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S1. Thermodynamic system in a stationary nonequilibrium state

To illustrate how an open thermodynamic system can be maintained in a stationary nonequilibrium state through an inflow of

energy, let us consider a simple heat transfer example: an open system that consists of a pair of thermal reservoirs, a hot thermal

reservoir at a temperature Th and a cold thermal reservoir at a temperature Tc, linked by heat transfer that occurs between the

two reservoirs. In accordance with the second law of thermodynamics, a diffusive heat flux will occur from Th to Tc, driven by

the temperature difference of the reservoirs. In a stationary state, a constant amount of heat per unit time dQ will be removed

from the hot reservoir and transferred to the cold reservoir. Recall the definition by Clausius of a change in entropy dS due to

amount of heat dQ added or removed at the temperature T of the system

dS =
dQ

T
(S1)

Therefore, the entropy of a warm reservoir would decrease by dQ/Th, whereas the entropy of a cold reservoir would increase by

dQ/Tc. The net entropy change within the system is dS =−dQ/Th+dQ/Tc (notice that dS > 0 since Th > Tc) (net entropy

production within system due to irreversible heat transfer processes). In a stationary state, a constant heat flux J = dQ/dt will

flow through the system, resulting in the rate of internal entropy production of the system

dSp

dt
= J(

1

Tc
− 1

Th
)> 0 (S2)

For the system to remain in a stationary state, its total entropy must remain constant, therefore entropy excesses have to be

exported to the surroundings. In a stationary state, the rate of change of the total entropy of the system, equal to the sum of the

rate of the internal entropy production in the system dSp/dt and the rate of the entropy export to the surroundings dSe/dt, is

zero, thus

dSe

dt
=−dSp

dt
(S3)

To maintain this nonequilibrium stationary state, an energy must be invested, for example in the form of a heat pump, operating

outside the system, that will transfer the heat from the cold reservoir back to the hot one in order to maintain their temperatures

at constant values, otherwise the system will eventually (asymptotically) arrive at an equilibrium state. For more details on the

topic of nonequilibrium thermodynamics, see Kondepudi and Prigogine (1998).
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S2. Information entropy

To acquire the basic concept of the information entropy, let us consider a single probabilistic event, having a number of possi-

ble outcomes that are assumed equally probable. For example, in case of a single symbol, transmitted in the Morse code, we

have two possible outcomes (realizations) for this event - a dash and a dot (omitting the intermission between the transmitted

letters). Employing the indices 0 and 1 to denote parameters before and after the event realization, initially we have N0 = 2

equally possible outcomes of the message transmission event and zero initial information I0 = 0. Following the transmission

of a single symbol, we have a single realization of the event - a dash or a dot, thus N1 = 1, and a non zero information due to

the receipt of a symbol I1 ̸= 0.

In case of a sequence of events enumerated 1...n, having respective number of outcomes N01 ,N02 , ...,N0n (consider a word

that consists of n symbols in the Morse alphabet), the total number of possible outcomes is N =N01 ·N02 · ... ·N0n . Intuitively,

we would expect the information measure to be an additive parameter, so that the amount of information contained in a word

transmitted with the help of the Morse code would equal to the sum of the amounts of information for each symbol that con-

stitutes the word, that is I(N) = I(N01 ·N02 · ... ·N0n) = I(N01)+ I(N02)+ ...+ I(N0n). This can be fulfilled by choosing

I = b lnN , where b is a an arbitrary constant parameter, that amounts to a choice of a unit of measure (in fact, Shannon (1948)

gave a formal proof that the logarithm function is the only possible relation between I and N that possesses, in addition to

additivity, also continuity and monotonicity properties). For a binary system that consists of only two symbols, such as the

dash and the dot in the Morse alphabet, a transmitted word of a total n symbols has N =N01 ·N02 · ... ·N0n = 2n possible

realizations. Taking a single transmitted symbol as one unit of information, we demand that I = b lnN = n to obtain b= log2 e

and I = log2N . Since a single position in a sequence of symbols in a binary system is defined as a bit, the corresponding units

of information I will be called bits (an abbreviation from binary digit).

Now, assume that each of the final amount of different symbols that constitute a message has its own relative occurrence

frequency (the respective probability of finding a specific symbol at a specific place in a sequence), such as the case of different

letters in an alphabet. In the case of a Morse code, assume that the transmitted n-symbol word consists of n1 dashes and n2

dots, so that n1 +n2 = n. Using some results from combinatorics, it can be shown that

S = I/n=−Σi pi log2 pi (S4)

where S is the information entropy (also referred to as the Shannon entropy) per symbol and pi = ni/n, i= 1,2 are the relative

occurrence frequencies of both symbols. Maximum Shannon entropy obtained during the transmission of a message is when

the relative occurrence frequency of each symbol is identical p= 1/2. It is easily shown that this maximum value equals to
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Smax =− log2 p= 1. The relation S4 can be easily generalized for any number of possible outcomes per event.

Thus, a definition of the information entropy is obtained that possesses an additivity property, similarly to physical proper-

ties such as entropy, energy, and mass. An example that may be seen as a consequence of the results obtained with the help

of the information theory is that in modern communication methods the more common alphabet letters are encoded in such a

way that their information content is minimized in order to facilitate the transmission process. Thus, in a Morse code a letter

E is encoded by a single dot, while J is a dot followed by three dashes. For more details on the topic of Shannon entropy, see

Shannon (1948).

S3. Lagrangian particle tracker validation

In the current work, a Lagrangian particle tracker (LPT) model is employed to simulate the dynamics of the reaction-transport

interaction in an initially homogeneous porous medium. We use the Langevin stochastic differential equation (SDE) to simulate

the solute transport inside the medium. To be used in the context of a numerical simulation, the Langevin SDE is discretized

using the straightforward Euler-Maruyama method [Kloeden (1992)]. To perform validation of the model against a known ana-

lytical solution, the equivalence property between the Langevin SDE and the Advection-diffusion differential equation (ADE),

that takes place when the statistical ensemble of particles considered in the solution of the Langevin SDE is large enough,

was employed [Risken (1996), Perez et al. (2019)]. For the one-dimensional problem of instantaneous solute injection into a

homogeneous medium, the solution for ADE is well-known and is given by the Gaussian distribution of solute concentration

[Kreft and Zuber (1978), Table 2]. To validate the model, a quantity of 1e5 non-reactive particles was injected at the inlet of the

field and then allowed to move along the X axis of the field, while their motion was governed by the one-dimensional Langevin

SDE. The equivalence of the Lagrangian and Eulerian (ADE) approaches to this problem was established by comparing the

numerical particle tracking simulations to the analytical solution for the one-dimensional ADE equation as follows: the spatial

distribution of the injected particles at different times was converted into the probability density function (PDF), which was

then compared to the analytical solution for the ADE equation for identical flow conditions, such as flow velocity and diffusion

coefficient (see Figure S1).

Recall that for the analytical ADE solution for the one-dimensional instantaneous injection case, the expectation of the spatial

distribution of the injected particles µ corresponds to the distance passed by the flow of velocity v during the time t since the

injection µ= vt. The statistical deviation of the spatial particle distribution is σ =
√
2Dt, where D is the diffusion coefficient

[Kreft and Zuber (1978), Table 2]. The pairs µ,σ were calculated for the spatial particle distribution at different times and

then compared to the analytical values. For the computational time t= 3.3784[min], the values µ,σ = 10.980,0.008235 were

obtained from the statistical analysis of the spatial particle distribution, as opposed to µ,σ = 10.9799,0.00822 for the ADE
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Figure S1. Validation of the Lagrangian particle tracker model using the ADE analytical solution for one-dimensional instantaneous injection
into a homogeneous medium: (a) t= 3.3784[min], (b) t= 5.6246[min]. Blue circle markers show particle tracking experiment results while
solid red lines show the analytical ADE solution.

analytical solution (Figure S1a). For the computational time t= 5.6246[min], statistical analysis of particle tracking gave

µ,σ = 18.2798,0.010768, as opposed to µ,σ = 18.2798,0.010606 for the ADE analytical solution (Figure S1b). The high

degree of agreement between these two approaches is evident, thus showing a satisfying degree of equivalence between the

Lagrangian particle tracker model and the analytical ADE solution for the validation scenario.
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