a fixed period, and the color indicates the resulted Z-statistic value using the Mann-Kendall test.

Figure S5. Multi-temporal trend analysis for the developed (extreme) precipitation indices at Maastricht for winter half-year. Each pixel presents a fixed period, and the color indicates the resulted Z-statistic value using the Mann-Kendall test.

S2.2 Summer half-year

Figure S6. Multi-temporal trend analysis for the developed (extreme) precipitation indices at Vaals for summer half-year. Each pixel presents a fixed period, and the color indicates the resulted Z-statistic value using the Mann-Kendall test.

Figure S7. Multi-temporal trend analysis for the developed (extreme) precipitation indices at Valkenburg for summer halfyear. Each pixel presents a fixed period, and the color indicates the resulted Z-statistic value using the Mann-Kendall test.

Figure S8. Multi-temporal trend analysis for the developed (extreme) precipitation indices at Ubachsberg for summer halfyear. Each pixel presents a fixed period, and the color indicates the resulted Z-statistic value using the Mann-Kendall test.

Figure S9. Multi-temporal trend analysis for the developed (extreme) precipitation indices at Noorbeek for summer halfyear. Each pixel presents a fixed period, and the color indicates the resulted Z-statistic value using the Mann-Kendall test.

Figure S10. Multi-temporal trend analysis for the developed (extreme) precipitation indices at Maastricht for summer halfyear. Each pixel presents a fixed period, and the color indicates the resulted Z-statistic value using the Mann-Kendall test.