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Abstract. There is an urgent demand for assessments of cli-
mate change impacts on the hydrological cycle at high spa-
tial resolutions. In particular, the impacts on shallow ground-
water levels, which can lead to both flooding and drought,
have major implications for agriculture, adaptation, and ur-
ban planning. Predicting such hydrological impacts is typi-
cally performed using physically based hydrological models
(HMs). However, such models are computationally expen-
sive, especially at high spatial resolutions.

This study is based on the Danish national groundwater
model, set up as a distributed, integrated surface–subsurface
model at a 500 m horizontal resolution. Recently, a version at
a higher resolution of 100 m was created, amongst others, to
better represent the uppermost groundwater table and to meet
end-user demands for water management and climate adapta-
tion. However, the increase in resolution of the hydrological
model also increases computational bottleneck. To evaluate
climate change impacts, a large ensemble of climate mod-
els was run with the 500 m hydrological model, while per-
forming the same ensemble run with the 100 m resolution
nationwide model was deemed infeasible. The desired out-
puts at the 100 m resolution were produced by developing a
novel, hybrid downscaling method based on machine learn-
ing (ML).

Hydrological models for five subcatchments, covering
around 9 % of Denmark and selected to represent a range
of hydrogeological settings, were run at 100 m resolutions
with forcings from a reduced ensemble of climate models.
Random forest (RF) algorithms were established using the
simulated climate change impacts (future – present) on wa-
ter table depth at 100 m resolution from those submodels as
training data.

The trained downscaling algorithms were then applied to
create nationwide maps of climate-change-induced impacts
on the shallow groundwater table at 100 m resolutions. These
downscaled maps were successfully validated against results
from a validation submodel at a 100 m resolution excluded
from training the algorithms, and compared to the impact sig-
nals from the 500 m HM across Denmark.

The suggested downscaling algorithm also opens for the
spatial downscaling of other model outputs. It has the po-
tential for further applications where, for example, compu-
tational limitations inhibit running distributed HMs at fine
resolutions.

1 Introduction

Groundwater accounts for a substantial part of the active hy-
drological cycle, and exhibits a wide range of interactions
with ecosystems, food and energy security, as well as cli-
mate and flood regulation (Gleeson et al., 2016). Interactions
with the land surface and other components of the hydrolog-
ical cycle are particularly pronounced where the uppermost
groundwater table is found within a few metres of the sur-
face. Such high groundwater tables affect up to a third of the
Earth’s land surface (Fan et al., 2013; Soylu and Bras, 2022).
Moreover, across many parts of the world, groundwater re-
sources are not only affected by human interactions, but also
changing due to climate change (Rodell et al., 2018).

Denmark, with its gentle topography and temperate cli-
mate, has particularly high groundwater tables. The upper-
most groundwater table (which we hereafter refer to as shal-
low groundwater) is located only a few metres to decimetres
below the surface across large parts of Denmark (Koch et
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Figure 1. Denmark with the mean depth of the shallow groundwater
table, as simulated by the DK-model HIP at a 100 m resolution for
the period 1990–2019. The submodels used for training and valida-
tion of the downscaling algorithm are outlined in blue and red. The
extents of the detail maps shown in Figs. 5, 6, and 8 are indicated as
black rectangles.

al., 2021; Henriksen et al., 2020a); see Fig. 1. This is also re-
flected in roughly 50 % of agricultural land in Denmark being
artificially drained (Olesen, 2009; Møller et al., 2018). Along
with rising precipitation in future climate (Pasten-Zapata et
al., 2019), the shallow groundwater levels are generally ex-
pected to rise (Refsgaard et al., 2016; Henriksen et al., 2020b;
van Roosmalen et al., 2007). The projected rise in groundwa-
ter level is most pronounced in winter, where groundwater
levels are highest to start with, due to increased precipita-
tion. During summer, the picture is more complex for shallow
groundwater levels, with some areas showing falling ground-
water tables due to increased temperature and evapotranspi-
ration. More extreme and higher groundwater levels in the
future pose significant challenges for infrastructure, agricul-
ture, and ecosystems (Halsnæs et al., 2022). Due to the con-
siderable small-scale variability of shallow groundwater lev-
els (Koch et al., 2021), which are mainly controlled by topo-
graphic variability and hydrogeology, high-resolution infor-
mation is required for purposeful groundwater management
and climate adaptation.

This requirement for high-resolution data is particularly
relevant when evaluating climate-change-induced impacts on

the shallow groundwater table. The national water resource
model of Denmark (the so-called DK-model) is based on
a distributed, coupled surface–subsurface model at a 500 m
horizontal resolution, and recently at a higher-resolution
100 m version with specific focus on surface-near processes.
As forcing for climate change impact studies, a large en-
semble of locally bias-corrected climate models is available
(Pasten-Zapata et al., 2019). Ideally, national hydrological
impact assessments would be based on the high-resolution
version of the hydrological model (HM). However, the 25-
fold increase in computational nodes for the 100 m model
compared to the 500 m model makes such a modelling task
infeasible due to the computational burden.

In order to obtain national impact projections at high res-
olution based on a large climate ensemble, but with a mini-
mized computational cost, it is proposed to develop a down-
scaling method based on machine learning (ML) to refine
impact simulations from the computationally feasible 500 m
HM to a resolution of 100 m.

Within other fields such as remote sensing, ML-based spa-
tial downscaling algorithms have been explored and used for
several years, for example in the DisALEXI modelling sys-
tem (Anderson et al., 2004, 2021). Here, the background
is often to bridge gaps between coarse-resolution imagery
from some satellites that typically have a frequent revisit
time, and high-resolution imagery from other satellites with
lower temporal resolution (Yang et al., 2017; Im et al., 2016).
Moreover, image-sharpening techniques that build scale-
independent models are utilized to increase the spatial reso-
lution of satellite data (Guzinski and Nieto, 2019). Similarly,
spatial downscaling is widely applied for weather predictions
and climate models (e.g. Cheng et al., 2020; Sun and Tang,
2020). We hypothesize that applying similar techniques on
outputs from complex HMs, combining the information of
physically based models with various high-resolution spatial
data and ML methods will increase relevance of HM outputs.
This is a relatively new field with a few applications so far.
For example, Koch et al. (2021) used HM outputs as covari-
ates in ML algorithms predicting groundwater table depth at
high spatial resolution, or Zhang et al. (2021) downscaled
GRACE total water storage data with the help of HM output
from the Global Land Data Assimilation System (GLDAS).
Here, the presented research is contributing to the further in-
tegration of physically based HMs with ML techniques. This
can also contribute to the discussion of further development
of knowledge-guided or theory-informed ML techniques in
hydrological science (Nearing et al., 2021).

Hence, the objective of this work is to develop a ML-based
algorithm for spatial downscaling of physically based HM
outputs. This is applied to the downscaling of climate change
impact predictions on the simulated depth of the shallow
groundwater table for Denmark, downscaling from a resolu-
tion of 500 to 100 m. We favour an ML-based approach over
simple interpolation methods or topography-driven down-
scaling, because ML has the capability to effectively learn
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multivariate relationships which we expect to be highly rel-
evant for a complex variable like the shallow groundwater
table. Even though running the DK-model nationwide at the
fine 100 m resolution with a full ensemble of climate models
is computationally too expensive, it is feasible to run some
selected submodels at a 100 m resolution and utilize their
high resolution outputs as training data for the ML-based
downscaling. In addition, a single national-scale determin-
istic run with historic climate is possible at 100 m, which can
serve as valuable information to the downscaling algorithm.
Also, all the relevant model input data are available at a res-
olution of at least 100 m.

2 Data and methods

2.1 DK-model HIP

The national water resource model for Denmark, the DK-
model, covers most of the Danish land surface area of ap-
proximately 43 000 km2. It has been developed continuously
over several decades (Højberg et al., 2013; Henriksen et al.,
2003; Stisen et al., 2019) and has been used in various re-
search projects (recent examples: Koch and Schneider, 2022;
Noorduijn et al., 2021; Schneider et al., 2022; Soltani et al.,
2021), public consultancy as well as in relation to the EU Wa-
ter Framework Directive. It targets, for example, questions of
water resource availability, water quality, and future impacts
on the hydrological cycle due to climate and land use change.
Most versions of the DK-model have a horizontal resolution
of 500 m, while a version at 100 m horizontal resolution was
created as part of the Danish Hydrologic Information and
Prognosis system (HIP; Henriksen et al., 2020b). This most
recent version, hereafter referred to as DK-model HIP, is the
basis of the presented work. Figure 1 displays mean historic
depths of the shallow groundwater table as simulated by the
DK-model HIP: Shallow groundwater levels are within the
first 1–2 m from the surface for large parts of the country,
with variations mostly controlled by topography and geol-
ogy.

The importance of the location of the shallow groundwa-
ter table, and it being controlled by small-scale variations in
topography and geology, is also one of the main motivations
for the creation of the finer 100 m resolution DK-model HIP
(see also the 10 m resolution map of average groundwater ta-
bles developed in the same project by Koch et al., 2021).

2.1.1 General hydrological model setup in MIKE SHE

The DK-model HIP is an integrated, distributed surface
water–groundwater model setup in the MIKE SHE model
code (Abbott et al., 1986; DHI, 2020). MIKE SHE is used to
couple 3D subsurface flow, 2D overland flow, a simple two-
layer description of the unsaturated zone, and 1D kinematic
routing of flow in the stream network. It is run as a transient

model with daily climate forcing and a maximum time step
of 24 h.

The description of the DK-model is kept short here, as the
model itself and its development is not the focus of this pa-
per. For more details on model setup, input, and parameter-
ization, the readers are referred to the provided literature in
the following two sections.

2.1.2 Input data and conceptualization

The DK-model HIP exists in two distinct horizontal resolu-
tions of 500 and 100 m, with all relevant input data available
at 100 m resolution. The saturated zone is divided into 9–11
computational layers of varying thickness, depending on the
region. The 3D unit-based parameterization of the subsurface
is based on a nationwide hydrogeological model, with the ex-
ception of the uppermost computational layer with a constant
thickness of 2 m which is parameterized based on the Danish
soil map (Jakobsen et al., 2015).

Human water use is included to the extent that groundwa-
ter extractions for drinking water and irrigation are included;
sewage plant outflows are also added to the model. Moreover,
the model includes a representation of (subsurface) drainage,
which is widespread in Denmark (as described in Schneider
et al., 2022).

As historic climate forcing for precipitation, tempera-
ture, and potential evapotranspiration, the gridded, daily data
from the Danish Meteorological Institute is used (Scharling,
1999a, b). Temperature and potential evapotranspiration are
provided at 20 km resolution and precipitation at 10 km, and
interpolated to the respective HM resolution of 100 or 500 m.
Daily precipitation is corrected as described by Stisen et
al. (2011).

2.1.3 Model calibration

The national DK-model HIP was calibrated in its 500 m ver-
sion, against observations of groundwater heads and stream-
flow for the period 2000 to 2010, and validated from 1990
to 1999 and 2011 to 2019. For calibration, the model opti-
mization tool PEST (Doherty, 2015) was used with its im-
plementation of the Gauss–Marquardt–Levenberg algorithm.
Again, due to excessive computational effort, it was not pos-
sible to conduct such a calibration, requiring a large number
of model runs, with the full 100 m national model. However,
through a validation comparison, it was deemed feasible to
directly transfer the calibrated parameters from the 500 m
version of the model to its 100 m version without loss of per-
formance. On the contrary, especially the performance for
shallow groundwater heads was improved moving from the
500 m to the 100 m version. A recalibration of a limited set
of parameters for 10 subcatchments in 100 m yielded no sub-
stantial additional improvement in model performance. De-
tails regarding the model calibration are beyond the scope of
this paper and can be found in Henriksen et al. (2020a).
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Table 1. Overview over the 17 used bias-corrected RCMs. The training models are marked. Changes to projected precipitation (P ) are given
for the far future (ff) relative to the reference period, yearly as well as separately for the summer and winter half year.

Change in annual P , ff [mm]

GCM RCM Ensemble Year Summer Winter Train

CERFACS-CNRM-CM5 CCLM 4.8.17 r1i1p1 151 71 80 x
HadGEM2-ES REMO2015 r1i1p1 108 −15 123 x
MPI-ESM-LR RCA4 r1i1p1 182 32 150 x
MPI-ESM-LR CSC-REMO r2i1p1 138 −3 142 x
NorESM1-M HIRHAM5 r1i1p1 143 39 104 x
CanESM2 REMO2015 r1i1p1 263 89 173
EC-EARTH RACMO 2.2E r12i1p1 82 15 67
EC-EARTH RACMO 2.2E r1i1p1 67 5 63
EC-EARTH HIRHAM5 r3i1p1 126 53 73
IPSL-CM5A-MR RCA4 r1i1p1 209 32 177
MIROC5 REMO2015 r1i1p1 145 58 87
HadGEM2-ES CCLM 4.8.17 r1i1p1 107 38 69
HadGEM2-ES HIRHAM5 r1i1p1 203 68 136
HadGEM2-ES RACMO 2.2E r1i1p1 149 13 137
HadGEM2-ES RCA4 r1i1p1 213 40 173
MPI-ESM-LR CSC-REMO r1i1p1 134 33 101
EC-EARTH RCA4 r12i1p1 64 −8 71

2.2 Input data for future climate scenarios

2.2.1 Climate models

An ensemble of regional climate models (RCMs) from the
Euro-CORDEX initiative (Jacob et al., 2014) was used in
this work. Those RCMs were locally bias corrected for Den-
mark and remapped to the same 10 and 20 km resolutions
of the historical climate data as described in Pasten-Zapata
et al. (2019). All RCMs cover the years 1971 to 2100 with
daily time steps. For the work presented here, we used 17
RCMs representing the RCP8.5 greenhouse gas concentra-
tion scenario (van Vuuren et al., 2011) shown in Table 1.
Out of that ensemble of 17 RCMs, we selected a subset of
5 RCMs. Those 5 RCMs were selected based on their ranges
of projected precipitation, to cover a wide range of future
climates, ensuring that the median precipitation predictions
across the 5 selected RCMs are close to the median precip-
itation predictions of the entire ensemble of 17, as well as
cover variances in changes between summer and winter pre-
cipitation. This subset of 5 RCMs was used with the 100 m
submodels (Fig. 1), producing the training data for the down-
scaling.

2.2.2 Further input data for future scenarios

Besides climate forcing, some further input data were
adapted to account for future conditions: sea level is included
as fixed head boundaries along sea boundaries of the HM.
For the historic model runs, the sea level is kept constant at
an elevation of 0 m. For the future scenarios, sea-level rise

was accounted for as projected by the Danish Meteorologi-
cal Institute (Thejll et al., 2021).

Changes in groundwater abstraction rates, sewage plant
outflows, and land use were not projected, but current his-
toric values and maps were assumed for the future period.
Irrigation is simulated demand driven in the model; hence, it
automatically accounts for climatic changes.

2.3 Climate change impact runs with the hydrological
models

An overview of the different climate change impact runs per-
formed with the HMs is given in Table 2. Due to computa-
tional limitations, we ran the full ensemble of 17 RCMs with
the 500 m national HM only (C; B is a subset of C). Besides
that, we selected five training subcatchments, covering about
9 % of Denmark’s surface area in total, and ran those with
five selected RCMs at 100 m resolution (D). To allow for a
fully independent validation, a sixth validation submodel was
run at 100 m resolution, with the full RCM ensemble (E). Fi-
nally, the DK-model HIP was also run for all of Denmark
with observed climate forcing, for the period 1990 to 2019.
These historic runs were performed both at 500 and 100 m
resolutions (A and *). Relevant HM outputs were initially
stored at daily time steps and then aggregated as described
below in Sect. 2.3.1.

For the climate change impact evaluation, the HMs were
run using each individual member of the ensemble of RCMs
as forcing, for three different periods: the reference period,
serving as baseline, as well as the near future period (nf),
and the far future period (ff). For the reference period, model
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Table 2. Overview of the performed HM runs with different climate inputs for Denmark and different submodels. A – used as covariate. B
– to be downscaled, in training, and as additional training data (auxiliary points). C – to be downscaled, in validation. D – training data. E –
validation data. ∗: Not directly used in this study.

Denmark, Denmark, 5 training Validation
500 m 100 m submodels I–V, submodel VI,

100 m 100 m

Historic climate (1990–2019) ∗ A

17 RCMs Reference period (1991–2020) C E
(full ensemble) Near future (2041–2070) C E

Far future (2071–2100) C E

5 selected Reference period (1991–2020) B D E
training RCMs Near future (2041–2070) B D E

Far future (2071–2100) B D E

outputs were extracted from 1 January 1991 to 31 Decem-
ber 2020, for the near future from 1 January 2041 to 31 De-
cember 2070, and for the far future from 1 January 2071 to
31 December 2100. The HMs were started with initial con-
ditions taken from a continuous run of the corresponding
HM across the entire period of 1991 to 2100, using condi-
tions from the same date as the respective simulation start.
A warmup period of 4 years prior to the start dates for result
extraction was allowed for each of the HM runs.

2.3.1 Climate-change-induced changes to the shallow
groundwater table

Finally, the climate change impacts of interest were the
average conditions across each of the future 30-year peri-
ods, subtracted from the reference 30-year period. These
climate change impacts on the shallow groundwater table
are hereafter also referred to as to-be-downscaled-variables
(TBDVs).

That means we focus on changes to the groundwater ta-
ble caused by future climate change, as opposed to absolute
values, as changes can be more useful than absolute values
when comparing present-day to future conditions. This is
mostly because changes to the groundwater table are typi-
cally small compared to the absolute depth of the groundwa-
ter table and the uncertainties in the modelled absolute depth.
Hence, when evaluating future conditions, an absolute value
predicted by the HM can only be used in direct comparison
to present-day output of the same HM. If being used in differ-
ent contexts, for example in comparison with more detailed
local HM results or observations of the groundwater table,
the discrepancies between these absolute values will domi-
nate and potentially mask the projected changes. When using
predicted changes between reference and future period HM
outputs with the same HM setup, those projected changes can
be attributed with high confidence to the changes in climate.

Hence, we downscale projected climate-change-induced
changes to the shallow groundwater table. Different aggre-

gated statistics were chosen, and changes were calculated for
both the nf and ff periods. The chosen aggregated statistics
are the changes to the mean, 1st percentile, and 99th per-
centile of the simulated groundwater table (high and low
groundwater tables, respectively), as well as changes to the
1 m exceedance probability. The latter represents the fraction
of time the groundwater table is closer than 1 m to terrain
during the given period. The 1 m threshold was chosen based
on user feedback (Stisen et al., 2018), and is relevant due
to issues with infrastructure and agriculture caused by high
groundwater levels, many of which are expected to start if the
groundwater is closer than 1 m to the surface (e.g. the typi-
cal depth of tile drains around 1 m). This results in a total of
eight statistics to be downscaled (TBDV, see also Table 3).
For example, the change to the 1st percentile depth of the
groundwater table for the nf period Q01nf g is calculated as

Q01nf g =median(Q01(nfi)g−Q01(refi)g), (1)

where Q01(nfi)g is the 1st percentile of depth of the ground-
water table simulated in each of the HM’s grid cells g in-
dividually, across all daily values of the 30-year nf period,
and Q01(refi)g is the respective value for the 30-year refer-
ence period; i refers to each of the individual members of
the RCM ensemble used, and the actual TBDV is then the
median change across the RCM ensemble. The subscript g is
omitted in the following for ease of readability. In equivalent
manner, all the eight TBDVs meannf, meanff, Q01nf, Q01ff,
Q99nf, Q99ff, ex1mnf, and ex1mff are calculated. Moreover,
in the same manner as the TBDVs were calculated based
on the 500 m national DK-model HIP outputs, the respective
training data were calculated based on the 100 m submodels.

2.3.2 National climate change impact runs at 500 m

The full national DK-model HIP was run at 500 m resolu-
tion with the full ensemble of 17 RCMs (which includes the
5 selected training RCMs). This 500 m model output repre-
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sents the data that are to be downscaled to the finer 100 m
resolution with the presented method.

2.3.3 Submodel runs at 100 m

Six submodels distributed across Denmark (outlined and
marked in Fig. 1), each representing a hydrologic subcatch-
ment and setup at 100 m resolution, were chosen to produce
training and validation data for the downscaling algorithm:

I Suså

II Odense Å

III Kongeå/Kolding Å

IV Storå

V Simested Å/Mariager Fjord

VI Aarhus Å/Aarhus (validation only)

The five submodels I to V were used as training data, whereas
submodel VI was used as a fully independent validation
dataset. To reduce computational effort spent on HMs, the
five training models were run with the five selected RCMs,
i.e. the training data are based on the reduced RCM ensem-
ble. For the validation, to address the extrapolation capabil-
ity of the downscaling algorithm, the validation model was
also run with the full ensemble of 17 RCMs. The submod-
els were run with the same general model setup, periods, and
warmup as for the national model described at the start of
Sect. 2.3. Along the land boundaries of the submodels, dy-
namic boundary conditions were applied based on the simu-
lated groundwater heads in the corresponding 500 m national
HM.

The five training submodels, along with the sixth valida-
tion model, were deliberately selected to cover a representa-
tive range of geologic, topographic, and hydrologic variabil-
ity occurring across Denmark. The ML methods are known
to perform poorly when used to extrapolate data beyond the
range of data they are trained against (Meyer and Pebesma,
2021). Figure 2 displays the histograms of one of the vari-
ables to be downscaled (TBDV), together with some im-
portant covariates. The values covered by the five training
submodels closely resemble the distribution and ranges seen
across all of Denmark; i.e. the submodels are considered rep-
resentative of all of Denmark. Similarly, the validation sub-
model also covers comparable covariate ranges.

2.4 ML-based downscaling

2.4.1 Covariates

Table 3 presents an overview of the covariates used in
the downscaling algorithm. The first type of covariates is
topography-related, and contains six different covariates.

Secondly, 14 covariates derived from the DK-model HIP pa-
rameters were used: this group contains the horizontal trans-
missivities for the uppermost 7 computational layers of the
model’s saturated zone, and the mean horizontal hydraulic
conductivities across 5 depth intervals, as well as the spatially
distributed drain depths and drain-time constants used in the
model. The last group contains the actual 500 m change to
the groundwater table that is to be downscaled (the TBDV).
Besides that, the respective absolute value corresponding to
each TBDV from the 100 m historic HM is included. Further-
more, the differences in TBDVs between a historic dry and
wet period were included. For the wet period, the 12 con-
secutive years between 2004 and 2015 were used (average
yearly precipitation of 852 mm), and for the dry period, the
years 1990 to 2001 were used (average yearly precipitation
of 817 mm). The differences between wet and dry historic
periods were calculated in the same manner as the changes
between future and reference periods, and are assumed to be
a proxy for expected changes with future, generally wetter,
climates.

All covariates are available at the target resolution of
100 m for all of Denmark, to allow the application of the
downscaling algorithm to the entire country. The only ex-
ception obviously is the TBDV itself, which is only avail-
able at 500 m nationwide. It was resampled from its native
resolution to 100 m using bilinear interpolation: initial tests
showed performance improvements of the downscaling al-
gorithm if interpolated TBDVs were used; using resampled
TBDVs without interpolation lead to visible artefacts at the
500 m grid boundaries in the 100 m outputs.

More covariates have been used in preliminary tests. Anal-
yses of covariate importance and collinearity, excluding non-
informative and strongly correlated covariates, lead to the fi-
nal set of 23 covariates.

2.4.2 Random forest regressor

For the downscaling task at hand, we decided to use a random
forest (RF) regressor. The RF goes back to Breiman (2001)
and over time has proven to be a powerful and versatile data-
driven modelling tool for a range of applications in environ-
mental sciences. For example, RF was used in the context
of groundwater pollution (Rodriguez-Galiano et al., 2014;
Tesoriero et al., 2017), data analysis and predictions in large-
sample hydrology (Addor et al., 2018; Ghiggi et al., 2019),
as well as some of the remote-sensing downscaling models
mentioned in Sect. 1. Examples from related Danish contexts
include the prediction of groundwater level changes based
on well observations (Gonzalez and Arsanjani, 2021), mod-
elling of the historic depth of shallow groundwater and redox
boundary (Koch et al., 2019b, a), or the modelling of artifi-
cial drainage properties (Motarjemi et al., 2021; Møller et al.,
2018).

RF is a supervised ML method, requiring labelled training
data. Based on the training dataset, an RF regressor model
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Table 3. Overview of the covariates.

Topography-related covariates

topo Elevation [m a.m.s.l.]
topod1–5 Difference between elevation in 500 and 100 m resolution [m]
TWI Topographic wetness index (Beven and Kirkby, 1979) [–]
slope Slope of terrain [–]
reltop2 Relative topography within 200 m radius [m]
reltop5 Relative topography within 500 m radius [m]

Model parameter-related covariates (from DK-model HIP in 100 m)

drain_d Drain depth [m]
drain_tc Drain time constant [s−1]
trh_lay<x> Horizonal transmissivity in computational layers 1 to 7 [m2 s−1]
kh_mean_<x> Geometric mean of horizontal hydraulic conductivity in five depth intervals: 2–5, 5–10, 10–15,

15–20, 20–25 m
[m2 s−1]

Covariates related to TBDV

TBDV “To-be-downscaled-variable”, i.e. change in depth of shallow groundwater table. From 500 m
DK-model HIP (bilinear interpolation to 100 m). B and C in Table 2. TBDV is one of
meannf, meanff (mean groundwater table)
Q01nf, Q01ff (high groundwater table)
Q99nf, Q99ff (low groundwater table)
ex1mnf, ex1mff (1 m exceedance probability)

[m]
[m]
[m]
[–]

TBDV_hist Absolute value of TBDV for the historic period from DK-model HIP 100 m (e.g. the mean depth
of the shallow groundwater table). A in Table 2.

[m]

TBDV_hist_wd Difference in TBDV between a wet and dry period (dry: 1990–2001, wet: 2004–2015) from
the historic DK-model HIP 100 m (e.g. the mean depth of shallow groundwater table in the wet
period minus the mean depth of shallow groundwater table in the dry period). A in Table 2.

[m]

learns about relationships between a set of covariates and the
target (training) data values. In the next step, predictions at
unsampled locations beyond the training data can be made.
Tyralis et al. (2019) provide a concise overview of the theory
behind and the use of RF in hydrological contexts.

We used the implementation of RF regressors in
Python 3.8 from the scikit-learn package, version
1.0.2 (https://scikit-learn.org/1.0/modules/generated/
sklearn.ensemble.RandomForestRegressor.html?
highlight=randomforestregressor#sklearn.ensemble.
RandomForestRegressor, last access: 17 November 2022).

In Fig. 3, a workflow diagram of the downscaling algo-
rithm is shown: all covariates exist at 100 m resolution for all
of Denmark, with the exception of the actual TBDV, which
originates from the 500 m HM. The TBDV exists at the finer
target resolution of 100 m for the five training submodels –
these data are used as training data for the RF downscaling
regressors, alongside some auxiliary points from the 500 m
HM (see below). After training, the RF regressors are used
to produce Denmark-wide maps of the TBDV at 100 m. The
downscaled outputs are validated against both national HM
output, the training data, and a sixth, independent validation
submodel at 100 m. Details are presented in the following
sections.

2.4.3 Auxiliary points for RF training

Initial tests with spatial cross validations of the downscaling
algorithm showed issues with the predictions for the spatial
hold-out, i.e. with spatial transferability of the algorithm to
areas not covered by the training data. To improve spatial
transferability, it was decided to include additional training
data sampled from the entirety of Denmark outside the train-
ing submodels, which enhance the spatially limited training
dataset. These points were sampled randomly in space. The
actual training target – the TBDV at 100 m – is lacking for
those points, and instead the TBDV at 500 m was used as
training target. Hence, we refer to these points as auxiliary
points. The inclusion of such auxiliary points increases the
robustness of the RF downscaling outside the training data
areas; for example, we experienced some areas where the
downscaling incorrectly reversed the direction of change to
the groundwater table without using auxiliary points, which
was alleviated after including auxiliary points. Despite the
covariate ranges being adequately covered by the training
catchments (Fig. 2), the auxiliary points still inform the al-
gorithm by adding covariate values and likely combinations
of covariates (the latter being a focus of the work on ML al-
gorithm transferability by Meyer and Pebesma, 2021). How-
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Figure 2. Histograms of covariate ranges covered by the five training and the validation submodels, compared to all of Denmark. Shown
for the example of TBDV meanff. (a) Change in mean depth of shallow groundwater from the 500 m model (i.e. the TBDV) [m]. (b) Mean
depth of shallow groundwater from the historic 100 m model (the respective most important covariate) [m]. (c, d): kh mean 2–5 m ([m s−1],
log-transformed) and reltop5 [m] as two more covariates.

Figure 3. Diagram of the downscaling algorithm.

ever, the more auxiliary points are included, the closer the
downscaled output resembles the original TBDV at 500 m,
which is undesired. Considering this trade-off, we tested dif-
ferent amounts of auxiliary points, and settled on an optimal
number of 20 000 auxiliary points covering all of Denmark
to be included in the training data. This adds 5 % to the to-
tal number of data points in the training dataset comprised
of the 5 training submodels, where all 100 m HM grids were
included in the training data (approximately 400 000 points).

2.4.4 Training the RF regressors

The four different climate change impact statistics regarded
in this work – i.e. changes to the depth of the groundwater
table in average (mean), high (Q01), and low (Q99) condi-
tions, as well as the probability of the groundwater table ex-
ceeding 1 m below terrain (ex1m) – are expected to be con-
trolled by different properties. Hence, it was decided to train
a separate RF downscaler for each of the four TBDVs. How-
ever, to ensure the consistency across near and far future and
to increase the robustness of the downscaler by increasing the
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Table 4. The parameters used for the RF regressors. The first section presents the tested hyperparameters, where the selected values for each
parameter are marked in bold. Further parameters are reported in the second section.

Name Description Values (optimal)

RF parameters tested in hyperparameter search

max_depth Maximum depth of tree. If “all”, nodes are expanded until
leaves are pure or all leaves contain less than min_samples_split
samples

all, 30

max_features Number of features (covariates) to consider when looking for n_features,
the best split 0.5 ·n_features,

sqrt(n_features)

min_samples_split Minimum number of samples required to split an internal node 2, 5, 25

min_samples_leaf Minimum number of samples required to be a leaf node 1, 3, 10, 50

bootstrap Use bootstrap samples to build trees True, False

Further RF parameters

n_estimators Number of trees in the forest 200

criterion Function to measure the quality of a split mse

amount of training data, each of the downscalers was trained
against data from both nf and ff periods simultaneously. That
means that four RF downscaler models were trained; one for
each mean, Q01, Q99, and ex1m.

The training was performed using the 100 m target values
from the five fine-scale submodels (D in Table 2), based on
the reduced RCM ensemble, as well as the auxiliary points
from the 500 m HM. The respective TBDV at 500 m was
taken from the national HM (B in Table 2). Beyond the train-
ing data at 100 m and the TBDV at 500 m, the other covari-
ates presented in Table 3 were used.

Based on the training data, the importance of each of the
covariates was evaluated: the information content (impor-
tance) that each covariate delivers to the RF regressors is de-
termined by randomly perturbing each of the individual co-
variates one by one, retraining the model, and observing the
decrease in model fit. Moreover, as covariate collinearity can
lead to misleading results of such an analysis, the importance
analysis was also performed by perturbing whole groups of
related covariates at a time (e.g. Koch et al., 2019a).

2.4.5 RF hyperparameter search

Random forest regressors have built-in parameters control-
ling model behaviour and complexity, the so-called hyper-
parameters. To fine-tune and optimize the RF regressor per-
formance, a hyperparameter search was performed using the
standard grid-search procedure. The tested parameter values,
resulting in 144 unique combinations, are listed in Table 4.
For each of the parameter combinations, and each of the
TBDVs, the following was performed:

i An evaluation of the ability of the RF regressor to repro-
duce the 100 m HM results by determining Pearson’s R

was performed in a spatial cross-validation test, where
the RF regressor was trained against four of the five
training submodels. Its results were validated against
the hold-out submodel, looping through all five permu-
tations of train/hold-out submodels.

ii An evaluation of the Denmark-wide bias introduced by
the downscaling. Here, the RF regressor was trained
against all five training submodels, and then used for
predictions for all of Denmark. Those predictions were
compared against the national 500 m HM results.

In this setup, (i) presents an indication of the RF regressor’s
ability to reproduce the fine-scale 100 m results, whereas (ii)
represents an indication of the transferability and robustness
of the RF regressor, with decreasing performance in the case
of overfitting. Based on averaging these results across all TB-
DVs, a hyperparameter set representing an optimal trade-off
was determined. These hyperparameters, marked bold in Ta-
ble 4 alongside the other reported parameters, were then used
in all subsequent tasks.

2.4.6 Validation of the RF regressors’ downscaled
outputs

Subsequent to training the RF regressors with the optimal hy-
perparameters, they were applied to produce predictions for
the entirety of Denmark. That means that the four RF down-
scaler models were used to downscale the national 500 m HM
outputs to 100 m, separately for both the nf and ff periods,
and for both the ensemble of 5 RCMs used in the training
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Figure 4. Permutation covariate importance for the four RF downscaling regressors, for each covariate (see Table 3 for an overview). The
higher the reduction in R2, the higher the importance of the covariate. Each importance is provided permuting one covariate at a time (black
bars), and permuting whole groups of covariates (grey bars).

as well as for the full ensemble of 17 RCMs. The only dif-
ference in downscaling for the different periods and RCM
ensembles is in the used TBDV at 500 m, which always rep-
resents the corresponding period and RCM ensemble.

Validation of the downscaled results at 100 m was then
performed in two distinct ways. First, against the national
500 m HM output, verifying that the downscaling does not
introduce an overall bias. Second, against the 100 m HM out-
put from the validation submodel VI, which was not used in
the training process.

3 Results and discussion

3.1 Covariate importance

Figure 4 summarizes the results of the covariance importance
analysis, for each of the final trained RF downscalers. Results
are shown separately for individual covariate importance, as
well as for covariate group importance. The groups in order
of decreasing importance were as follows: (i) the TBDV it-
self, (ii) the historic TBDV from the 100 m model, (iii) the
geology-related covariates, (iv) the topography-related co-
variates, and (v) the drain parameterization-related covari-
ates. It is noteworthy that on average, the TBDV turns out
as the most important covariate, followed by the respec-
tive historic absolute value of the TBDV and the difference
between historic dry and wet periods. That means that the
downscaling is largely guided by information on the TBDV
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Figure 5. Example of downscaling results for changes to the mean depth of the groundwater table for the far future period (meanff). All
panels show the same extent. (a, b) Examples for covariates (reltop5 and trh_lay1). (c) 100 m HM submodel results (training data). (d) 100 m
historic absolute values (covariate). (e) 100 m downscaling result. (f) 500 m HM results (TBDV).

itself, which is desired since our aim was to develop a down-
scaling algorithm. Turning to the topography-related and
model parameter-related covariates, and comparing the dif-
ferent downscalers, it can be seen that Q01 (high ground-
water tables) is more strongly guided by the hydraulic con-
ductivities in the uppermost layers (the four most important
covariates from that group being trh_lay0, trh_lay1, trh_lay3,
and kh_mean_2–5 m). On the other hand, Q99 (low ground-
water tables) is more guided by hydraulic conductivity from
lower layers (the four most important covariates from that
group being kh_mean_2–5 m, kh_ mean_5–10 m, trh_lay5,
and try_lay1). In general, the topography-related covariates
show a lower importance than the geology-related covariates,

stressing the need for integrating geologic knowledge when
modelling groundwater levels.

3.2 Downscaled output

Figure 5 presents different input data and results for the
same area located at the north-eastern edge of submodel III
Kongeå/Kolding Å (extent indicated in Fig. 1), for the exam-
ple TBDV meanff. The top row (panels (a) and (b)) shows
examples for two of the used covariates, the relative topog-
raphy, and the horizontal hydraulic transmissivity in the sec-
ond layer of the HM. Panel (d) shows the simulated mean
groundwater heads from the historic 100 m HM, which is
used as a covariate. In panel (c), the used training data from
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Figure 6. Downscaling outputs for validation submodel VI, for the example of ex1mnf. Left column: The RF downscaling was trained to
downscale the median change of the five RCMs from the 500 m HM (a) with the 100 m HM training data (c; however, submodel VI is not
included in the training). Downscaling results are shown in (e). If applied for the full RCM ensemble (b, d, f), the downscaling results (f) also
align with the truth (d).

the 100 m hydrological submodel can be seen, whereas panel
(e) shows the corresponding downscaled result at 100 m reso-
lution. Comparing those two panels, together with the actual
TBDV in panel (f), i.e. the results from the HM at 500 m res-
olution, gives a good visual example of the capability of the
downscaling algorithm to reproduce the details at 100 m res-
olution from the 500 m coarse-resolution input. It also em-
phasizes the value of the fine-scale information. As can be
seen, the 100 m HM output resolves significant variations in
both the absolute values of the depth of the groundwater table
as well as the climate-change-induced changes to the ground-
water table that are completely lost at 500 m resolution. The

complexity of the fine-scale variations also goes beyond what
can be achieved by merely interpolating the coarser 500 m to
the finer 100 m resolution. Rather, it becomes apparent that
local variations in groundwater levels and level changes are
controlled by an interplay of topography and geology.

Figure 6 illustrates downscaling results for the fully inde-
pendent validation submodel VI Aarhus Å/Aarhus (extent in-
dicated in Fig. 1), for the example of TBDV ex1mff. The left
column shows the median change of the five RCMs used in
the training exercise, where the top row displays the TBDV
from the 500 m HM (B in Table 2). The middle row shows the
respective TBDV as simulated by the 100 m HM submodel
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Figure 7. Overview of the validation results of the RF downscaling algorithm. (a, b) Climate change impact on the TBDV. (c, d, e, f) MAE
and Pearson’s R between the 100 m HM from the validation submodel and the corresponding 500 m HM, both in its original resolution and
using bilinear interpolation to 100 m (“500 m HM intp”), as well as the 100 m RF results. Values along the y axis are given in cm for mean,
Q01, and Q99, and in % for ex1m, for both near (nf, 2041–2070) and far future (ff, 2071–2100).

(E in Table 2). The bottom row then displays the respective
downscaling results in 100 m. The right column shows the
corresponding results for the full RCM ensemble of 17 mod-
els. These 17 RCMs were not used in training, but only in
validation. Even if confronted with a different climate sig-
nal (compare the differences between the 500 m HM out-
puts in panels (a) and (b) in Fig. 6), and used outside the
area of training data, the downscaling algorithm still works
well. That means it is robust enough to be trained based on
a (small) RCM ensemble, and then be applied to HM output
based on a different (larger) RCM ensemble, which is also in
line with the findings from the covariate importance analy-

sis, where the corresponding TBDV showed to be the most
important covariate.

These visual evaluations of the downscaling outputs can be
confirmed quantitatively – Fig. 7 presents an overview. The
top row presents a Denmark-wide evaluation of the climate-
change-induced changes to the shallow groundwater table.
The bars present the mean changes across all of Denmark for
each of the eight TBDVs (i.e. mean, Q01, Q99, and 1mex for
both near and far future), as predicted by the 500 m national
HM runs, and the downscaled outputs in 100 m, respectively.
It can be observed that generally, the downscaling does not
introduce overall biases to the predicted changes, but remains
true to the general picture predicted by the coarser national
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Figure 8. Scatterplots for the example of TBDV meanff: comparing the training data (i.e. the TBDV in 100 m) with the actual TBDV in
500 m (a), and with the RF downscaling results in 100 m (b) for the five training submodels.

HM. This applies to both the ensemble of 5 RCMs, as well
as the full RCM ensemble with 17 models. The bottom two
rows of Fig. 7 display validation results of the downscaling
output against 100 m HM outputs for submodel VI, i.e. this is
a fully independent validation of the 100 m RF downscaling
output versus 100 m HM outputs. Spatial transferability to in-
dependent areas without training data is a well-known weak-
ness of the used ML techniques. However, our RF downscal-
ing model proves to be robust also in this context: Pearson
correlation coefficients between the 100 m RF output and the
100 m HM output are consistently higher than correlation co-
efficients between 500 m HM output and 100 m HM output.
It can also be seen that the RF downscaling adds more in-
formation than a simple interpolation, as results are given
separately for the 500 m HM outputs and a bilinear interpo-
lation of the 500 m HM outputs. The latter is considered the
benchmark to be beaten to determine whether a downscal-
ing algorithm actually delivers additional information over
the coarse-scale HM outputs. The same applies to the mean
absolute error (MAE) between the 100 m RF downscaling
output and the 100 HM, which is consistently smaller than
the MAE between the 500 m HM and 100 m HM.

For the example of the TBDV meanff, per-pixel data are
presented in scatterplots in Fig. 8. The left panel shows a
comparison of the 100 m training data from the HM of the
five training submodels against the corresponding TBDV
from the 500 m HM. Most values range between roughly
−10 and 30 cm, which means that the mean groundwater
table for the far future period is predicted to mostly be be-
tween 10 cm lower to 30 cm higher than in the reference pe-
riod. There is good general agreement between the 500 and
100 m HMs and no general bias, but a considerable scatter
caused by the differences in resolution. This is in line with
the previously discussed lack of bias in the predicted changes
from the 500 and 100 m HMs as apparent from the top row
of Fig. 7. The right panel shows a comparison of the 100 m
training data and the RF downscaling predictions in 100 m.

Here it can be seen that the downscaled results follow the
100 m HM outputs more closely than the 500 m HM outputs,
with a much narrower scatter.

Finally, Fig. 9 displays Denmark-wide results of the down-
scaling algorithm, for all four TBDVs of the far future period
meanff, Q01ff, Q99ff, and ex1mff. Each of the detailed maps
shows the same extent: they serve as a good illustration that
groundwater tables (and changes to them) are controlled by
small-scale landscape features, such as topography and geol-
ogy. If only 500 m information was available, many details
would be lost that are apparent in the 100 m resolution. For
many purposes, e.g. agriculture, information on the ground-
water table at the coarse scale of 500 m is inappropriate – a
grid size of 25 ha is larger than typical field size. However,
with a resolution of 100 m, i.e. 1 ha, we move into more rel-
evant, near-field-size resolutions. Furthermore, as the down-
scaled outputs are still based on physically based HMs, fine-
scale physical information is added on the interplay of con-
trols such as topography and geology on the groundwater ta-
ble.

Moreover, Fig. 9 also displays the initially mentioned ten-
dency to more extreme groundwater levels: the low ground-
water tables (Q99), typically occurring during the summer
months, are projected to fall across many regions of the coun-
try, especially across Zealand and southern Jutland where
groundwater levels are very shallow and affected by evap-
otranspiration. The high groundwater tables (Q01), typically
occurring during the wetter winter months, are simulated
to rise further for most of the country. Some of the high-
est rises are simulated for areas in central Jutland where the
shallow groundwater levels are deep below surface (compare
Fig. 1). Moderate rises are also simulated in regions where
the groundwater tables are very shallow (within the first 1 or
2 m below surface), such as parts of Zealand and Funen.
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Figure 9. Results of the downscaling, for the far future of all four TBDVs. Top row: Downscaling results in 100 m for all of Denmark. Middle
row: Detail of the 100 m downscaling results (extent indicated in top row). Bottom row: Same detail for the corresponding TBDV in 500 m.

3.3 Overarching discussion

Despite the discussed capabilities of ML techniques in ex-
ploiting large datasets at high spatial resolution, physi-
cally based HMs are still needed to predict climate-change-
induced changes to the hydrological cycle. Purely data-
driven methods (often based on ML algorithms) struggle
with predicting previously unobserved states, which holds
true for both spatial and temporal extrapolation (Meyer and
Pebesma, 2021; Mai et al., 2021; Koch and Schneider, 2022).
As an attempt to overcome the computational burden of high-
resolution, complex HMs, Tran et al. (2021) have developed
an ML-based emulator of an HM. Read et al. (2019) and
Koch and Schneider (2022) showed that guiding ML mod-
els with simulation data from a physically based model en-
hanced the capability of the ML model to extrapolate. The
downscaling algorithm presented in this work increases the
resolution of HM outputs, guided by fine-resolution HM out-
puts.

As our method is based on output from distributed, phys-
ically based HMs, we (i) are able to obtain fully distributed
climate change impact evaluations, and (ii) have higher confi-
dence in extrapolating the models to values outside observed

ranges, which is unique and, for example, goes beyond re-
cent efforts with purely data-driven extrapolations of climate
change impacts on groundwater levels for selected wells
across Germany (Wunsch et al., 2022). Our developed down-
scaling algorithms were shown to be robust, transferrable in
space, and also transferrable to a different climate signal, i.e.
transferable to a different RCM ensemble.

Acknowledging computational limitations, we based our
100 m training data on five HM subcatchments, representing
around 9 % of Denmark, which were run with forcings from
a reduced ensemble of five RCMs. This meant that the com-
putational time for hydrological model runs was reduced to
less than 3 % of what would be required for a nation-wide
full ensemble run at 100 m. The size of the training dataset
was chosen to be sufficiently large to allow for extrapolation
beyond the area of the training data. We also assume that the
careful choice of the training submodels, covering a variety
of different hydrogeological settings across Denmark, facili-
tated the spatial transferability of the downscaling algorithm.
For other applications of similar downscaling algorithms, the
necessary size of the training data also depends on the spe-
cific application – an algorithm used for predictions to a lim-
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ited area or within the training data requires a smaller train-
ing dataset than an algorithm used for extrapolation beyond
areas with training data.

The downscaling was facilitated by the consistency of pa-
rameter sets between the 500 and 100 m HM setups: we do
not intend to compensate for potential discrepancies in simu-
lated groundwater heads due to differences in parameter val-
ues, but merely want to downscale the 500 m national HM re-
sults to a finer scale as simulated by the corresponding model
in higher resolution. The same applies for all the other input
data: for both 100 and 500 m HMs, the same input data were
being used, with the only exception of scale.

4 Conclusions

We successfully designed and tested an RF-based spatial
downscaling algorithm for outputs from distributed HMs.
The usage of ML techniques in spatial downscaling is
widespread in fields such as remote sensing, however, still
limited in hydrologic modelling. The developed downscaling
algorithm is based on the existence of a coarse-scale HM for
the full domain of interest, together with equivalent fine-scale
HMs for limited parts of the domain. Furthermore, covariates
in fine scale are required for the full domain. We trained the
RF regressor based on the selected, representative fine-scale
HMs covering only around 9 % of the full domain, signifi-
cantly reducing computational effort on the complex HMs.
Furthermore, using the downscaling algorithm in the context
of an ensemble of RCMs, we could show that it is possible to
train the downscaling algorithm based on a smaller ensemble
of RCMs, and apply it to the full ensemble, further reducing
computational effort on HMs. The downscaling results were
successfully validated against the output from a fully inde-
pendent fine-scale validation HM, as well as the full-domain
results of the coarse-scale HM.

The presented framework is envisioned to be transferrable
to the downscaling of other spatial output from hydrologi-
cal and environmental models in general, also beyond ag-
gregated statistics (i.e. also in transient manner). It is gen-
erally acknowledged that there is a disparity between the –
computationally possible – spatial resolution of HM output,
and what is desired or required by users of the data, such as
authorities, consultants or citizens (Samaniego et al., 2019).
Also from a scientific point of view, we are commonly deal-
ing with HM resolution issues and spatial aggregation be-
yond what is appropriate, hindering process understanding
(Wood et al., 2011; Nijzink et al., 2016).

This also applies to the greater context of this paper, the
Danish HIP4Plus project (Henriksen et al., 2020b). Within
this project, a larger dataset of climate-change-induced
changes to the shallow groundwater table was generated
based on the presented framework. This includes predic-
tions for different greenhouse gas concentration scenarios
(RCP4.5 and RCP8.5), further statistics, and monthly as well

as seasonally aggregated values; a total of 236 variables (as
compared to the 8 presented here). All downscaled maps and
further data can be accessed via the HIP data portal https:
//hip.dataforsyningen.dk/ (last access: 17 November 2022).
Due to computational limits, the spatial resolution of HMs
is, in many cases as in the presented example, below what
is requested by end-users and decision makers. Downscaling
can help to bridge the gap to make HM output more relevant,
in this case within the context of climate change impact eval-
uation and adaptation, to deliver valuable input to urban and
infrastructure planning, or agriculture and future needs for
artificial drainage or water pollution risks.

Code and data availability. Denmark-wide data produced with the
presented downscaling algorithm, for a total of 236 different vari-
ables, are freely available from the HIP data portal: https://hip.
dataforsyningen.dk/ (SDFI, 2021). Note, however, that these are not
based on the exact same data used and presented in the paper. The
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