Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5859-2022
https://doi.org/10.5194/hess-26-5859-2022
Research article
 | 
23 Nov 2022
Research article |  | 23 Nov 2022

Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth

Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen

Related authors

A National Scale Hybrid Model for Enhanced Streamflow Estimation – Consolidating a Physically Based Hydrological Model with Long Short-term Memory Networks
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-235,https://doi.org/10.5194/hess-2023-235, 2023
Preprint under review for HESS
Short summary
Potential of Machine learning techniques compared to MIKE-SHE model for drain flow predictions in tile-drained agricultural areas of Denmark
Hafsa Mahmood, Ty P. A. Ferré, Raphael J. M. Schneider, Simon Stisen, Rasmus R. Frederiksen, and Anders V. Christiansen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1872,https://doi.org/10.5194/egusphere-2023-1872, 2023
Short summary
A robust objective function for calibration of groundwater models in light of deficiencies of model structure and observations
Raphael Schneider, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-685,https://doi.org/10.5194/hess-2019-685, 2020
Revised manuscript not accepted
Short summary
Application of CryoSat-2 altimetry data for river analysis and modelling
Raphael Schneider, Peter Nygaard Godiksen, Heidi Villadsen, Henrik Madsen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 21, 751–764, https://doi.org/10.5194/hess-21-751-2017,https://doi.org/10.5194/hess-21-751-2017, 2017
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Technical note: Novel analytical solution for groundwater response to atmospheric tides
Jose M. Bastias Espejo, Chris Turnadge, Russell S. Crosbie, Philipp Blum, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 27, 3447–3462, https://doi.org/10.5194/hess-27-3447-2023,https://doi.org/10.5194/hess-27-3447-2023, 2023
Short summary
Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023,https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River basin
Amanda Triplett and Laura E. Condon
Hydrol. Earth Syst. Sci., 27, 2763–2785, https://doi.org/10.5194/hess-27-2763-2023,https://doi.org/10.5194/hess-27-2763-2023, 2023
Short summary
Adjoint subordination to calculate backward travel time probability of pollutants in water with various velocity resolutions
Yong Zhang, Graham E. Fogg, Hongguang Sun, Donald M. Reeves, Roseanna M. Neupauer, and Wei Wei
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-131,https://doi.org/10.5194/hess-2023-131, 2023
Revised manuscript accepted for HESS
Short summary
Comparison of artificial neural networks and reservoir models for simulating karst spring discharge on five test sites in the Alpine and Mediterranean regions
Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde
Hydrol. Earth Syst. Sci., 27, 1961–1985, https://doi.org/10.5194/hess-27-1961-2023,https://doi.org/10.5194/hess-27-1961-2023, 2023
Short summary

Cited articles

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system, J. Hydrol., 87, 45–59, https://doi.org/10.1016/0022-1694(86)90114-9, 1986. 
Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A Ranking of Hydrological Signatures Based on Their Predictability in Space, Water Resour. Res., 54, 8792–8812, https://doi.org/10.1029/2018WR022606, 2018. 
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Torn, R. D., Kustas, W. P., and Basara, J. B.: A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes to Micrometeorological Scales, J. Hydrometeorol., 5, 343–363, https://doi.org/10.1175/1525-7541(2004)005<0343:AMRSMF>2.0.CO;2, 2004. 
Anderson, M. C., Yang, Y., Xue, J., Knipper, K. R., Yang, Y., Gao, F., Hain, C. R., Kustas, W. P., Cawse-Nicholson, K., Hulley, G., Fisher, J. B., Alfieri, J. G., Meyers, T. P., Prueger, J., Baldocchi, D. D., and Rey-Sanchez, C.: Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales, Remote Sens. Environ., 252, 112189, https://doi.org/10.1016/j.rse.2020.112189, 2021. 
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Sci. Hydrol., 24, 43–69, 1979. 
Download
Short summary
Hydrological models at high spatial resolution are computationally expensive. However, outputs from such models, such as the depth of the groundwater table, are often desired in high resolution. We developed a downscaling algorithm based on machine learning that allows us to increase spatial resolution of hydrological model outputs, alleviating computational burden. We successfully applied the downscaling algorithm to the climate-change-induced impacts on the groundwater table across Denmark.