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Abstract. Dissolution and precipitation processes in reac-
tive transport in porous media are ubiquitous in a multitude
of contexts within the field of Earth sciences. In particular,
the dynamic interaction between the reactive dissolution and
precipitation processes and the solute transport is of interest
as it is capable of giving rise to the emergence of preferen-
tial flow paths in the porous host matrix. It has been shown
that the emergence of preferential flow paths can be con-
sidered to be a manifestation of transport self-organization
in porous media as these create spatial gradients that dis-
tance the system from the state of perfect mixing and al-
low for a faster and more efficient fluid transport through the
host matrix. To investigate the dynamic feedback between
the transport and the reactive processes in the field and its
influence on the emergence of transport self-organization,
we consider a two-dimensional Darcy-scale formulation of
a reactive-transport setup, where the precipitation and dis-
solution of the host matrix are driven by the injection of an
acid compound, establishing local equilibrium with the resi-
dent fluid and an initially homogeneous porous matrix, com-
posed of a calcite mineral. The coupled reactive process is
simulated in a series of computational analyses employing
the Lagrangian particle-tracking (LPT) approach, capable of
capturing the subtleties of the multiple-scale heterogeneity
phenomena. We employ the Shannon entropy to quantify the
emergence of self-organization in the field, which we define
as a relative reduction in entropy compared to its maximum
value. Scalability of the parameters, which characterize the
evolution of the reactive process, with the Peclet number
in an initially homogeneous field is derived using a simple
one-dimensional ADRE model with a linear adsorption re-
action term and is then confirmed through numerical sim-

ulations, with the global reaction rate, the mean value, and
the variance of the hydraulic-conductivity distribution in the
field all exhibiting dependency on the reciprocal of the Peclet
number. Our findings show that transport self-organization
in an initially homogeneous field increases with time, along
with the emergence of the field heterogeneity due to the in-
teraction between the transport and reactive processes. By
studying the influence of the Peclet number on the reac-
tive process, we arrive at a conclusion that self-organization
is more pronounced in diffusion-dominated flows, charac-
terized by small Peclet values. The self-organization of the
breakthrough curve exhibits the opposite tendencies, which
are observed from the perspective of a thermodynamic anal-
ogy. The hydraulic power, required to maintain the driving
head pressure difference between the inlet and outlet of the
field, was shown to increase with the increasing variance,
as well as with the increasing mean value of the hydraulic-
conductivity distribution in the field, using a simple analytic
model. This was confirmed by numerical experiments. This
increase in power, supplied to the flow in the field, results
in an increase in the level of transport self-organization. Em-
ploying a thermodynamic framework to investigate the dy-
namic reaction–transport interaction in porous media may
prove to be beneficial whenever the need exists to establish
relations between the intensification of the preferential flow
path phenomenon, represented by a decline in the Shannon
entropy of the transport, with the amount of reaction that oc-
curred in the porous medium and the change in its hetero-
geneity.
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1 Introduction

1.1 Dissolution–precipitation reaction and preferential
flow paths in porous media

Dissolution and precipitation processes in reactive transport
in porous media play an important role in multiple con-
texts in the field of Earth sciences, such as geological CO2
storage (Ajayi et al., 2014), reactive contaminant transport
(Brusseau, 1994), and acid injection in petroleum reservoirs
(Shazly, 2021). They are responsible for the alteration of
the transport characteristics of the porous media and for
the emergence of preferential flow paths (Singurindy and
Berkowitz, 2003; Al-Khulaifi et al., 2017) as dissolution–
precipitation reactive processes lead to changes in the dimen-
sions of the pores and their connectivity, thus introducing
coupling between the chemical reaction and the transport in
the media. This is observed, for example, in reactive infil-
tration in a porous medium, where the chemical reaction at
the solid–fluid interface causes dissolution of the surround-
ing porous matrix, creating nonlinear feedback mechanisms
that often lead to greatly enhanced permeability (Ladd and
Szymczak, 2021; Szymczak and Ladd, 2006). The solid–
fluid interface instability, observed in this case, is similar to
the viscous-fingering phenomenon in the field of multi-phase
flow, with undulation areas being formed first at the solid–
fluid interface of the porous media due to dissolution and
then later being transformed into well-defined, finger-like
channels or wormholes that rapidly advance into the medium.
As dissolution proceeds, these fingers interact, competing for
the available flow.

These wormholes that funnel the flow can be regarded as
preferential flow paths, ubiquitous in heterogeneous porous
media, where most of the transport is concentrated. The im-
portance of preferential flow paths in determining the trans-
port properties of the porous media is widely recognized as
they allow rapid solute transport and alter residence times
(Beven and Germann, 1982; Stamm et al., 1998; Radolinski
et al., 2022; Edery et al., 2014, 2016a). As these preferen-
tial flow paths align with the average flow direction, they in-
troduce solute concentration gradients in the direction trans-
verse to flow (Zehe et al., 2021) and an increasingly non-
Fickian transport behavior, thus requiring a global homoge-
nization approach for transport characterization that consid-
ers these subtleties in the upscaling and volume-averaging
methods. The formation of preferential flow paths in the
porous matrix due to the interaction between dissolution re-
action and transport processes has been reported in a multi-
tude of experimental studies (Kamolpornwijita et al., 2003;
Zhang et al., 2021; Snippe et al., 2020; Li et al., 2019),
while the opposite scenario of a precipitation reaction, such
as in the formation of carbonate deposits during CO2 se-
questration, was investigated by Yan et al. (2020); they re-
ported clogging of pores, leading to the alteration or com-
plete blockade of the preferential flow paths. As opposed

to the case of highly conductive networks, such as frac-
tured rock formations, the preferential flow paths in the sat-
urated heterogeneous porous media are not always well de-
fined. For this case, Zehe et al. (2021) have reported that a
higher variance in the hydraulic-conductivity field leads to
the intensification of the preferential flow path phenomenon
via a stronger concentration of solute within a smaller num-
ber of paths. Changing the observing perspective, Berkowitz
and Zehe (2020) have argued that the emergence of prefer-
ential flow paths can be viewed as a manifestation of self-
organization as the spatial concentration gradients, created
within the system, distance the system from the state of per-
fect mixing, thus allowing for a faster and more efficient fluid
transport.

1.2 Self-organization in physical systems and
thermodynamic framework

The findings discussed above have brought us closer to clas-
sification of the emerging preferential flow paths in reac-
tive transport in porous media as an embodiment of self-
organization. Before addressing the specific problem of the
emergence of preferential flow paths, it is in order to first dis-
cuss some basic concepts related to the phenomenon of self-
organization in physical systems. Self-organization refers
to a broad range of pattern formation processes, occurring
through interactions internal to the system without inter-
vention by external directing influences (Camazine et al.,
2001). Examples of self-organization in physical systems in-
clude the formation of patterns in chemical reactions (Turing,
1952); animal behavior, such as bird flocking (Hemelrijk and
Hildenbrandt, 2012); and river network formation (Stolum,
1996). In this context, it is interesting to consider reaction–
diffusion systems, which have attracted much interest as a
prototype model for pattern formation in nature. An attempt
to provide an explanation of morphogenesis in the field of
mathematical biology was first made by Alan Turing (Turing,
1952), who proposed a model based on chemical reaction–
diffusion interaction, where two homogeneously distributed
substances interact to produce stable, stationary patterns, rep-
resented by concentration deviations of the two substances
inside the domain of the reaction. The reaction is autocat-
alytic and is represented by a system of nonlinear differential
equations, thus possessing the capability for exhibiting self-
organizing modes. The necessary condition for pattern emer-
gence is that the diffusion coefficients of both substances dif-
fer, otherwise no self-organization will take place. This fea-
ture counteracts the homogenizing action of diffusion. Turn-
ing to the field of hydrology, Berkowitz and Zehe (2020) have
stated that, while self-organization in well-defined networks,
such as rivers, is clearly distinguishable, it is nevertheless
also the case that less well-defined networks, such as trans-
port in heterogeneous groundwater systems in the absence of
fractures, are capable of displaying some characteristics of
self-organization, which is manifested through spatially cor-
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related, anisotropic patterns of structural and hydraulic prop-
erties.

Within the thermodynamic framework, Haken (1983)
has defined self-organization as an emergence of ordered
macroscale states in an open, complex system far from ther-
modynamic equilibrium due to the exchange of energy and
matter with surroundings as a result of a synergetic inter-
play of microscale, irreversible processes. Recall the def-
inition of entropy by Boltzmann (Sharp and Matschinsky,
2015), which is directly related to the number of possible
microstates of a system that are consistent with a given
macrostate, characterized by the macroscopic thermody-
namic properties of the system (Haken, 1983). An ordered
state is characterized by a reduction in the entropy of the
system compared to its maximum value at equilibrium; thus,
a macrostate with a lower amount of corresponding possi-
ble microstates is considered to be more ordered (Kondepudi
and Prigogine, 1998). Since, according to the second law
of thermodynamics, the overall entropy of the system and
its surroundings cannot decrease, this reduction in entropy
has to be exported from the system outside, leading to an
increase in the entropy of its surroundings. The export of
entropy from the system requires that physical work is per-
formed on the system in order to maintain the current level
of self-organization. One of the most exciting examples that
comes to mind to illustrate this concept is biological life. Er-
win Schrodinger, in his highly influential book What is Life?
(Schrodinger, 1944), describes a living organism as a non-
equilibrium thermodynamic system in interaction with its
surroundings that maintains a level of inner self-organization.
How does a living organism manage to avoid decay into the
inert state of equilibrium? The answer is simple: by consum-
ing food and transforming it into energy through metabolic
processes. This energy allows the organism to maintain its
level of self-organization by exporting the entropy, produced
by irreversible physiological processes, to the surroundings.
In other words, in order to maintain self-organization within
itself, a living organism it works to decrease the level of self-
organization of its surroundings by exporting entropy out-
side.

While the thermodynamic framework refers to physical
entropy, as introduced by Clausius (1857), the information
entropy, first defined by Shannon (1948), has proven to be
extremely useful in quantifying self-organization in various
fields of physical science. This parameter, also referred to as
the Shannon entropy, was introduced originally in the frame-
work of communication. Viewing communication as a sta-
tistical process, Shannon employed an entropy-like param-
eter, defined similarly to Boltzmann’s definition of entropy,
to provide a measure for the amount of transmitted informa-
tion carried by a certain sequence of symbols. The applica-
tions of Shannon entropy in the field of geophysical science
are plenty; Chiogna and Rolle (2017) have employed Shan-
non entropy to quantify dilution and reactive mixing in so-
lute transport problems; Schweizer et al. (2017) used it for

uncertainty assessment in complex geological models, Mays
et al. (2002) measured the temporal and spatial complexity of
unsaturated flow in heterogeneous media, Woodbury and Ul-
rych (1996) applied the minimum relative entropy principle
(MRE) from the field of information theory to the problem
of recovering the release history of a groundwater contami-
nant, and Hansen et al. (2018, 2023) employed the Jaynes’
maximum entropy principle to determine the flow configura-
tion for the case of immiscible and incompressible two-phase
flow in a porous medium. In addition, Zehe et al. (2021) stud-
ied self-organization in preferential flow paths in porous me-
dia with various degrees of spatial heterogeneity and quanti-
fied it in terms of Shannon entropy. They found that stronger
transversal concentration gradients emerge with an increas-
ing variance of the hydraulic-conductivity field, which is re-
flected in a smaller entropy of the transversal distribution
of transport pathways. Their findings suggest that a higher
variance of the hydraulic-conductivity field coincides with
stronger self-organization of transport pathways (represented
by steepening of the concentration gradient in the direction
transverse to flow). The explanation to this non-intuitive find-
ing is given in terms of energy: in the thermodynamic frame-
work, the emergence of spatial self-organization requires en-
ergy input into the system, which grows along with the in-
crease in the level of self-organization. Since the energy input
in the form of hydraulic power, necessary to sustain steady-
state fluid flow and tracer transport, grows with the variance
of the hydraulic-conductivity field, this enables an increase
in the self-organization of the transport in the field.

1.3 Lagrangian particle approach to transport in
porous media

Among the family of numerical methods employed to sim-
ulate transport and reaction problems in porous media, the
Lagrangian particle approach continues to gain more promi-
nence in the recent decades, along with the continuing de-
velopment of powerful computers (Jiao et al., 2021; Sole-
Mari and Fernandez-Garcia, 2018; Sole-Mari et al., 2020).
The Lagrangian family of computational methods considers
the fluid phase to consist of discrete particles and tracks the
path of each particle, as opposed to the more conventional
Eulerian family of methods, where the fluid phase is treated
as a continuum and where its governing equations are de-
veloped based on conservation principles (Zhang and Chen,
2007; Meakin and Tartakovsky, 2009). In the Lagrangian ap-
proach, motion and interaction of particles are defined by
a specific set of laws that correspond to the physical situ-
ation of interest. Statistical analysis is then applied to the
particle trajectories and interactions. The Lagrangian parti-
cle methods are not susceptible to the numerical instabili-
ties that are often present in the numerical simulations where
an Eulerian approach is employed (Meakin and Tartakovsky,
2009). Perez et al. (2019) employed random-walk particle
tracking to simulate bimolecular, irreversible chemical re-
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actions in porous media and have shown the equivalence
of their formulation to the well-known advection–diffusion
reaction equation (ADRE), while others used it to simu-
late reactive transport in heterogeneous fields that display
non-Fickian behavior (Berkowitz et al., 2013; Edery et al.,
2013, 2010, 2009, 2016b). Other applications of Lagrangian
methods include particle dispersion in fluid (Shirolkar et al.,
1996); multiphase flows (Meakin and Tartakovsky, 2009); re-
active transport (Schmidt et al., 2019); and impact problems,
such as water impingement on a surface (Petrosino et al.,
2021).

1.4 Objectives

To investigate the dynamic interaction between the transport
and the reactive process in an initially homogeneous porous
medium and its influence on the emergence of transport self-
organization in the medium, we consider a two-dimensional
Darcy-scale formulation of a reactive-transport setup, where
precipitation and dissolution in the medium are driven by the
injection of an acid compound, establishing local equilibrium
with the resident fluid and an initially homogeneous porous
medium, composed of calcite mineral. The coupled reactive
process is simulated in a series of computational analyses
where the low-pH water is injected into an initially homoge-
neous domain, at first in equilibrium with the resident fluid
(high-pH water). We employ a Lagrangian particle-tracking
(LPT) approach, capable of capturing the subtleties of the
multiple-scale heterogeneity phenomena, along the lines of
Edery et al. (2021).

In particular, we are interested in the influence of the trans-
port Peclet number on the reactive process and the emergence
of self-organization of the transport in the porous medium.
To investigate this relation, we simulate a number of reactive-
transport scenarios for different values of advective to dif-
fusive transport rates, characterized by the Peclet number.
This is achieved by applying different values of the inlet–
outlet hydraulic-pressure-head-drop boundary condition to
the field. We employ Shannon entropy along the lines of
Zehe et al. (2021) to quantify the emergence of transport self-
organization in the medium. In Sect. 2, we review the basic
methodology of our reactive setup approach, followed by the
discussion of the concept of self-organization in the context
of transport in a porous medium, as well as its quantification
and relation to hydraulic power in Sect. 3. We present and
discuss the obtained results in Sect. 4.

2 Reaction, flow, and transport modeling

2.1 Chemical reaction model

The key component in dissolution–precipitation reactions is
the stoichiometric equilibrium between the reactants and the
products. In the system under investigation, the simulated
reactive-transport scenario is that of an injected acid com-

pound (low-pH water), establishing local equilibrium with
the resident fluid (high-pH water) and the porous medium,
composed of calcite mineral. This fairly common setting in
the field of geosciences constitutes the specific case of Edery
et al. (2011), where de-dolomitization is also included in the
chemical model (see also Singurindy and Berkowitz, 2003;
Al-Khulaifi et al., 2017). When the low-pH water (pH level
of 3.5) enters the calcite porous medium, initially saturated
and in chemical equilibrium with the resident fluid (pH level
of 8), dissolution of calcite occurs, accompanied by the pro-
duction of calcium and carbonic acid, as represented by the
following equations:

CaCO3(s)↔ Ca2+
+CO3

2−, (R1)

CO3
2−
+ 2H+↔ H2CO3. (R2)

Here, the carbonate ion CO3
2−, which appears due to dis-

solution of CaCO3 in water, recombines with two hydrogen
ions H+ to produce carbonic acid. The deprotonation reac-
tion (R2) represents the sum of the two acid equilibria of
the carbonic acid (Manahan, 2000). The fluid pH level is as-
sumed to be bounded by that of the resident fluid. The reac-
tion is assumed to be fully reversible; therefore, the opposite
precipitation reaction is also possible, given that the pH con-
ditions are favorable. The injected fluid is a source of both
Ca2+ and H+. We assume an abundance of Ca2+ in the fluid,
thus making the reaction (R1) non-rate-limiting; therefore,
the rate-limiting reaction is the reaction (R2), which is con-
trolled by the available hydrogen ions H+. This is consistent
with experimental observations (Singurindy and Berkowitz,
2003). Combining both equations along the lines of Edery
et al. (2021), we obtain the following simplified equation:

A↔ B, (R3)

where A and B represent 2H+ and H2CO3, respectively. The
direction of the reaction is governed by the deviation from
the chemical equilibrium, as defined by the current concen-
trations of H+ and H2CO3 in the localized area of reaction.
In the presence of H+ concentration above the equilibrium
value, dissolution will occur and vice versa. While pH levels
control the dissolution–precipitation reaction, the hydrogen
ion concentration that establishes the pH is controlled by the
transport processes of the invading fluid.

2.2 Flow and transport simulation

To investigate the dynamic coupling between the transport
and reactive processes in the porous medium, we consider
a two-dimensional field of dimensions Lx ×Ly = 12cm×
30cm, made of calcite mineral. Here, Lx and Ly are the
domain dimensions in the directions parallel and transverse
to the flow, respectively. The field is assumed to be fully
saturated with a resident high-pH water and is initially in
chemical equilibrium. Low-pH water is injected at the in-
let boundary, causing a reaction inside the porous medium
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as it advances. The field is discretized into Nx ×Ny compu-
tational cells, where Nx = 150 and Ny = 60 are the number
of cells in the directions parallel and transverse to the flow,
respectively, with each cell having dimensions of 1x,1y =
0.2 cm. The field is initially homogeneous in terms of hy-
draulic conductivity K and porosity θ , which have initial
values ofK0 = 10.9869 cmmin−1 and θ0 = 0.4, respectively.
A hydraulic-head-drop boundary condition 1hBC is applied
between the field’s inlet and outlet boundaries, while the
upper- and lower-field boundaries are ideal (reflective) walls.
The flow within the field, subject to the boundary conditions
as described above, is governed by the continuity and the
Darcy equations (Eqs. 1 and 2) and is solved in terms of
the hydraulic-pressure head with the help of a finite-element-
method computer code (Guadagnini and Neuman, 1999).
The obtained hydraulic-head distribution is then converted
into flow velocity at each computational cell.

∇ · q(x)= 0 (1)
q(x)=−K∇h(x) (2)

Here q and h are the Darcy flux and the hydraulic-head distri-
butions over the field, andK is the hydraulic conductivity, all
functions of the field spatial coordinate x. Here and through-
out the paper, bold font is used to specify vector fields as
opposed to scalar fields, which are written in the regular font.

The solute transport across the field is simulated using
a Lagrangian particle-tracking approach (Le Borgne et al.,
2008). The invading fluid is represented by the reactive A
particles injected into the porous medium. A total number
of Ntot = 5×105 A particles, representing the available pore
volume in the field at pH 3.5, is injected per pore volume time
at the inlet boundary at a constant rate that is proportional to
the mean flow velocity in the initial homogeneous field so
that, in every computational time step 1t , the amount of in-
jected particles is v0 · (1t/Lx) ·Ntot, where v0 is the mean
flow velocity magnitude within the initial homogeneous field
(assuming that the change in the mean conductivity value is
minor over the simulation time). The mean velocity v0 is cal-
culated from the applied pressure head drop over the field
1hBC using Darcy’s law: v0 =K0/θ0 ·1hBC/Lx . The par-
ticles injected at each time step are flux weighted according
to the conductivity distribution of the inlet cells. The particle
injection rate is such that all of the available pore volume in
the field is sampled by the particles by the time all Ntot of
them have been injected. The time of this occurrence will be
referred to as pore volume time Tpv = Lx/v0 throughout the
paper.

The injected A particles are advanced in the field us-
ing the Langevin equation, which combines deterministic
(advective) and stochastic (diffusive) contributions (Risken,
1996). The position d(t) of a particle due to the combined
effect of advective and diffusive transport mechanisms is de-
scribed by Eq. (3), where v is the flow velocity field, t is the
computational time, D is the diffusion coefficient of the in-

vading fluid in the porous medium, and ξ(t) is a vectorial
Gaussian random variable characterized by 〈ξ(t)〉 = 0 and
〈ξi(t)ξj (t

′)〉 = δij δ(t − t
′).

dd(t)
dt
= v[d(t)] +

√
2Dξ(t) (3)

An important property of the Langevin Eq. (3) is its equiva-
lence to the well-known advection–diffusion equation (ADE)
(Risken, 1996; Perez et al., 2019). To be used in the context
of a numerical simulation, the equation is discretized using
the simple Euler–Maruyama method (Kloeden, 1992) as fol-
lows:

dk+1 = dk + vk · dt + dD, (4)

where dk is the particle location at the previous computa-
tional time step tk = dt · k, dk+1 is the particle location at
the current computational time step tk+1 = dt · (k+ 1), and
vk = v[d(tk)] is the flow velocity at the particle location
at the previous computational time step (here, the index k
is not to be confused with the hydraulic conductivity K).
The diffusive contribution is given by dD =

√
2Dδt ·N(0,1),

where D = 1× 10−5 cm2 min−1 is the representative value
of the diffusion coefficient (Domenico and Schwartz, 1997),
N(0,1) is a standard normally distributed random variable,
and δt = δs/v is the time it takes a particle to move the fixed
distance δs =1x/10 while traveling with the flow at a speed
of magnitude v = |v|. The obtained diffusive contribution has
no spatial preference since its spatial direction is represented
by a uniformly distributed random variable between [0,2π ].
The particle movement in the duration of the computational
time step 1t consists of a series of jumps of a constant mag-
nitude δs, to which the diffusive contribution is added. This
series of jumps continues until their cumulative time

∑
iδti ,

where i is the jump index in the series, reaches 1t .
At first, no B particles exist in the field. After all newly

injected A particles have been advanced to their current lo-
cations, they are allowed to react according to an algorithm
described in Sect. 2.3. Following reaction, as described by
Reaction (R3), B particles appear in the field, and the com-
putational cell values of porosity and hydraulic conductiv-
ity in the area of reaction are updated correspondingly, thus
creating an interaction between the reactive and the trans-
port processes. Beginning the next computational step 1t ,
another set of A particles is injected into the field, employ-
ing flux weighting in accordance with the reaction-modified
conductivity distribution of the inlet cells. Then, all avail-
able particles in the field (both A and B) are advanced again,
and reaction occurs. Note that the diffusive contribution to
particle displacement dD allows for the mixing effect in
the field due to its stochastic nature. Following the changes
in the hydraulic-conductivity field due to the reactive pro-
cess, the hydraulic-pressure-head field and the correspond-
ing flow velocity field are updated at constant time intervals
of 101t (in order to reduce constraints associated with com-
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putational costs), while the reaction is allowed to occur ev-
ery 1t . The simulation continues until the pore volume time
Tpv is reached, while the A particle injection rate remains
constant throughout the simulation. Hydraulic conductivity,
pressure head, porosity, and velocity fields, as well as the
amount of dissolution–precipitation reactions that took place
in each computational cell, are recorded at constant time in-
tervals of 101t to be analyzed in the post-processing stage.
The particle transport algorithm and the chemical reaction
model described above constitute two important aspects of
the kinetic reaction mechanism as implemented in the cur-
rent study.

The transport part of the model has been validated against
the well-known case of one-dimensional instantaneous in-
jection in a homogeneous medium, for which an analytical
solution exists (Kreft and Zuber, 1978). See Sect. S3 in the
Supplement for details.

2.3 Kinetic reaction mechanism

In the system under investigation, the kinetic reactive process
operates according to an algorithm developed to mimic the
actual chemical dissolution–precipitation reactions that take
place in practice. After all existing A and B particles in the
field have been advanced in the current time step, the reac-
tion is allowed to occur. Since the reaction is assumed to be
locally instantaneous, at each instant of computational time
1t the reaction is allowed to proceed until local equilibrium
is reached in each field cell. For that purpose, the number of
currently residing particles of both kinds is assessed in each
cell. Each A particle is assigned a molar amount based on
the assumption that the total quantity of A particles injected
per pore volume timeNtot, distributed evenly across the field,
results in the pH level of 3.5 throughout the field, which cor-
responds to the pH level of the invading fluid. The following
calculation is performed: a total available pore volume in the
computational field θ0LxLy is multiplied by the molar den-
sity of the hydrogen ions that are injected into the field, cor-
responding to a pH level of 3.5. This gives 4.55× 10−5 mol
of hydrogen ions that are required to fill the initially available
pore volume to obtain a pH level of 3.5 throughout the field.
To obtain the molar amount assigned to a single A particle,
this value is divided by Ntot. For Ntot = 5× 105 A particles,
as defined in the current simulation, each one obtains a par-
cel of 9.1× 10−11 mol of H+ (recall that A= 2H+). Based
on Reaction (R3), each B particle obtains half of this molar
amount of carbonic acid. The number of A particles required
to obtain pH 3.5 in a particular cell is calculated by divid-
ingNtot particles by the number of computational cells in the
field Nx ·Ny to obtain approximately 56 (while zero A parti-
cles in a cell represents a pH level of 8, which corresponds to
the pH of the resident fluid). Based on the actual number of
A particles in the cell, the current pH level is estimated using
a linear proportion from these limiting values. Since Ca2+

is not the rate-limiting factor, reaching local equilibrium in

the cell amounts to equilibrating the carbonates. The equilib-
rium value of the fractional amount of H2CO3 in relation to
the total quantity of carbonates in a cell, denoted by α1(pH),
is calculated based on the current pH value in the cell as

α1(pH)=
10−2pH

10−2pH
+ 10−pka1 + 10−pka2 + 10−pH−pka1

, (5)

with the standard values pka1 = 6.35 and pka2 = 10.33
(Manahan, 2000) (see Supplement for Edery et al., 2011, for
details). The value of α1(pH) is then compared to the current
fractional amount of H2CO3 in a cell, calculated based on an
assumption that the total quantity of carbonates in a cell at
any time corresponds to the amount of H+ that results in a
pH level of 3.5. The direction of the reaction may now be de-
termined in accordance with Reaction (R3): dissolution will
occur if the fractional amount of H2CO3 is smaller than the
equilibrium value and vice versa. A single reaction is allowed
to occur, during which a single A particle in a cell transforms
into a B particle or vice versa. After each reaction turn, the
local pH level in a cell and the fractional amount of H2CO3
there in equilibrium α1(pH), as well as the fractional amount
of H2CO3 in practice, are recalculated and the reaction pro-
cess is repeated until equilibrium is reached.

After that, the cell porosity θ is updated in accordance with
Eq. (6), where the subscripts k+1 and k denote values at the
current and previous computational steps, respectively (be-
fore and after the reaction has taken place). Here, the poros-
ity increment is actually the volume of calcite, dissolved or
precipitated due to the reaction, divided by the volume of the
cell 1x1y (assuming unit cell depth). According to Reac-
tions (R1) and (R2), the change in cell volume is equal to the
change in the molar amount of H2CO3 due to the reaction
in the cell d[H2CO3] (can be positive or negative, depending
on the direction of the reaction) times the molar volume of
calcite, taken to be MCaCO3 = 36.93 cm3 mol−1 (Morse and
Mackenzie, 1990). The porosity is not allowed to exceed lim-
iting values of 0.01 and 0.99, set to avoid occurrence of non-
physical scenarios. The hydraulic conductivity K is then up-
dated employing the Kozeny–Carman relation (Eq. 7).

θk+1 = θk +
d[H2CO3]MCaCO3

1x1y
(6)

Kk+1 =Kk ·
θ3
k+1

(1− θk+1)2
·
(1− θk)2

θ3
k

(7)

This process is repeated for each of the cells in the field be-
fore the particles are allowed to advance again in the next
computational time step. In order to overcome constraints
associated with computational costs, reaction enhancement
has also been considered. For this purpose, the change in the
cell volume (Eq. 6) due to a certain amount of reaction that
took place there is increased by several orders of magnitude.
This is equivalent to accelerating the reactive process in the
field, while the overall dynamics associated with the reactive
process remain the same.
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2.4 Definition of the Peclet number

The Peclet number plays an important role in our reactive
system. As a usual practice, Peclet number is calculated
based on an Eulerian length scale, such as the mean grain
or pore diameter in the pore-scale simulation or the charac-
teristic correlation length of the heterogeneous porous me-
dia for the case of the Darcy-scale simulation (Nguyen and
Papavassiliou, 2020). The Eulerian definition of the Peclet
number as the ratio of advective to diffusive transport rates
gives the following well-known relation: Pe= ṽL/D, where
ṽ is the mean velocity, and L is the characteristic length.
This definition often yields estimates that allow little physi-
cal insight into the subject of the relative contributions of the
advective and diffusive processes to the transport in porous
media under investigation. Moreover, in the case of reac-
tive transport in an initially homogeneous porous medium
on the Darcy scale, such as in the current study, where het-
erogeneity is gradually introduced in the field, correlation
length can be time dependent; this calls for alternative ap-
proaches in defining the Peclet number that are capable of
giving a deeper insight into the transport characteristics. In
order to find a meaningful estimate for this parameter, we
attempt to formulate the expression for the Peclet number
based on Lagrangian length scale quantities, noting, after
Nguyen and Papavassiliou (2020), that the nature of hydro-
dynamic dispersion is Lagrangian. For this purpose we turn
to the Langevin Eq. (3), which governs the particle advance-
ment in the simulation. Each jump made by a particle dur-
ing the time period δt consists of a constant-value advec-
tive contribution δs =1x/10 and a diffusive contribution
√

2Dδt ·N(0,1) (see Sect. 2.2). Only the magnitude of the
diffusive contribution is of importance; therefore, we will
consider its absolute value

√
2Dδt · |N(0,1)|. The random

variable |N(0,1)| is half-normally distributed, with an ex-

pected value of
√( 2

π

)
(Leone et al., 1961). Therefore, we

are able to formulate the expression for the Peclet number
directly from its definition as the ratio of advective to diffu-
sive transport rates, given by Pe= δs/

√
4/πDδt . The time

duration of a single jump is determined as δt = δs/v, where
v is the magnitude of the fluid velocity at the current particle
location. Assuming that the change in the mean conductiv-
ity value is minor over the simulation time, we can replace
v with the initial flow velocity v0 =K0/θ0 ·1h/L. Thus,
we finally obtain the expression for the Lagrangian transport
Peclet number in our simulation:

Pe=

√
πδsK01hBC

4DLxθ0
. (8)

The above definition provides a direct estimate of the relative
contributions of the advective and diffusive processes to the
transport in porous media. This approach may prove useful
for Lagrangian particle-tracking methods where the advec-

tive and diffusive transport contributions are defined explic-
itly.

To investigate the influence of the Peclet number of the
transport on the evolution of the reactive process and the
emergence of transport self-organization in the field, we sim-
ulate a number of reactive-transport scenarios for different
values of the Peclet number. This is achieved by applying dif-
ferent values of the inlet–outlet hydraulic-head-drop bound-
ary condition 1hBC. The computational time step 1t is cor-
related with 1hBC in such a way that, in each simulated
reactive-transport scenario, corresponding to a specific value
of applied 1hBC, an equal number of 1800 time steps 1t
and, correspondingly, reaction events occur per pore volume
time Tpv.

3 Identifying and quantifying self-organization

3.1 Emergence of transport self-organization in
reactive transport in an initially homogeneous
porous media

The computational setting described in the previous section
mimics the dynamics of a coupled dissolution–precipitation
reactive process in a calcite porous medium, leading to
the emergence of heterogeneity in an initially homogeneous
field. Previous studies have shown that self-organization of
the solute transport in the field is expected to emerge in
such a situation in the form of preferential flow paths that
lead to solute concentration gradients in the direction trans-
verse to flow (Zehe et al., 2021), yet the details of this
self-organization emergence and evolution are critical to un-
derstanding the large-scale dynamics of the coupled reac-
tive process in the field. To analyze the emergence of self-
organization in our computational field, we consider snap-
shots of the field in terms of the hydraulic-conductivity distri-
bution, taken at different computational times as the reactive
process in the field evolves. We consider each snapshot to be
an open thermodynamic system and perform a non-reactive
tracer test by injecting non-reactive solute at the field’s inlet.
Along the lines of Sect. 1.2, we argue that organized states,
characterized by reduced entropy, can emerge in an open sys-
tem, driven away from equilibrium due to the exchange of en-
ergy or matter with surroundings. Such a system may persist
in a stationary non-equilibrium state. Since, according to the
second law, overall entropy cannot decrease, in such a case
entropy must be exported from the system outside, leading to
an increase in the entropy of its surroundings.

Section S1 in the Supplement presents a simple heat trans-
fer example that illustrates how an open thermodynamic sys-
tem can be maintained in a stationary non-equilibrium state
through an inflow of energy. Following the same concept,
one can generalize this finding for the system under inves-
tigation, represented by a snapshot of the reactive field at a
specific computational time, where the non-reactive solute

https://doi.org/10.5194/hess-28-1803-2024 Hydrol. Earth Syst. Sci., 28, 1803–1826, 2024



1810 E. Shavelzon and Y. Edery: Shannon entropy of transport self-organization

transport self-organization in the field in terms of emergence
of preferential flow paths is the outcome of the coupled reac-
tive process that introduces heterogeneity in an initially ho-
mogeneous field. In our system, energy influx occurs in the
form of hydraulic power, supplied to the flow to overcome
the hydraulic resistance of the field by the applied hydraulic-
pressure-head-drop boundary condition 1hBC. Such a sys-
tem may persist in a non-equilibrium stationary state, charac-
terized by the lowered entropy of the transversal distribution
of solute concentration, with the hydraulic power, supplied to
the flow, acting against depletion of transversal concentration
gradients. For our system, an equilibrium state corresponds
to the state of perfect mixing in the field, where no such gra-
dients exist (Zehe et al., 2021).

To identify the driving mechanism that leads to an emer-
gence of heterogeneity in an initially homogeneous porous
medium followed by self-organization of the solute trans-
port in the field, let us consider two limiting cases related
to the nature of the transport mechanism in the field, as ap-
plicable to our reactive-transport setting, described in Sect. 2.
First, we consider a case where no advection is present (the
advective velocity v = 0). In this scenario, reactive A par-
ticles advance within the field due to diffusive action only.
Because of the stochastic nature of the diffusive process that
lacks spatial preference, and since the diffusive properties of
the reactant and the product particles are identical (also, in
our model, diffusion is independent of porosity), we expect
that the dissolution and precipitation reactions will occur uni-
formly in space; thus, the conductivity field will remain ap-
proximately homogeneous in the direction transverse to flow.
Therefore, we suggest that, in the absence of advection, no
mechanism exists in our reactive setup to create heterogene-
ity in the field, and no transport self-organization will take
place in that case. In the opposite limiting case where no
diffusion is present (the diffusion coefficient D = 0), a dis-
solution reaction will first take place uniformly at the inlet
of the initially homogeneous field as the reactive A particles
enter the field. The resulting carbonic acid particles, in ac-
cordance with Reaction (R3), will be swept downstream by
the advective flow to cause a precipitation reaction uniformly
along the direction transverse to flow at some distance down-
stream. This pattern of alternating dissolution and precipita-
tion areas at identical intervals in the downstream direction
will repeat itself, with the resulting pattern being reminis-
cent of a precipitation-banding phenomenon (Singurindy and
Berkowitz, 2003). Again, in this case, no heterogeneity in the
direction transverse to flow is expected to emerge; thus, we
suggest that no transport self-organization will occur as well.

Following the above discussion, we argue that, for the
transport self-organization to emerge in an initially homo-
geneous field undergoing a dissolution–precipitation reactive
process as defined in our reactive setup, it is necessary for
the transport mechanism to include both diffusive and ad-
vective contributions. Here, the stochastic diffusion leads to
local concentration variations in H+ that, in turn, create lo-

cal variations in hydraulic conductivity, while the advection
follows these conductivity variations, funneling the flow to-
wards the higher-conductivity areas and further increasing
their conductivity due to the enhanced dissolution by means
of the funneled A particles. This creates positive coupling
between the reactive and transport processes. Here, an anal-
ogy can be made to the Turing’s morphogenesis model (see
Sect. 1.2), where the homogenizing action of the diffusion
is counteracted by the fact that the diffusion coefficients of
the reacting substances differ, which is a prerequisite for the
appearance of self-organizing patterns. We suggest that the
driving force for transport self-organization in the model un-
der investigation is the ratio between the diffusive and ad-
vective transport rates or the reciprocal of the Peclet number.
Therefore, we expect to obtain an increase in transport self-
organization in the field with a decrease in the Peclet number
of the flow.

In an attempt to derive an analytical justification for this,
let us relate the heterogeneity, emerging in an initially homo-
geneous field due to the coupled reactive-transport process,
to the global reaction rate in the field. The reasoning behind
this is that, in the initially homogeneous field, reaction that
occurs in the field is the driving force behind the emergence
of heterogeneity there; heterogeneity, in turn, is responsible
for the emergence of transport self-organization in the field.
While some of the reaction events that occur may cancel each
other out in terms of dissipating or precipitating some of the
calcite in a computational cell, the remaining part of reaction
is useful in creating heterogeneity. Thus, we may speculate
that the reaction rate and the emergence of heterogeneity in
the field are directly related. Consider, for simplicity, a 1D
advection–diffusion reaction equation (ADRE):

∂c

∂t
=−v

∂c

∂x
+D

∂2c

∂x2 −G/θ, (9)

where c is the solute concentration, v is the advective ve-
locity, D is the diffusion coefficient, G is the reactive term,
and θ is the porosity of the medium. Let us consider a sim-
ple scenario of an adsorption–desorption reaction, for which
parallels can be drawn to the dissolution–precipitation sce-
nario in our study (Raveh-Rubin et al., 2015). The simplest
case would be to employ a linear case of the Freundlich
isotherm model, where the adsorption is directly proportional
to the concentration (see Berkowitz et al., 2014, and Bear and
Cheng, 2010):

A= kdc, (10)

where A is the amount of adsorption, and kd is the distribu-
tion (sorption) coefficient. For desorption, the sign of the re-
action term should be reversed. The reactive term G obtains
the following shape:

G= ρb
∂A

∂t
= kdρb

∂c

∂t
, (11)
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where ρb is the dry bulk density of the porous medium. After
some manipulation, the ADRE for the adsorption case may
be written as

R
∂c

∂t
=−v

∂c

∂x
+D

∂2c

∂x2 , (12)

where R = 1+ kd
ρb
θ

is the retardation factor. To obtain the
non-dimensionalized version of ADRE, we normalize all
variables as follows: c̃ = c/cref, where cref is the reference
value for the solute concentration; x̃ = x/Lx ; and ṽ = v/v0.
The temporal coordinate is normalized by the pore vol-
ume time Tpv to obtain t̃ = tv0/Lx . Thus, the resulting non-
dimensionalized version of ADRE is

R
∂c̃

∂t̃
=−ṽ

∂c̃

∂x̃
+

1
Pe
∂2c̃

∂x̃2 , (13)

where Pe= Lxv0/D is the classical definition of the Peclet
number. Recalling the linear relation between the adsorption
and the concentration (Eq. 10), we may write for the non-
dimensional adsorption rate

∂Ã

∂t̃
=
kdcref

RAref

(
−ṽ

∂c̃

∂x̃
+

1
Pe
∂2c̃

∂x̃2

)
, (14)

where Ã= A/Aref, with Aref being the reference value for
the adsorption amount. To obtain the global reaction rate in
the field, Eq. (14) should be integrated over the domain. For
the case when the advective transport contribution is small
relative to the diffusive one

(
−ṽ ∂c̃

∂x̃
�

1
Pe
∂2c̃
∂x̃2

)
, this result

suggests the dependence of the global reaction rate on the
reciprocal of Peclet for our simple model. Recalling an as-
sumption made earlier about the heterogeneity and, thus, the
ensuing transport self-organization in the field being directly
related to the global reaction rate, we arrive at a conclusion
that both these parameters depend on the reciprocal of the
Peclet number for diffusion-dominated flows.

3.2 Self-organization quantization employing Shannon
entropy

Having obtained a qualitative understanding of the subject
of self-organization in the context of reactive transport of
the porous medium, we shall now seek a way to charac-
terize this phenomenon quantitatively using the concept of
Shannon entropy, also referred to as information entropy.
Shannon entropy was introduced originally in the field of
communication theory, whose fundamental problem is for-
mulated as “reproducing at one point either exactly or ap-
proximately a message, selected at another point” (Shannon,
1948). Viewing communication as a statistical process, Shan-
non employed an entropy-like parameter to provide a mea-
sure for the amount of transmitted information carried by a
certain sequence of symbols (a message). Section S2 in the
Supplement contains a short account of the Shannon entropy,

while, here, we only reprint the main result:

S =−6ipi log2pi, (15)

where S is the Shannon entropy per symbol of the message,
and pi = ni/n, i = 1. . .Ns are the relative occurrence fre-
quencies ofNs different symbols that constitute the message,
calculated as a ratio of the number of occurrences of a spe-
cific symbol i in the message ni to the total message length n.

The definition of information entropy, given by Shannon,
is equivalent to physical entropy in statistical mechanics as
defined by Gibbs, where the logarithm in Eq. (15) is in rela-
tion to the base of e, and the sum is multiplied by the Boltz-
mann constant (Ben-Naim, 2008). The statistical definition
of physical entropy characterizes the number of possible mi-
crostates of a system that are consistent with its macroscopic
thermodynamic properties which constitute the macrostate
of the system. Thus, in the case of a gas consisting of a
large number of molecules in a container, a microstate of
the system consists of the position and momentum of each
molecule as they move within the container, colliding with
other molecules and container walls. A multitude of such mi-
crostates correspond to a single macroscopic state of the sys-
tem, defined by its pressure and temperature. The parameter
pi in this case corresponds to a probability that a microstate
i occurs during the system’s fluctuations. According to the
second law of thermodynamics, entropy of a system reaches
its maximum value at equilibrium, where gradients of ther-
modynamic parameters are depleted by dissipative forces and
where the measure of order in the system is at its minimum.
In this case, each microstate is equally likely, and pi is sim-
ply the inverse of the total number of microstates (Kondepudi
and Prigogine, 1998).

To characterize the emergence and development of trans-
port self-organization in an initially homogeneous field as
the dissolution–precipitation reactive processes in the field
evolve, we adopt a straightforward use of the Shannon en-
tropy, in a similar vein as Zehe et al. (2021), where it was
employed in the context of characterizing self-organization
in heterogeneous non-reactive groundwater systems. In or-
der to place all results on equal footing, we perform addi-
tional computational non-reactive tracer tests on the snap-
shots of the hydraulic-conductivity field at different simula-
tion times, as described in Sect. 3.1. The non-reactive par-
ticle tracer algorithm, employed for this purpose, consists
of the flow and particle transport algorithm described in
Sect. 2.2 but without the kinetic-reaction part. A total number
ofNNR

tot = 1×105 particles, which represent the non-reactive
tracer solute (not to be confused with the number of reac-
tive particles Ntot injected per Tpv in the reactive algorithm),
are injected at the inlet of the computational field, subject to
the identical hydraulic-pressure-head-drop boundary condi-
tion of 1hBC = 100 cm, and are allowed to advance within
the field subject to the laws described in Sect. 2.2 until all of
them reach the outlet boundary. The relatively large value of
1hBC is chosen in order to eliminate the diffusive transport
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contribution, which tends to smooth out concentration gradi-
ents due to its stochastic character. The injected particles are
flux weighted according to the conductivity distribution of
the inlet cells. The field density matrix, obtained by counting
the total number of particle visitations in each computational
cell, is saved for each field snapshot. From this matrix, the
solute concentration distribution of the non-reactive tracer
across the field is obtained. We recall the proposition put
forth by Berkowitz and Zehe (2020) that solute transport self-
organization corresponds to an emergence of solute transport
gradients in the field in the direction transverse to the direc-
tion of the flow. To quantify the entropy of transport self-
organization in the snapshots of the hydraulic-conductivity
field, we rewrite Eq. (15) as follows:

S(x)=−6ipi log2pi, (16)

where S(x) is the Shannon entropy of the transversal so-
lute concentration at a given axial coordinate x, and pi =
Ni/N

NR
tot , i = 1. . .Ny is the relative solute concentration dis-

tribution at x in the direction transverse to flow (here, Ni is
the number of particles that have passed through the ith cell
at x).

3.3 The relation between self-organization,
heterogeneity, and hydraulic power

Following the thermodynamic framework, as applied to the
system under investigation, energy must be invested in the
heterogeneous field to maintain an ordered state of solute
transport there. This energy comes in the form of hydraulic
power that enables the flow to overcome the hydraulic re-
sistance of the porous medium under the applied hydraulic-
pressure-head-drop boundary condition 1hBC. The total hy-
draulic power dissipated by the flow while overcoming the
hydraulic resistance of the field is an extensive parameter and
is given by a cell-wise summation:

Ptotal =−ρfg6
i,j
1hij ·Qij , (17)

where i and j are the row and the column indices of the
(i,j)th cell in the field, respectively; 1hij and Qij are the
hydraulic-head drop and the volumetric flow rate through the
(i,j)th cell; ρf is the fluid density; and g is the gravitational
acceleration.

In an attempt to better understand the relation between
the degree of heterogeneity of the porous medium and the
hydraulic power required for the fluid to overcome the re-
sistance of the medium under the inlet–outlet hydraulic-
head-drop boundary condition 1hBC, we consider a sim-
plified model of the field as a series of conductive chan-
nels connected in parallel. These channels have no interac-
tion transversally, and the deviations of their shape from the
shortest path between the inlet and the outlet (a straight line)
is not significant. This model corresponds to a moderately
heterogeneous field that consists of a number of preferential

flow paths where most of the solute transport (and, thus, most
of the reaction) occurs. Assuming that the heterogeneity in-
troduced into the field due to the coupled reactive-transport
process is minor, the shape of the obtained preferential flow
paths should indeed not stray too far from a straight line.
Each conductive channel is represented by a collection of
cells along the preferential flow path in the field. The equiv-
alent hydraulic conductivity of the ith single channel is

K
EQ
i = Li/6

j
1lj ·K

−1
ij , (18)

where the index j runs along the cells that constitute the ith
channel, Li is the total length of the channel, and Kij and
1lj are the hydraulic conductivity and the length of the pref-
erential path segment inside the j th cell of the ith channel
(do not confuse with the row and column indices i,j as de-
fined earlier. For the most general case of a curvilinear flow
path the i,j indices may not conform to the row and column
indices). The equivalent hydraulic conductivity of the whole
field, viewed as a system of conductive channels, connected
in parallel, is

K
EQ
field =

∑
i

K
EQ
i ·

1y

Ly
=
1y

Ly

∑
i

Li

6j1lj ·K
−1
ij

. (19)

Under the assumption of parallel channels with no interaction
taking place between them transversally, the total hydraulic
power dissipated in the field is given by

P
EQ
total =−ρg1hBC ·Qtotal = ρg

(
1hBC

Lx

)2

LxLyK
EQ
field, (20)

where Qtotal is the total volumetric flow rate through the
field. To relate the increase in hydraulic power with an emer-
gence of heterogeneity in the field, which leads to the in-
creasing transport self-organization, consider again the rela-
tions of Eqs. (19) and (20) given above. The total hydraulic
power in the field, calculated using the parallel channels as-
sumption P EQ

total, is related to the hydraulic-conductivity dis-
tribution by virtue of the equivalent hydraulic conductivity of
the field (Eq. 19), which can be rewritten as

K
EQ
field =

1y

Ly

∑
i

1
Ri
, (21)

where Ri = (1/Li)
∑
j1lj ·K

−1
ij is the reciprocal of the

equivalent hydraulic conductivity of the ith channel KEQ
i or

its hydraulic resistivity. Recall the well-known feature of the
harmonic mean of some population: if the population is sub-
jected to a mean-preserving spread (that is, its variance is
increased while the mean is kept at a constant value) then
its harmonic mean always decreases (Mitchell, 2004). Since
Eq. (21) can be viewed as a reciprocal of the harmonic mean
of the population of hydraulic channel resistivities R, we ex-
pect that KEQ

field will increase with an increase in the variance
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of R, assuming the change in the mean hydraulic conductiv-
ity of the field is minor. Moreover, since the variance ofR de-
pends directly on the variance of the hydraulic-conductivity
distributionK in the field, it is reasonable to expect thatKEQ

field
will increase with an increase in the variance of K , which
signifies the emergence of heterogeneity in the initially ho-
mogeneous field. Thus, an increase in heterogeneity of an ini-
tially homogeneous porous medium due to the coupled reac-
tive process requires an increase in the hydraulic power, sup-
plied to the flow to overcome the hydraulic resistance of the
medium under the maintained hydraulic-head-drop boundary
condition 1hBC and applied to the field. Within the adopted
thermodynamic framework, this increase in power allows us
to increase the spatial self-organization of the solute trans-
port in the field. To conclude, the increase in the hydraulic
power, dissipated in the field, and the emergence of trans-
port self-organization are both the result of an increase in the
heterogeneity of the field. The latter, in turn, can be viewed
as a consequence of the energy invested in the field by the
dissolution–precipitation reactive process.

We emphasize that the presented study does not intend to
construct a complete thermodynamic formalism for the prob-
lem under investigation, such as the one that is presented in
Hansen et al. (2018) and Hansen et al. (2023). The thermo-
dynamic framework presented in the current study aims to
provide qualitative dependencies and/or trends between the
parameters of interest, such as the entropy of the transport
self-organization, the hydraulic power dissipated in the field,
etc. It is our intent to arrive at a more complete thermody-
namic formalism for the reactive flow in porous medium in
the course of the research work.

4 Results and discussion

Based on the reactive-transport algorithm described in
Sect. 2, we analyze the evolution of the reactive process in
an initially homogeneous reactive field and demonstrate that
the parameters that characterize this evolution, such as global
reaction rate, mean value, and variance of the hydraulic-
conductivity distribution, indeed depend on the reciprocal of
the Peclet number, as suggested by the analytic result de-
rived in Sect. 3.1. We then investigate the emergence and
evolution of transport self-organization in the field along
with the advancement of the reactive process and showcase
that transport self-organization correlates with the recipro-
cal of the Peclet number as well. To investigate these re-
lations, we simulate a number of reactive-transport scenar-
ios for different values of the ratio of advective to diffu-
sive transport rates, characterized by the Peclet number and
calculated as shown in Sect. 2.4. This is achieved by ap-
plying different values of the inlet–outlet hydraulic-pressure
head boundary condition 1h, as described therein. Thus, for
1h= 1× 10−4,1× 10−3,1× 10−2 and 1× 10−1 [cm], we
obtain the Peclet number as approximately Pe= 0.38, 1.2,

3.8, and 12.0. A reaction enhancement by a factor of 5×102

is employed (see Sect. 2.3). We follow this series of analy-
ses by quantifying the evolution of transport self organiza-
tion in time as described in Sect. 3.2, showing that transport
self-organization in the field increases with a decrease in the
Peclet number, as expressed by the reduction in the Shan-
non entropy. The self-organization of the breakthrough curve
exhibits the opposite tendencies, which are observed from
the perspective of a thermodynamic analogy. The hydraulic
power, required to maintain the driving head pressure drop
boundary condition between the inlet and outlet, increases
with the increasing variance of the hydraulic-conductivity
distribution in the field, as suggested by the simple parallel-
channels model developed in Sect. 3.3 (along with the con-
tribution of the mean value of conductivity). This increase in
power results in an increase in the transport self-organization
in the field.

4.1 Evolution of the reactive process in the field

We begin by examining the evolution of the reactive process,
as depicted by the snapshots of the relative hydraulic con-
ductivity K −K0, of the field at different normalized times
t̃ = t/Tpv, shown in Fig. 1a–c (obtained from a realization of
the reactive process for Pe= 0.38). The normalized time t̃ is
defined in such a way that, for t̃ = 1.0, the reactive front has
permeated through the whole medium. As the reactive par-
ticles advance and react in the initially homogeneous field,
heterogeneity is introduced into the field in the form of lo-
cal dissolution and precipitation areas, signified by positive
and negative values of K −K0, respectively. This hetero-
geneity advances downstream alongside the reactive parti-
cles, with the local dissolution–precipitation areas intensify-
ing with time as the reactive process in the field develops,
creating a clearly distinguishable reaction front. Downstream
of the front, the field remains homogeneous as the reactive
process has not arrived there yet. A dissolution area is lo-
cated in the immediate vicinity of the inlet, where the chem-
ical equilibrium is tilted towards dissolution; this correlates
with experimental and simulation observations (Poonoosamy
et al., 2020; Deng et al., 2022). The correlation length of
these field snapshots was found to be of the order of the size
of the computational cell; therefore, no larger structures in
the hydraulic-conductivity distribution are observed.

The influence of the Peclet number on the evolution of
the reactive process in the field is characterized in Fig. 2a–
d. Figure 2a presents the global reaction rate Ṙ, which was
calculated as the mean value of the absolute rate of change of
hydraulic conductivity with dimensionless time |dK/dt̃ | over
all computational cells as a function of dimensionless time t̃ .
This parameter takes into account the overall number of “use-
ful” reaction events that take place per unit time, including
both dissolution and precipitation. Here, the term useful is
applied to reaction events that did not cancel each other but
served to alter the hydraulic-conductivity distribution in the
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Figure 1. Evolution of the relative hydraulic conductivity K −K0 [cmmin−1
] field over time for Pe= 0.38: (a) t̃ = 0.25, (b) t̃ = 0.5,

(c) t̃ = 0.75, and (d) t̃ = 1.0.

field. The calculation was performed excluding the area of
10 computational cells in the immediate vicinity of the in-
let so as to focus on the evolution of the reactive process
within the field, excluding the inlet conductivity alteration,
where the reactive process is tilted towards dissolution; this
effect is of a very localized nature and, thus, was ignored.
We observe that the global reaction rate increases with di-
mensionless time in a linear fashion as the reactive particles
sample more of the field’s territory at an approximately con-
stant mean velocity, which allows broader opportunities for
reaction. Beginning from t̃ = 1, Ṙ becomes approximately
constant as the reactive particles have sampled an entire field
at that point. The influence of the Peclet number is clearly
exhibited by the fact that the global reaction rate increases
with the reciprocal of the Peclet number, showing that the
diffusive transport mechanism, responsible for mixing in the
field, enhances the reactive process. This can be explained
by the fact that diffusion, being stochastic in nature, also al-
lows particles to sample regions in the transverse direction,
away from the path suggested by the advection mechanism,
which allows a better chance for reaction. This result further
confirms the findings of Nissan and Berkowitz (2019) on bi-
molecular reaction, where an increase in the reactant produc-
tion rate with a decrease in Peclet number was reported due
to an increase in the spatial spread of the transported species;
this trend was also reported in Edery et al. (2021).

To verify the dependency of the global reaction rate on
the reciprocal of the Peclet number, as suggested by the
theoretical result obtained in Sect. 3.1, the scalability of
the curves in Fig. 2a with the Peclet number was investi-
gated. Assuming separation of variables in Ṙ so that Ṙ =

f (t̃) · g(Pe) and so that the Peclet dependency takes on the
form of g(Pe)= a ·Pe−1

+b, satisfying results were obtained
for a,b = 3.403,3.984 (R2

= 0.994). The scaled curves, ob-
tained by dividing the computed curves by the estimated
g(Pe), are depicted in the figure inset. The relation Eq. (14)
also suggests the reason as to why, at higher Peclet numbers,
the Peclet dependency diminishes and the global reaction
rate approaches an approximately constant (independent of
Peclet) non-zero value. Similarity solutions c̃ = f (x̃, t̃,Pe)
for Eq. (14) are possible if the normalized velocity ṽ re-
mains identical in the different Peclet number scenarios. In
the case of a minor transport reaction interaction that leads
to minor conductivity changes, the deviations in the velocity
field from the initial value can be assumed to be minor as
well; thus, ṽ ≈ 1. For high Peclet values, the similarity solu-
tion to Eq. (14) is approximately Peclet independent. As fol-
lows from Fig. 2a, the ratio between the global reaction rate
for Pe= 12 and Pe= 0.38 is about 4, which may hint at the
fact that the advective contribution to reaction rate is small
compared to the diffusive contribution for the lower range of
Peclet numbers in the current study.

Figure 2b presents the normalized global reaction rate
Ṙnorm that was obtained by normalizing the global reaction
rate Ṙ by the distance from the inlet sampled by the flow Lx t̃

(excluding the area in the vicinity of the inlet). This was done
in order to obtain an indication of the reaction rate per unit
area where the reaction takes place. After the transitional ef-
fects fade, Ṙnorm exhibits an approximately constant behav-
ior, as expected. Recall that, on a local scale, in our model,
the reaction is instantaneous (Edery et al., 2021). Here, as
well, the scalability with the reciprocal of the Peclet num-
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Figure 2. Influence of Peclet number on the evolution of the reactive process in the field over time: (a) global reaction rate Ṙ, (b) normalized
global reaction rate Ṙnorm, (c) deviation of the mean hydraulic conductivity from the initial value K̃ −K0, and (d) hydraulic conductivity
variance σ 2

k
as a function of dimensionless time t̃ . Insets show Peclet-scaled curves, obtained by assuming a power-law Peclet dependency

(a dependency on the reciprocal of Peclet was obtained for all displayed parameters as an exponent value of−1 resulted in a satisfying fit for
all curves).

ber exists, taking the same form as in the case of the non-
normalized global reaction rate Ṙ. The scaled curves are de-
picted in the figure inset.

Figure 2c presents the deviation of the mean value of hy-
draulic conductivity over all computational cells from the
initial conductivity K̃ −K0 as a function of dimensionless
time t̃ . Here, the area of 10 computational cells in the im-
mediate vicinity of the inlet was excluded from the calcula-
tion as well. Clearly, the net reaction is tilted towards dis-
solution as K̃ −K0 grows monotonously with t̃ , which is
reasonable due to the influx of low-pH fluid at the inlet of
the field (see also Edery et al., 2021); the relative increase
in hydraulic conductivity is small compared to K0. This re-
sult is in agreement with the findings of Edery et al. (2021).
The power-law shape holds well, beginning with approxi-
mately t̃ = 0.3. The onset of the power-law region coincides
with the time when a large-enough particle ensemble has re-
acted within the field to create a statistically consistent pic-
ture. The curves for larger Peclet numbers exhibit fluctua-
tions for a considerable portion of the time; however, they
comply with the power-law shape eventually as well. K̃−K0

also increases with the decrease in the Peclet number, again
due to the reaction-enhancing role of the diffusive transport
mechanism. Here, as well, the scalability with the reciprocal
of the Peclet number exists. Assuming, again, the separation
of variables as before so that the Peclet dependency takes
on the form g(Pe)= a ·Pe−1, good results were obtained for
a = 0.007624 (R2

= 0.985). This can be justified by, again,
relating the parameters that govern the evolution of the re-
active process in the field to the reaction rate, for which the
Peclet dependence was shown to have the same shape. All
Peclet-scalability-related conclusions drawn for Fig. 2a are
applicable here as well. The scaled curves are depicted in the
figure inset.

Similar trends are observed in Fig. 2d, which presents the
variance of hydraulic conductivity σ 2

k as a function of di-
mensionless time t̃ . Here, the area of 10 computational cells
in the immediate vicinity of the inlet was excluded from the
calculation as well. This parameter, being the measure of the
field’s heterogeneity, is indicated as the primary cause for
transport self-organization in the field (Zehe et al., 2021).
σ 2
k increases monotonously with dimensionless time t̃ as
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the particles sample more field regions and react at an in-
creasing rate, with this result again being in agreement with
the findings of Edery et al. (2021). Heterogeneity also in-
creases with the decrease in the Peclet number, again due to
the reaction-enhancing role of the diffusive transport mech-
anism. We thus state that reactive-transport scenarios with
lower values of Peclet number, corresponding to the dom-
inant diffusive transport mechanism, coincide with an in-
creased reaction rate in the field and, thus, increased field
heterogeneity. The power-law shape holds well for all Peclet
cases, beginning with approximately t̃ = 0.2. Turning again
to the findings of Edery et al. (2021), where the coupled re-
active process was investigated within the framework of the
continuous-time random-walk (CTRW) approach, we em-
phasize the anomalous (non-Fickian) nature of the ensuing
transport that is traced back to the coupling between the re-
active and transport processes in the initially homogeneous
field. Here, as well, the scalability with the reciprocal of
the Peclet number exists. Assuming, again, the separation of
variables as before so that the Peclet dependency takes on the
form g(Pe)= a ·Pe−1, good results were obtained for a =
0.001616 (R2

= 0.987). All Peclet-scalability-related con-
clusions drawn for Fig. 2a–c are applicable here as well. The
scaled curves are depicted in the figure inset.

The dependence of the parameters, depicted in Fig. 2a–d,
on the reciprocal of the Peclet number confirms that this di-
mensionless number is indeed the driving force behind the
evolution of the reactive process in the field. The fact that
Peclet-related tendencies, obtained in Sect. 3.1 for the sim-
ple one-dimensional ADRE scenario with an adsorption re-
action case, represented by the linear Freundlich isotherm,
have been verified in the Lagrangian particle tracker numeri-
cal simulations presented above, where a considerably more
complex reversible reaction of dissolution and precipitation
of calcite is considered, suggests a general validity of these
tendencies for the case of minor heterogeneity variations that
lead to minor fluctuations in concentration. An important
note should be made regarding the initial state of the field
that undergoes the reactive process: in our case of an initially
homogeneous field, diffusion acts as an enhancing factor for
the emergence of heterogeneity in the field; in an initially het-
erogeneous case, such as in Al-Khulaifi et al. (2017), diffu-
sion is capable of decreasing the heterogeneity of the porous
medium due to its smoothing property.

The relatively small scale of the phenomenon presented in
this study must be pointed out. The initial state of the porous
medium is completely homogeneous, and the heterogeneity
that develops is relatively minor. The trends presented could
have been more pronounced quantitatively had the simula-
tion been allowed to run longer. The simulation was stopped
soon after pore volume time was reached due to computa-
tional time limitations since running the LPT code with a
large number of particles consumes considerable computa-
tional resources. Had the model been allowed to run longer,
the mean conductivity and the heterogeneity trends are ex-

pected to have further increased, while the dependency of
the reactive-transport evolution on the reciprocal of Peclet is
expected to have persisted as long as the degree of hetero-
geneity of the field remained moderate (see Sect. 3.1).

4.2 Transport self-organization in the field

To characterize the emergence and development of trans-
port self-organization in our model as the dissolution–
precipitation reactive processes in the field advance, we
adopt a straightforward use of the Shannon entropy, similarly
to Zehe et al. (2021), where it was employed in the context of
characterizing self-organization in non-reactive flows in het-
erogeneous groundwater systems. In order to place all results
on equal footing, we perform computational non-reactive
tracer tests on the snapshots of the hydraulic-conductivity
field at different values of the dimensionless time t̃ , as de-
scribed in Sect. 3.2.

The emergence of transport self-organization in the react-
ing field is evident from the Fig. 3a–d, which present the dec-
imal logarithm of the relative non-reactive tracer concentra-
tion c̃ in the snapshots of the field that undergoes a reactive
process at Pe= 0.38 for different values of the dimensionless
time t̃ . c̃ is defined as the ratio of the total number of non-
reactive particle visitations in a cell to the number of particle
visitations in a cell in the equilibrium state (represented by
perfect mixing in the field). Here, the number of particle visi-
tations in the equilibrium state is defined byNNR

tot /Ny, which
corresponds to the case of a uniform particle injection in the
completely homogeneous field, where the same number of
particles visit each cell in the field. This parameter is anal-
ogous to the non-reactive solute relative concentration ob-
tained from the tracer tests. With the passage of time, varia-
tions in the hydraulic conductivity of the field due to the reac-
tive process create an autocatalytic feedback mechanism that
leads to an emergence of finger-like preferential flow paths.
These paths interact, competing for the available flow, so that
eventually some of the paths carry a significantly larger part
of the injected particles than the others, as seen from the in-
creasing concentration gradients in the direction transverse
to flow. This can be explained by observing the mechanism
responsible for transport self-organization in the field. The
particles injected at the inlet of the field are flux weighted,
meaning that the number of particles injected into each of
the inlet cells is proportional to the Darcy flux in that cell.
Diffusion, treated as a stochastic agent in our model, leads
to the appearance of hydraulic-conductivity fluctuations in
the initially homogeneous field in the direction transverse to
flow. Thus, the more conductive paths receive more Darcy
flux, which in turn attracts more reactive A particles to them,
making these paths even more conductive. This autocatalytic
process leads to constant intensification of this phenomenon,
as shown in Fig. 3a–d. The observed flow paths are linear
in shape, with negligible tortuosity, due to the hydraulic-
conductivity deviations from the initial value being minor.
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Another reason for this is that the correlation length of the
produced heterogeneous fields is small as well, leading to
an absence of large-scale structures that could alter signifi-
cantly the direction of the preferential flow paths. This pic-
ture corresponds to the simplified hydraulic model presented
in Sect. 3.3, where the field was considered as a series of ap-
proximately linear conductive channels connected in parallel.
The similarities of the simulated scenario to that of reactive
infiltration, as reported in Szymczak and Ladd (2006), where
a pore-scale numerical model was used to investigate channel
growth and interaction due to dissolution in fractures, have
to be pointed out. The model mentioned above employed the
Lattice–Boltzmann method for flow field calculation, while
the transport of dissolved species was modeled by a random-
walk algorithm that efficiently incorporates the chemical ki-
netics at the solid surfaces. Szymczak and Ladd (2006) re-
ported the emergence of a solid–fluid interface instability,
with undulation areas formed first at the solid–fluid interface
of the porous media due to dissolution, later transformed into
well-defined, finger-like channels or wormholes that rapidly
advance into the medium; as dissolution proceeds, these fin-
gers interact, competing for the available flow, and eventually
the growth of the shorter ones ceases.

The deviations of the decimal logarithm of the relative
non-reactive tracer concentration c̃, shown in Fig. 3a–d, from
the equilibrium value of 0 represent either the paths where
fewer particles pass relative to the equilibrium state (negative
values of c̃) or the paths where more particles pass relative to
the equilibrium state (positive values of c̃). Considering the
temporal evolution of c̃, one clearly sees an intensification of
these deviations from the equilibrium value of 0 with time.
In Fig. 3d (t̃ = 1.0), there are a few paths that correspond to
the decimal logarithm of c̃ =−0.4 and below (61 % fewer
particles that visited the path than in the case of a completely
homogeneous particle distribution in the field), while some
of the others correspond to the decimal logarithm of c̃ = 0.2
and above (58 % more particles that visited the path than in
the case of a completely homogeneous particle distribution
in the field).

The observations from Fig. 3 are confirmed by the plot of
the normalized Shannon entropy of the transport in the field
(Snorm = (S−Smax)/Smax vs. normalized distance from inlet
x̃ = x/L), calculated from the non-reactive solute concen-
tration data in the snapshots of the reactive field at different
values of dimensionless time t̃ for Pe= 0.38, presented in
Fig. 4a. Here, S is the Shannon entropy of the transport in
the field as a function of the distance from inletX, calculated
from Eq. (16), and Smax is the maximum possible transport
entropy value in the field, calculated as discussed in Sect. 3.2,
so that Snorm obtains values from 0 (maximum entropy, no
self-organization) to −1 (minimum entropy, maximum self-
organization, corresponding to a single preferential flow path
channeling all injected solute particles). As the reactive pro-
cess in the field advances, the resulting level of transport self-
organization in the field increases as it reaches further down-

stream alongside the reaction front, which is signified by the
decrease in Snorm. Figure 4b presents the mean value of the
normalized Shannon entropy of the transport in the field, av-
eraged over the field, S̃norm, vs. dimensionless time t̃ for dif-
ferent values of Peclet number. Again, the plot clearly shows
an increase in the transport self-organization in the field with
the advance of the reactive process as the mean normalized
entropy S̃norm decreases over time. A clear picture emerges
where the level of self-organization directly correlates with
the Peclet number of the reactive flow as the normalized
entropy S̃norm decreases with a decrease in Peclet number.
This clearly signifies that the diffusive transport mechanism
is dominant in initiating transport self-organization in an ini-
tially homogeneous field via the coupled reactive process as
it is manifested most significantly for low Peclet numbers
that correspond to diffusion-dominated flow. For lower val-
ues of the Peclet number, the difference between the neigh-
boring curves is clearly distinguished, while for larger Peclet
numbers, where advection becomes dominant, this differ-
ence diminishes, further supporting our discussion on lim-
iting cases for the model under investigation that appears in
Sect. 3.1.

In this context, it is interesting to consider the findings of
Zehe et al. (2021), which showed a clear correlation between
the field’s heterogeneity measure (statistical variance of the
field’s conductivity) and the self-organization of the field’s
transport, as represented by the Shannon entropy of the so-
lute concentration matrix, in non-reactive transport in het-
erogeneous fields. Their results showed a clear decrease in
Shannon entropy following an increase in the field’s hetero-
geneity. These results are given further confirmation in our
study as, with the passage of time, the development of the
reactive process in an initially homogeneous field results in
an increase in its heterogeneity (Fig. 2b), accompanied by a
decrease in the Shannon entropy of the transport in the field
that corresponds to an increase in transport self-organization
(Fig. 3). To conclude our findings thus far, we state that
the reactive transport at lower Peclet numbers, correspond-
ing to diffusion-dominated flow, results in a higher field het-
erogeneity and, thus, stronger transport self-organization in
the field. An important note should be made regarding the
initial state of the field that undergoes the reactive process:
in our case of an initially homogeneous field, diffusion acts
as a self-organization enhancer; in an initially heterogeneous
case, diffusion is capable of decreasing the transport self-
organization due to its smoothing property.

The Peclet number scalability is also exhibited in the
Shannon entropy of transport self-organization. Assum-
ing again the separation of variables in S̃norm so that
S̃norm = f (t̃) · g(Pe) and so that the Peclet dependency takes
on the form g(Pe)= a · 2−·Pe

+ b, satisfying results were
obtained for a,b =−0.02665,−0.000273 (R2

= 0.9942).
Thus, the mean normalized Shannon entropy of transport
self-organization depends on the reciprocal of 2 to the power
of the Peclet number. The free coefficient c is expected to be
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Figure 3. Evolution of the transport self-organization in the field for Pe= 0.38, as represented by the decimal logarithm of the relative non-
reactive tracer concentration c̃ based on data obtained from the non-reactive tracer tests performed on the snapshots of the field over time:
(a) t̃ = 0.25, (b) t̃ = 0.5, (c) t̃ = 0.75, and (d) t̃ = 1.0.

Figure 4. Self-organization of the transport in the field via normalized Shannon entropy Snorm = (S−Smax)/Smax: (a) Snorm vs. normalized
distance from inlet x̃ = x/L at different dimensionless times t̃ for Pe= 0.38, (b) mean value of the normalized entropy over the field S̃norm
vs. dimensionless time t̃ for different values of Pe. Inset shows Peclet-scaled curves, obtained by assuming a power-law Peclet dependency.

zero since, in the high-Peclet limit, we expect to obtain no
transport self-organization in the field; deviation from this
value is attributed to statistical errors that can be decreased
by averaging results from several realizations of the reactive
process. The scaled curves are depicted in the figure inset.
This dependence of the mean normalized Shannon entropy
of transport self-organization on the Peclet number confirms
that this dimensionless number is indeed the driving force
behind the transport self-organization in an initially homo-
geneous porous medium. The presented Peclet dependency
trends are reminiscent of the parameters that characterize

the evolution of the reactive process in the field, analyzed in
Sect. 4.1. They can be justified by directly relating the trans-
port self-organization in the field to heterogeneity, which in
turn is related to the global reaction rate in the field, for which
the Peclet dependence was shown in an analytical result, de-
rived in Sect. 3.1 (see also discussion in Sect. 4.1).

Here, again, the relatively small scale of the presented phe-
nomenon must be pointed out, although the apparent tenden-
cies are clear. Had the model been allowed to run longer, a
further increase in heterogeneity would lead to a more pro-
nounced decrease in the Shannon entropy of the transport.

Hydrol. Earth Syst. Sci., 28, 1803–1826, 2024 https://doi.org/10.5194/hess-28-1803-2024



E. Shavelzon and Y. Edery: Shannon entropy of transport self-organization 1819

The dependency on the reciprocal of the Peclet number is
expected to persist as long as the degree of heterogeneity
of the field remains moderate (see Sect. 3.1). The incom-
pleteness of the Shannon entropy as a measure of transport
self-organization in the field should be pointed out since it
does not take into account spatial correlations that may be
present in the transport configuration in the field. However, it
might be accurate enough for the specific case of an initially
homogeneous field, as presented in the paper, since, in this
case, the self-organization mimics the form of straight par-
allel channels from inlet to outlet. Thus, spatial correlation
will not bear any additional information in this case as no
larger-scale structures are expected to emerge in the field.

4.3 Entropy export into the breakthrough curve

As a next stage in the analysis of transport self-organization
in the reactive field, we turn to the particle breakthrough
curve in an attempt to analyze the influence of self-
organization of the field’s transport on the particle arrival
times. Figure 5a shows the temporal breakthrough curves
calculated from the non-reactive particle-tracking tests per-
formed on the snapshots of the reacting field for Pe= 0.38,
as described in Sect. 3.2. The arrival times TBT are normal-
ized by the pore volume time Tpv. The width of support of
the breakthrough curves clearly increases with time, indicat-
ing an increasing scatter in non-reactive particle arrival times
as the field’s heterogeneity grows larger. In particular, a sig-
nificant increase in the tailing arrival times is observed.

The Shannon entropy of the breakthrough curves was cal-
culated by dividing the arrival time span into 1000 bins and
employing Eq. (16) with pi as the relative occurrence of ar-
rival times. To place all results on equal footing, the arrival
time span was taken to be identical for all Peclet values. Fig-
ure 5b presents the normalized breakthrough curve entropy,
calculated as SBTC

norm = (S
BTC
−Smax)/Smax, vs. dimensionless

time t̃ . Here, SBTC is the breakthrough curve entropy, calcu-
lated from Eq. (16), and Smax is the maximum possible en-
tropy value, obtained in the case of a perfectly uniform distri-
bution of arrival times (similarly to the discussion of Smax es-
timation for the field transport entropy held in Sect. 3.2, in the
case of division of the arrival times span into 1000 bins, this
value will be log21000). Again, SBTC

norm obtains values from
0 (no self-organization) to −1 (maximum self-organization,
corresponding to the case when all particles arrive at the out-
let at the same time).

A picture emerges where the Shannon entropy of the ar-
rival times increases with the passage of time, reflecting a
larger uncertainty and a declining order in the temporal dis-
tribution of travel times. This corresponds to an increase in
both the field’s heterogeneity and the self-organization of
transport as the reactive process in the field evolves. We also
observe that the level of self-organization in arrival times di-
rectly correlates with the Peclet number as the normalized
breakthrough entropy SBTC

norm decreases with an increase in

Peclet number, an opposite tendency compared to the entropy
of the field transport (see Sect. 4.2).

The Peclet number scalability is also exhibited in the
Shannon entropy of the breakthrough curve, from approx-
imately t̃ = 0.5. Assuming again the separation of vari-
ables in SBTC

norm so that SBTC
norm = f (t̃) · g(Pe) and so that the

Peclet dependency takes on the power-law form g(Pe)=
a ·Peb+ c, satisfying results were obtained for a,b,c =
0.5511,−0.1686,−1.0 (R2

= 0.9762). The free coefficient
c obtains the value of −1 because, in the high-Peclet limit,
we expect to obtain maximal self-organization in the break-
through times. The trends presented in Fig. 5b are further
supported by Fig. 5c, which shows the normalized field trans-
port entropy S̃norm as a function of the normalized break-
through curve entropy SBTC

norm for different values of Peclet
number: S̃norm decreases monotonously with an increase in
SBTC

norm for all values of Peclet number. These results can be
explained straight ahead in terms of the degree of the field’s
heterogeneity: for lower Peclet values, the reactive transport
in the field leads to a higher degree of heterogeneity, which is
responsible for a greater scattering in arrival times due to the
variety of paths particles may take on their way to outlet; this
is reflected in the overall smoothing out of the breakthrough
curve and, as a result, in the breakthrough curve entropy that
grows with the degree of scattering in arrival times. While
there are other factors that affect the total entropy budget of
the problem, such as production of the macroscopic-flow en-
tropy due to hydraulic power dissipation through heat, these
two properties are correlated in a self-consistent way. Thus,
a thermodynamic analogy can be made: since, according to
the second law of thermodynamics, the overall entropy of the
system and its surroundings cannot decrease, the decreasing
entropy of the system, represented, among other contribu-
tions, by the entropy of the transport in the field, needs to be
exported outside. This leads to an increase in the entropy of
the surroundings, which is reflected, among other factors, in
an increase in the temporal breakthrough curve entropy (see
Sect. S1). This analogy should be regarded on a qualitative
level only.

4.4 Hydraulic power – entropy relation

The evolution of the reactive process in an initially homo-
geneous field is accompanied by the emergence of hetero-
geneity and, consequently, transport self-organization in the
field. This demands that increased energy is supplied to the
field to maintain an increasingly ordered state that emerges
there. This energy is supplied in the form of hydraulic power,
required for the flow to overcome the hydraulic resistance
of the porous medium. In our model, the hydraulic power is
supplied due to the inlet–outlet hydraulic-head-drop bound-
ary condition applied to the porous medium, which works
similarly to a pump.

Figure 6a presents the normalized hydraulic power in
the field (P −P0)/P0 as a function of dimensionless time
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Figure 5. Breakthrough curve self-organization: (a) histogram of the non-reactive particle arrival times TBT, normalized by the pore volume
time Tpv, in snapshots of the reacting field at different dimensionless times t̃ for Pe= 0.38; (b) normalized breakthrough curve entropy
SBTC

norm vs. dimensionless time t̃ for different values of Peclet number (the inset shows Peclet-scaled curves); and (c)normalized field transport
entropy S̃norm vs. normalized breakthrough curve entropy SBTC

norm for different values of Peclet number. Time direction is specified by an
arrow.

t̃ for different Peclet numbers, calculated using differ-
ent approaches (see Sect. 3.3). Here, the unmarked lines
represent cell-wise power calculation (Ptotal, according to
Eq. 17), while the lines marked with circular markers repre-
sent power, calculated based on the parallel-channels model
(P EQ

total, according to Eq. 20). Due to the linearity of the ob-
served preferential flow paths, as presented in Fig. 3, the
channels in the simplified model used to calculate P EQ

total were
assumed to be of a linear shape; thus, the indices i,j in
Eq. (19) correspond to the rows and columns of the com-
putational field. In both approaches, the power is calculated
over the whole field. From this comparative plot, it is evident
that, for all Peclet numbers, the power increases with t̃ , along
with the increase in heterogeneity of the field, and that is
in accordance with our expectations as detailed in Sect. 3.3.
We also observe that the parallel-channel assumption is valid
as a rule in the initial part of the reactive process; however,
as the normalized time t̃ grows, the deviations from this as-
sumption increase. This can be explained by the fact that

P
EQ
total, calculated under this assumption, takes into account

only the power produced by the horizontal Darcy flux com-
ponent since the parallel-channel model does not allow inter-
action between adjacent channels, while Ptotal, calculated in
a cell-wise fashion, accounts also for the transverse (vertical)
flux component. With the passage of time, due to an increase
in the heterogeneity of an initially homogeneous field, flux in
the transverse direction appears. With time, its contribution
grows as it appears more significant. We observe that, until
about t̃ = 0.4, the parallel channel assumption appears to be
adequate for all Peclet values. Beginning from t̃ = 0.4, de-
viations from this assumption are visible. The magnitude of
these deviations is in direct correlation with the Peclet num-
ber and increases with the decrease in Peclet number. This
can be explained again by virtue of heterogeneity, which in-
creases with the decrease in Peclet number, as well as with
t̃ .

The confirmation of the proposition put forth in Sect. 3.3,
which relates the increase in the total hydraulic power dissi-
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Figure 6. Hydraulic power in the field and its relation to heterogeneity and transport entropy: (a) normalized hydraulic power vs. dimen-
sionless time t̃ (unmarked lines represent cell-wise power calculation Ptotal, while the lines marked with circular markers represent power,
calculated based on the parallel channels model PEQ

total); (b) variance of the channel hydraulic resistivities σ 2R vs. dimensionless time t̃ ;
(c) mean value of the channel hydraulic resistivities R̃, normalized by the value at t̃ = 0 vs. dimensionless time t̃ ; and (d) normalized mean
field transport entropy S̃norm vs. normalized hydraulic power (P −P0)/P0 for different values of Peclet number. Time direction is specified
by an arrow.

pated in the field to an increase in heterogeneity of the field
by virtue of the simplified parallel-channels model, is given
in Fig. 6b, which presents the variance of the hydraulic re-
sistivities of the channels σ 2R vs. dimensionless time t̃ . We
observe that σ 2R increases monotonously with t̃ as the over-
all field heterogeneity grows larger, signifying the underlying
relation between heterogeneity and the dissipated power in
the field. It is also interesting to notice that, although the in-
crease in the heterogeneity of the field is largest for the lower
values of the Peclet number, the normalized hydraulic power,
presented in Fig. 6a, grows faster for higher Peclet values.
The explanation for this lies in the fact that, along with in-
creasing the heterogeneity of the field, the coupled reactive
dissolution–precipitation process also works to increase the
mean value of the hydraulic conductivity in the field (see
Sect. 4.1). This also contributes to an increase in the total hy-
draulic power in the field, as can be seen from Eq. (21). The
confirmation for this can be seen in Fig. 6c, which presents

the mean value of the channel hydraulic resistivities R̃, nor-
malized by the value at t̃ = 0, vs. dimensionless time t̃ . We
observe that R̃ decreases with time, meaning that the chan-
nels’ mean conductivities grow larger; this is in accordance
with Fig. 2c. However, we also observe that faster decrease
rates are observed for the higher Peclet values, which contra-
dicts the trends presented in Fig. 2c. This apparent contradic-
tion is due to the fact that, in the hydraulic power calculation,
the entire field was taken into account as opposed to param-
eters presented in Fig. 2, where an area of 10 computational
cell columns in the immediate vicinity of the outlet was left
out to exclude the effect of the dissolution area there. Thus,
when including the dissolution area at the inlet in the calcu-
lation, we observe the Peclet dependency trends overturn; at
the inlet, more dissolution occurs for the higher Peclet values
due to a clear bias towards dissolution since no B particles
are present there. Thus, the behavior of the normalized hy-
draulic power in the field (Fig. 6a) is controlled by the com-
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bined effect of two parameters: the variance of the channel
hydraulic resistivities σ 2R (Fig. 6b) and the mean value of
the channel hydraulic resistivities R̃ (Fig. 6c).

Finally, Fig. 6d presents the normalized mean field trans-
port entropy S̃norm as a function of the net hydraulic power
(P −P0)/P0 for different values of the Peclet number. This
plot shows the expected relation between the entropy of the
transport and the normalized hydraulic power in the field:
for each Peclet number, the entropy of the transport in the
field decreases with an increase in the normalized hydraulic
power, reflecting an increase in transport self-organization
due to an increase in power, supplied to the field in order
to maintain the prescribed hydraulic-pressure-drop boundary
condition over the field.

5 Conclusions

Our computational study tackles the quantitative character-
ization of the transport self-organization that emerges in
an initially homogeneous calcite porous medium due to
the dynamic interaction between the reactive precipitation–
dissolution processes and the solute transport. Our work
leads to the following key conclusions:

– As the reactive particles advance and react in an initially
homogeneous field, heterogeneity is introduced into the
field in the form of local dissolution–precipitation ar-
eas, evolving further downstream and intensifying with
time. A dissolution area is located in the immediate
vicinity of the inlet, where the chemical equilibrium is
tilted towards dissolution; this correlates with experi-
mental and simulation observations. The global reaction
rate, normalized by the distance from the inlet sampled
by the flow, is shown to be approximately constant in
time. The influence of the Peclet number is exhibited
by an increase in the global reaction rate with the de-
crease in Peclet, thus confirming that the diffusive trans-
port mechanism, responsible for the mixing in the field,
enhances the reactive process. This can be explained
by the fact that diffusion, being stochastic in nature,
allows particles to sample regions away from the path
suggested by the advection mechanism, thus allowing
a better chance for reaction. The net reaction is tilted
towards dissolution as the mean conductivity value in
the field grows monotonously with time, as well as with
the Peclet number, which is reasonable due to the in-
flux of low-pH fluid at the inlet of the field. Similar
trends are observed in the evolution of the variance of
hydraulic conductivity in the field. Scalability of the pa-
rameters that characterize the evolution of the reactive
process in the field with the reciprocal of the Peclet
number was derived using a simple one-dimensional
ADRE model with a linear adsorption reaction term and
then confirmed through numerical simulations, with the
global reaction rate, the mean value, and the variance

of the hydraulic-conductivity distribution in the field all
exhibiting dependency on the reciprocal of the Peclet
number. We thus state that reactive-transport scenar-
ios for lower Peclet values, corresponding to the dom-
inant diffusive transport mechanism, coincide with an
increased global reaction rate in the field and, thus, an
increase in the field’s heterogeneity. The dependence of
the parameters that characterize the reactive process in
the field on the reciprocal of the Peclet number con-
firms that this dimensionless number is indeed the driv-
ing force behind the evolution of the reactive process in
the porous medium.

– As the reactive processes in the field advance, the evolv-
ing variations in the hydraulic conductivity of the field
create an autocatalytic feedback mechanism that leads
to an emergence of finger-like preferential flow paths of
a linear shape. These paths interact, competing for the
available flow, so that eventually some of the paths carry
a significantly larger part of the injected particles than
the others, as seen from the increasing concentration
gradients in the direction transverse to flow. This obser-
vation is confirmed by the mean normalized Shannon
entropy in the field that decreases with time, signifying
an increase in the level of transport self-organization
in the field. The influence of the Peclet number on
the evolution of transport self-organization is exhib-
ited by a decrease in the mean normalized Shannon en-
tropy of the transport with a decrease in Peclet num-
ber, signifying an increase in self-organization. This
clearly indicates that diffusion is the dominant mech-
anism in creating self-organization in the initially ho-
mogeneous field. Here the link between the emergence
of heterogeneity and transport self-organization in an
initially homogeneous field is being drawn as the in-
crease in heterogeneity results in the increase in the
level of self-organization of the transport in the field.
Peclet number scalability was shown for the mean nor-
malized Shannon entropy curves as well. To conclude,
we state that reactive transport at lower Peclet numbers,
corresponding to diffusion-dominated flow, results in a
higher field heterogeneity and, thus, stronger transport
self-organization in the field. An important note should
be made regarding the initial state of the field that un-
dergoes the reactive process: in the case of an initially
homogeneous field, diffusion acts as self-organization
enhancer; in an initially heterogeneous case, diffusion
is capable of decreasing the transport self-organization
due to its smoothing property.

– To switch the observing perspective, the particle tem-
poral breakthrough curve was analyzed in an attempt
to understand the influence of self-organization of the
field’s transport on the particle arrival times. The width
of support of the breakthrough curve clearly increases
with time as the reactive process in the field evolves,
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indicating an increasing scatter in arrival times of non-
reactive particles; this result is in line with an increase
in the field’s heterogeneity. A picture emerges where the
Shannon entropy of the arrival times increases with the
passage of time, reflecting a larger uncertainty and a de-
clining order in the temporal distribution of travel times.
We also observe that the level of self-organization in
arrival times directly correlates with the Peclet num-
ber as the normalized breakthrough curve entropy de-
creases with an increase in Peclet number, an opposite
tendency compared to the entropy of the field transport.
While there are other factors that affect the total en-
tropy budget of the problem, such as production of the
macroscopic-flow entropy due to hydraulic power dissi-
pation through heat, these two properties are correlated
in a self-consistent way. Thus, a thermodynamic anal-
ogy can be made: since, according to the second law
of thermodynamics, the overall entropy of the system
and its surroundings cannot decrease, the decreasing
entropy of the system, represented, among other con-
tributions, by the entropy of the transport in the field,
needs to be exported outside. This leads to an increase
in the entropy of the surroundings, which is reflected,
among other factors, by an increase in the temporal
breakthrough curve entropy. This analogy should be re-
garded on a qualitative level only.

– The evolution of the reactive process in an initially
homogeneous field, accompanied by the emergence
of heterogeneity and, consequently, transport self-
organization in the field, demands that increased energy
is supplied to the field to maintain the increasingly or-
dered state that emerges therein. This energy is sup-
plied in the form of hydraulic power, required for the
flow to overcome the hydraulic resistance of the porous
medium. We observe that, for all Peclet numbers, the
total dissipated hydraulic power increases with time,
along with the increase in heterogeneity and mean hy-
draulic conductivity of the field, confirming the trends
suggested by a simple parallel-channels model. The en-
tropy of the transport in the field decreases with an
increase in the hydraulic power, reflecting an increase
in transport self-organization. This increasing power is
supplied to the field in order to maintain the hydraulic-
head-drop boundary condition due to an increase in
the field’s heterogeneity. Following our thermodynamic
framework, we thus argue that the power, required to
maintain the driving head pressure drop boundary con-
dition between inlet and outlet, increases with the in-
creasing variance of the hydraulic conductivity in the
field due to the evolution of the reactive process therein
(although the contribution of an increase in the mean
conductivity value also should not be forgotten in this
context). This increase in the supplied power results in

an increase in the level of transport self-organization in
the field.

– To conclude, the scenario presented in the paper corre-
sponds to that of an open thermodynamic system that
interacts with its surroundings by exchanging matter
and energy. Due to the influx of power from outside,
this system is kept in a non-equilibrium state that corre-
sponds to a certain degree of internal self-organization
and, thus, to a decreased entropy state. This decrease
in the entropy of a system corresponds to an increase
in the entropy of the surroundings by means of produc-
tion of entropy in the system through various processes,
which is later exported outside. In our system, we in-
vestigate the interplay between three thermodynamic
parameters: the entropy of transport self-organization
within the field; the entropy of the breakthrough curve;
and the hydraulic power, dissipated by the flow, which
may be viewed as an influx of power required to main-
tain the current level of the system’s self-organization.
While there are additional processes that may influence
the overall entropy budget, such as production of the
macroscopic-flow entropy due to hydraulic power dis-
sipation through heat, we find that these three proper-
ties are correlated in a self-consistent way. The contri-
butions of the above-mentioned additional factors are
beyond the scope of the current study. The increase
in the hydraulic power, dissipated in the field, and the
emergence of transport self-organization are both the re-
sult of an increase in the heterogeneity of the field (al-
though the contribution of an increase in the value of
the mean hydraulic conductivity to the hydraulic power
also should not be overlooked). The latter, in turn, can
be viewed as a consequence of the energy invested in the
field by the dissolution–precipitation reactive process.
We emphasize that the presented study does not intend
to construct a complete thermodynamic formalism for
the problem under investigation. The thermodynamic
framework presented in the current study is aimed at
providing qualitative dependencies and/or trends be-
tween the above-mentioned parameters of interest. It is
our intent to arrive at a more complete thermodynamic
formalism for the reactive flow in porous media in the
course of the research work.

– Employing a thermodynamic framework to investigate
the dynamic reaction–transport interaction in porous
media may prove to be beneficial whenever the need ex-
ists to establish relations between the intensification of
the preferential flow path phenomenon, represented by
the decline in Shannon entropy of the transport, with the
amount of reaction that occurred in the porous medium
and the change in its heterogeneity. This can be of con-
siderable significance to the implications of reactive-
transport interaction in various geophysical applications
and can assist, for example, in the estimation of efficient
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ways to remediate soil contamination, the determination
of optimal conditions for CO2 sequestration, and the es-
timation of oil extraction rates the boreholes.
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