Articles | Volume 28, issue 8
https://doi.org/10.5194/hess-28-1803-2024
https://doi.org/10.5194/hess-28-1803-2024
Research article
 | 
22 Apr 2024
Research article |  | 22 Apr 2024

Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media

Evgeny Shavelzon and Yaniv Edery

Related authors

Experimental investigation of the interplay between transverse mixing and pH reaction in porous media
Adi Biran, Tomer Sapar, Ludmila Abezgauz, and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 4755–4770, https://doi.org/10.5194/hess-28-4755-2024,https://doi.org/10.5194/hess-28-4755-2024, 2024
Short summary
Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields
Yaniv Edery, Martin Stolar, Giovanni Porta, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 5905–5915, https://doi.org/10.5194/hess-25-5905-2021,https://doi.org/10.5194/hess-25-5905-2021, 2021
Short summary
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021,https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024,https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024,https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Data-driven modeling of hydraulic head time series: results and lessons learned from the 2022 groundwater modeling challenge
Raoul Alexander Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Michael Fienen, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim Peterson, Janis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, Bryan Tolson, and Rojin Meysami
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-111,https://doi.org/10.5194/hess-2024-111, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Ajayi, T., Gomes, J. S., and Bera, A.: A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches, Water Resour. Res., 50, 1490–1505, https://doi.org/10.1002/2013WR015111, 2014. a
Al-Khulaifi, Y., Lin, Q., Blunt, M. J., and Bijeljic, B.: Reaction Rates in Chemically Heterogeneous Rock: Coupled Impact of Structure and Flow Properties Studied by X-ray Microtomography, Environ. Sci. Technol., 51, 4108–4116, https://doi.org/10.1021/acs.est.6b06224, 2017. a, b, c
Bear, J. and Cheng, A.: Modeling Groundwater Flow and Contaminant Transport, vol. 23, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-6682-5, 2010. a
Ben-Naim, A.: A Farewell to Entropy, World Scientific, https://doi.org/10.1142/6469, 2008. a
Berkowitz, B. and Zehe, E.: Surface water and groundwater: unifying conceptualization and quantification of the two “water worlds”, Hydrol. Earth Syst. Sci., 24, 1831–1858, https://doi.org/10.5194/hess-24-1831-2020, 2020. a, b, c
Download
Short summary
We investigate the interaction of transport with dissolution–precipitation reactions in porous media using the concepts of entropy and work to quantify the emergence of preferential flow paths. We show that the preferential-flow-path phenomenon and the hydraulic power required to maintain the driving pressure drop intensify over time along with the heterogeneity due to the interaction between the transport and the reactive processes. This is more pronounced in diffusion-dominated flows.