Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5697-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5697-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Univ. Rennes, CNRS, Geosciences Rennes – UMR 6118, 35000 Rennes, France
Laurent Longuevergne
Univ. Rennes, CNRS, Geosciences Rennes – UMR 6118, 35000 Rennes, France
Jean Marçais
INRAE, UR Riverly, 69625 Villeurbanne, France
Nicolas Lavenant
Univ. Rennes, CNRS, Geosciences Rennes – UMR 6118, 35000 Rennes, France
Olivier Bour
Univ. Rennes, CNRS, Geosciences Rennes – UMR 6118, 35000 Rennes, France
Related authors
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.
Alexandre Gauvain, Ronan Abhervé, Alexandre Coche, Martin Le Mesnil, Clément Roques, Camille Bouchez, Jean Marçais, Sarah Leray, Etienne Marti, Ronny Figueroa, Etienne Bresciani, Camille Vautier, Bastien Boivin, June Sallou, Johan Bourcier, Benoit Combemale, Philip Brunner, Laurent Longuevergne, Luc Aquilina, and Jean-Raynald de Dreuzy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3962, https://doi.org/10.5194/egusphere-2024-3962, 2025
Preprint archived
Short summary
Short summary
HydroModPy is an open-source toolbox that makes it easier to study and model groundwater flow at catchment scale. By combining mapping tools with groundwater modeling, it automates the process of building, analyzing and deploying aquifer models. This allows researchers to simulate groundwater flow that sustains stream baseflows, providing insights for the hydrology community. Designed to be accessible and customizable, HydroModPy supports sustainable water management, research, and education.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Nataline Simon, Olivier Bour, Mikaël Faucheux, Nicolas Lavenant, Hugo Le Lay, Ophélie Fovet, Zahra Thomas, and Laurent Longuevergne
Hydrol. Earth Syst. Sci., 26, 1459–1479, https://doi.org/10.5194/hess-26-1459-2022, https://doi.org/10.5194/hess-26-1459-2022, 2022
Short summary
Short summary
Groundwater discharge into streams plays a major role in the preservation of stream ecosystems. There were two complementary methods, both based on the use of the distributed temperature sensing technology, applied in a headwater catchment. Measurements allowed us to characterize the spatial and temporal patterns of groundwater discharge and quantify groundwater inflows into the stream, opening very promising perspectives for a novel characterization of the groundwater–stream interface.
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021, https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Short summary
GRACE provides us with global changes of terrestrial water storage. However, the data have a low spatial resolution, and localized storage changes in lakes/reservoirs or mass change due to earthquakes causes leakage effects. The correction product RECOG RL01 presented in this paper accounts for these effects. Its application allows for improving calibration/assimilation of GRACE into hydrological models and better drought detection in earthquake-affected areas.
Cited articles
Ajami, H., Sharma, A., Band, L. E., Evans, J. P., Tuteja, N. K., Amirthanathan, G. E., and Bari, M. A.: On the non-stationarity of hydrological response in anthropogenically unaffected catchments: An Australian perspective, Hydrol. Earth Syst. Sci., 21, 281–294,
https://doi.org/10.5194/hess-21-281-2017, 2017. a
Alley, W. M., Healy, R. W., LaBaugh, J. W., and Reilly, T. E.: Flow and
storage in groundwater systems, Science, 296, 1985–1990, https://doi.org/10.1126/science.1067123, 2002. a
Appels, W. M., Graham, C. B., Freer, J. E., and Mcdonnell, J. J.: Factors
affecting the spatial pattern of bedrock groundwater recharge at the
hillslope scale, Hydrol. Process., 29, 4594–4610, https://doi.org/10.1002/hyp.10481, 2015. a, b
Barron, O. V., Crosbie, R. S., Dawes, W. R., Charles, S. P., Pickett, T., and
Donn, M. J.: Climatic controls on diffuse groundwater recharge across
Australia, Hydrol. Earth Syst. Sci., 16, 4557–4570,
https://doi.org/10.5194/hess-16-4557-2012, 2012. a
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., and Scibek, J.: Fault
zone hydrogeology, Earth-Sci. Rev., 127, 171–192,
https://doi.org/10.1016/j.earscirev.2013.09.008, 2013. a
Besbes, M. and Marsily, G. D. E.: From infiltration to recharge: use of a
parametric transfer function, J. Hydrol., 74, 271–293, 1984. a
Blöschl, G., Bierkens, M. F., Chambel, A., Cudennec, C., Destouni, G.,
Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H., Sivapalan, M.,
Stumpp, C., Toth, E., Volpi, E., and Carr, G.: Twenty-three unsolved
problems in hydrology (UPH) – a community perspective, Hydrolog. Sci. J., 64, 1141–1158, https://doi.org/10.1080/02626667.2019.1620507, 2019.
a
Bochet, O., Bethencourt, L., Dufresne, A., Farasin, J., Pédrot, M.,
Labasque, T., Chatton, E., Lavenant, N., Petton, C., Abbott, B. W., Aquilina,
L., and Le Borgne, T.: Iron-oxidizer hotspots formed by intermittent
oxic–anoxic fluid mixing in fractured rocks, Nat. Geosci., 13, 149–155, https://doi.org/10.1038/s41561-019-0509-1, 2020. a
Bredehoeft, J.: The Water Budget Myth Revisited: Why Hydrogeologists Model, Groundwater, 40, 340–345, https://doi.org/10.1111/j.1745-6584.2002.tb02511.x, 2002. a
Bresciani, E., Goderniaux, P., and Batelaan, O.: Hydrogeological controls of
water table - land surface interactions, Geophys. Res. Lett., 43, 9653–9661, https://doi.org/10.1002/2016GL070618, 2016. a
Cao, G., Scanlon, B. R., Han, D., and Zheng, C.: Impacts of thickening
unsaturated zone on groundwater recharge in the North China Plain, J. Hydrol., 537, 260–270, https://doi.org/10.1016/j.jhydrol.2016.03.049, 2016. a, b, c
Clark, M. P., Bierkens, M. F., Samaniego, L., Woods, R. A., Uijlenhoet, R.,
Bennett, K. E., Pauwels, V. R., Cai, X., Wood, A. W., and Peters-Lidard, C. D.: The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism, Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, 2017. a
Clauser, C.: Permeability of crystalline rocks, Eos Trans. Am. Geophys. Union, 73, 233–238, 1992. a
Collenteur, R. A., Bakker, M., Klammler, G., and Birk, S.: Estimation of
groundwater recharge from groundwater levels using nonlinear transfer
function noise models and comparison to lysimeter data, Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, 2021. a
Condon, L. E. and Maxwell, R. M.: Systematic shifts in Budyko relationships
caused by groundwater storage changes, Hydrol. Earth Syst. Sci., 21, 1117–1135, https://doi.org/10.5194/hess-21-1117-2017, 2017. a
Crosbie, R. S., Binning, P., and Kalma, J. D.: A time series approach to
inferring groundwater recharge using the water table fluctuation method,
Water Resour. Res., 41, 1–9, https://doi.org/10.1029/2004WR003077, 2005. a
Cuthbert, M. O.: An improved time series approach for estimating groundwater
recharge from groundwater level fluctuations, Water Resour. Res., 46,
1–11, https://doi.org/10.1029/2009WR008572, 2010. a, b
Cuthbert, M. O., Acworth, R., Andersen, M. S., Larsen, J. R., McCallum, A. M., Rau, G. C., and Tellam, J. H.: Understanding and quantifying focused,
indirect groundwater recharge from ephemeral streams using water table
fluctuations, Water Resour. Res., 52, 827–850, https://doi.org/10.1002/2015WR017503, 2016. a
Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A.,
Hartmann, J., and Lehner, B.: Global patterns and dynamics of climate–groundwater interactions, Nat. Clim. Change, 9, 137–141,
https://doi.org/10.1038/s41558-018-0386-4, 2019a. a, b
Cuthbert, M. O., Taylor, R. G., Favreau, G., Todd, M. C., Shamsudduha, M.,
Villholth, K. G., MacDonald, A. M., Scanlon, B. R., Kotchoni, D. O.,
Vouillamoz, J. M., Lawson, F. M., Adjomayi, P. A., Kashaigili, J., Seddon, D., Sorensen, J. P., Ebrahim, G. Y., Owor, M., Nyenje, P. M., Nazoumou, Y.,
Goni, I., Ousmane, B. I., Sibanda, T., Ascott, M. J., Macdonald, D. M.,
Agyekum, W., Koussoubé, Y., Wanke, H., Kim, H., Wada, Y., Lo, M. H.,
Oki, T., and Kukuric, N.: Observed controls on resilience of groundwater to
climate variability in sub-Saharan Africa, Nature, 572, 230–234,
https://doi.org/10.1038/s41586-019-1441-7, 2019b. a
Dalin, C., Wada, Y., Kastner, T., and Puma, M. J.: Groundwater depletion
embedded in international food trade, Nature, 543, 700–704, https://doi.org/10.1038/nature21403, 2017. a
de Vries, J. J. and Simmers, I.: Groundwater recharge: An overview of process
and challenges, Hydrogeol. J., 10, 5–17, https://doi.org/10.1007/s10040-001-0171-7, 2002. a
Dewandel, B., Aunay, B., Maréchal, J. C., Roques, C., Bour, O., Mougin,
B., and Aquilina, L.: Analytical solutions for analysing pumping tests in a
sub-vertical and anisotropic fault zone draining shallow aquifers, J. Hydrol., 509, 115–131, https://doi.org/10.1016/j.jhydrol.2013.11.014, 2014. a
Dickinson, J. E.: Inferring time-varying recharge from inverse analysis of
long-term water levels, Water Resour. Res., 40, 1–15,
https://doi.org/10.1029/2003WR002650, 2004. a
Döll, P. and Fiedler, K.: Global-scale modeling of groundwater recharge, Hydrol. Earth Syst. Sci., 12, 863–885, https://doi.org/10.5194/hess-12-863-2008, 2008. a
Domenico, P. A. and Schwartz, F. W.: Physical and chemical hydrogeology, in:
2nd Edn., Wiley, ISBN 9780471597629, 1998. a
Earle, S.: Physical geology, Elsevier, ISBN 978-1-989623-71-8, https://doi.org/10.1016/B978-0-444-42758-8.50008-8, 2015. a
Fan, Y.: Groundwater in the Earth's critical zone: Relevance to large-scale
patterns and processes, Water Resour. Res., 51, 3052–3069,
https://doi.org/10.1002/2015WR017037, 2015. a, b
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W.,
Mackay, D. S., McDonnell, J. J., Milly, P. C., Sullivan, P. L., Tague, C.,
Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J., Pelletier,
J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X., Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq, M., Shen, C., van Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope
Hydrology in Global Change Research and Earth System Modeling, Water Resour. Res., 55, 1737–1772, https://doi.org/10.1029/2018WR023903, 2019. a
Favreau, G., Cappelaere, B., Massuel, S., Leblanc, M., Boucher, M., Boulain,
N., and Leduc, C.: Land clearing, climate variability, and water resources
increase in semiarid southwest Niger: A review, Water Resour. Res., 45, 1–18, https://doi.org/10.1029/2007WR006785, 2009. a, b
Gabrielli, C. P. and McDonnell, J. J.: No Direct Linkage Between Event-Based
Runoff Generation and Groundwater Recharge on the Maimai Hillslope, Water
Resour. Res., 54, 8718–8733, https://doi.org/10.1029/2017WR021831, 2018. a
Gaillardet, J., Braud, I., Hankard, F., Anquetin, S., Bour, O., Dorfliger, N., Dreuzy, J. D., Galle, S., Galy, C., Gogo, S., Gourcy, L., Habets, F.,
Laggoun, F., Longuevergne, L., and Borgne, T. L.: OZCAR: The French Network
of Critical Zone Observatories, Vadose Zone J., 17, 1–24, https://doi.org/10.2136/vzj2018.04.0067, 2018. a
Gee, G. W. and Hillel, D.: Groundwater recharge in arid regions: Review and
critique of estimation methods, Hydrol. Process., 2, 255–266,
https://doi.org/10.1002/hyp.3360020306, 1988. a
Gelhar, L. W.: Stochastic analysis of phreatic aquifers, Water Resour. Res., 10, 539–545, https://doi.org/10.1029/WR010i003p00539, 1974. a
Géosciences Rennes/Université de Rennes 1: Guillaumot et al., 2022 HESS, hplus [code and data set], https://hplus.ore.fr/en/guillaumot-et-al-2022-hess-data, last access: 28 February 2022. a
Gerten, D., Lucht, W., Ostberg, S., Heinke, J., Kowarsch, M., Kreft, H.,
Kundzewicz, Z. W., Rastgooy, J., Warren, R., and Schellnhuber, H. J.:
Asynchronous exposure to global warming: Freshwater resources and terrestrial ecosystems, Environ. Res. Lett., 9, 011001, https://doi.org/10.1088/1748-9326/8/3/034032, 2013. a
Gleeson, T., Wada, Y., Bierkens, M. F. P., and van Beek, L. P. H.: Water
balance of global aquifers revealed by groundwater footprint, Nature, 488,
197–200, https://doi.org/10.1038/nature11295, 2012. a
Guihéneuf, N., Boisson, A., Bour, O., Dewandel, B., Perrin, J., Dausse,
A., Viossanges, M., Chandra, S., Ahmed, S., and Maréchal, J. C.:
Groundwater flows in weathered crystalline rocks: Impact of piezometric
variations and depth-dependent fracture connectivity, J. Hydrol., 511, 320–324, https://doi.org/10.1016/j.jhydrol.2014.01.061, 2014. a
Guillaumot, L., Marçais, J., Vautier, C., Guillou, A., Vergnaud, V.,
Bouchez, C., Dupas, R., Durand, P., Dreuzy, J.-R. D., and Aquilina, L.: A
hillslope-scale aquifer-model to determine past agricultural legacy and
future nitrate concentrations in rivers, Sci. Total Environ., 800, 149216, https://doi.org/10.1016/j.scitotenv.2021.149216, 2021. a
Hartmann, A., Gleeson, T., Wada, Y., and Wagener, T.: Enhanced groundwater
recharge rates and altered recharge sensitivity to climate variability
through subsurface heterogeneity, P. Natl. Acad. Sci. USA, 114, 2842–2847, https://doi.org/10.1073/pnas.1614941114, 2017. a, b
Healy, R. W.: Estimating groundwater recharge, Cambridge University Press,
ISBN 9780511780745, 2010. a
Healy, R. W. and Cook, P. G.: Using groundwater levels to estimate recharge, Hydrogeol. J., 10, 91–109, https://doi.org/10.1007/s10040-001-0178-0, 2002. a, b
Herzog, A., Hector, B., Cohard, J. M., Vouillamoz, J. M., Lawson, F. M. A.,
Peugeot, C., and de Graaf, I.: A parametric sensitivity analysis for
prioritizing regolith knowledge needs for modeling water transfers in the
West African critical zone, Vadose Zone J., 20, 1–22, https://doi.org/10.1002/vzj2.20163, 2021. a
Hiscock, K.: Hydrogeology: Principles and Practice, Blackwell Publishing, ISBN 0-632-05763-7, https://doi.org/10.1007/s12665-016-5360-8, 2009. a
Jasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Fawcett, P. J., Sharp, Z. D., McDonnell, J. J., and Welker, J. M.: The pronounced seasonlity of global groundwater recharge, Water Resour. Res., 50, 8845–8867,
https://doi.org/10.1002/2014WR015809, 2014. a
Jimenez-Martinez, J., Longuevergne, L., Le Borgne, T., Davy, P., Russian, A.,
and Bour, O.: Temporal and spatial scaling of hydraulic response to recharge
in fractured aquifers: Insights from a frequency domain analysis, Water Resour. Res., 49, 3007–3023, https://doi.org/10.1002/wrcr.20260, 2013. a, b, c, d, e, f, g, h, i
Johansen, O. M., Pedersen, M. L., and Jensen, J. B.: Effect of groundwater
abstraction on fen ecosystems, J. Hydrol., 402, 357–366,
https://doi.org/10.1016/j.jhydrol.2011.03.031, 2011. a
Kendy, E., Zhang, Y., Liu, C., Wang, J., and Steenhuis, T.: Groundwater
recharge from irrigated cropland in the North China Plain: Case study of
Luancheng County, Hebei Province, 1949–2000, Hydrol. Process., 18, 2289–2302, https://doi.org/10.1002/hyp.5529, 2004. a
Kollet, S. J.: Influence of soil heterogeneity on evapotranspiration under
shallow water table conditions: Transient, stochastic simulations, Environ. Res. Lett., 4, 035007, https://doi.org/10.1088/1748-9326/4/3/035007, 2009. a
Kollet, S. J. and Maxwell, R. M.: Capturing the influence of groundwater
dynamics on land surface processes using an integrated, distributed watershed
model, Water Resour. Res., 44, 1–18, https://doi.org/10.1029/2007WR006004, 2008. a
Kovacs, G.: Seepage hydraulics, Elsevier, https://doi.org/10.1016/0022-1694(84)90254-3, 1981. a
Labrecque, G., Chesnaux, R., and Boucher, M.-A.: Water-table fluctuation
method for assessing aquifer recharge: application to Canadian aquifers and
comparison with other methods, Hydrogeol. J., 28, 521–533, 2020. a
Lague, D., Davy, P., and Crave, A.: Estimating Uplift Rate and Erodibility
from the Area-Slope Relationship: Examples from Britanny (France) and
Numerical Modelling, Phys. Chem. Earth Pt. A, 25, 543–548, https://doi.org/10.1016/S1464-1895(00)00083-1, 2000. a
Le Borgne, T., Bour, O., Riley, M. S., Gouze, P., Pezard, P. A., Belghoul, A., Lods, G., Le Provost, R., Greswell, R. B., Ellis, P. A., Isakov, E., and
Last, B. J.: Comparison of alternative methodologies for identifying and
characterizing preferential flow paths in heterogeneous aquifers, J. Hydrol., 345, 134–148, https://doi.org/10.1016/j.jhydrol.2007.07.007, 2007. a
Le Coz, M., Favreau, G., and Ousmane, S. D.: Modeling Increased Groundwater
Recharge due to Change from Rainfed to Irrigated Cropping in a Semiarid
Region, Vadose Zone J., 12, vzj2012.0148, https://doi.org/10.2136/vzj2012.0148, 2013. a
Lee, L. J. E., Lawrence, D. S. L., and Price, M.: Analysis of water-level
response to rainfall and implications for recharge pathways in the Chalk
aquifer, SE England, J. Hydrol., 330, 604–620, https://doi.org/10.1016/j.jhydrol.2006.04.025, 2006. a, b
Leray, S., de Dreuzy, J. R., Aquilina, L., Vergnaud-Ayraud, V., Labasque, T.,
Bour, O., and Le Borgne, T.: Temporal evolution of age data under transient
pumping conditions, J. Hydrol., 511, 555–566, https://doi.org/10.1016/j.jhydrol.2014.01.064, 2014. a, b
Liu, R., Li, B., Jiang, Y., and Huang, N.: Review: Mathematical expressions
for estimating equivalent permeability of rock fracture networks, Hydrogeol. J., 24, 1623–1649, https://doi.org/10.1007/s10040-016-1441-8, 2016. a
Long, D., Longuevergne, L., and Scanlon, B. R.: Uncertainty in
evapotranspiration fromland surfacemodeling, remote sensing, and GRACE
satellites, Water Resour. Res., 50, 1131–1151, https://doi.org/10.1002/2013WR014581, 2014. a
MacDonald, A. M. and Calow, R. C.: Developing groundwater for secure rural
water supplies in Africa, Desalination, 248, 546–556,
https://doi.org/10.1016/j.desal.2008.05.100, 2009. a
Marçais, J., de Dreuzy, J. R., and Erhel, J.: Dynamic coupling of
subsurface and seepage flows solved within a regularized partition formulation, Adv. Water Resour., 109, 94–105,
https://doi.org/10.1016/j.advwatres.2017.09.008, 2017. a
Maréchal, J. C., Dewandel, B., Ahmed, S., Galeazzi, L., and Zaidi, F. K.:
Combined estimation of specific yield and natural recharge in a semi-arid
groundwater basin with irrigated agriculture, J. Hydrol., 329, 281–293, https://doi.org/10.1016/j.jhydrol.2006.02.022, 2006. a
Martin, C., Molénat, J., Gascuel-Odoux, C., Vouillamoz, J. M., Robain,
H., Ruiz, L., Faucheux, M., and Aquilina, L.: Modelling the effect of physical and chemical characteristics of shallow aquifers on water and nitrate transport in small agricultural catchments, J. Hydrol., 326, 25–42, https://doi.org/10.1016/j.jhydrol.2005.10.040, 2006. a
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R.,
Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E.,
Calvet, J. C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini,
K., Gibelin, A. L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G.,
Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu,
A., Mahfouf, J. F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G.,
Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B.,
Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013. a
Maxwell, R. M. and Condon, L. E.: Connections between groundwater flow and
transpiration partitioning, Science, 353, 377–380, https://doi.org/10.1126/science.aaf7891, 2016. a
Meier, P. M., Carrera, J., and Sánchez-Vila, X.: An evaluation of
Jacob's method for the interpretation of pumping tests in heterogeneous
formations, Water Resour. Res., 34, 1011–1025, https://doi.org/10.1029/98WR00008, 1998. a
Mileham, L., Taylor, R. G., Todd, M., Tindimugaya, C., and Thompson, J.: The
impact of climate change on groundwater recharge and runoff in a humid,
equatorial catchment: sensitivity of projections to rainfall intensity,
Hydrolog. Sci. J., 54, 727–738, https://doi.org/10.1623/hysj.54.4.727, 2009. a
Mohan, C., Western, A. W., Wei, Y., and Saft, M.: Predicting groundwater recharge for varying land cover and climate conditions – a global meta-study, Hydrol. Earth Syst. Sci., 22, 2689–2703, https://doi.org/10.5194/hess-22-2689-2018, 2018. a, b
Molénat, J., Davy, P., Gascuel-Odoux, C., and Durand, P.: Study of three
subsurface hydrologic systems based on spectral and cross-spectral analysis
of time series, J. Hydrol., 222, 152–164, https://doi.org/10.1016/S0022-1694(99)00107-9, 1999. a
Morton, F. I.: Operational estimates of areal evapotranspiration and their
significance to the science and practice of hydrology, J. Hydrol., 66, 1–76, https://doi.org/10.1016/0022-1694(83)90177-4, 1983. a
Nicolas, M., Bour, O., Selles, A., Dewandel, B., Bailly-comte, V., Chandra, S., Ahmed, S., and Maréchal, J.-C.: Managed Aquifer Recharge in fractured
crystalline rock aquifers: Impact of horizontal preferential flow on recharge dynamics, J. Hydrol., 573, 717–732, https://doi.org/10.1016/j.jhydrol.2019.04.003, 2019. a
Noilhan, J. and Planton, S.: A Simple Parameterization of Land Surface Processes for Meteorological Models, 117, 536–549,
https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989. a
Owor, M., Taylor, R., Tindimugaya, C., and Mwesigwa, D.: Rainfall intensity
and groundwater recharge: empirical evidence from the Upper Nile Basin,
Environ. Res. Lett., 4, 1–6, https://doi.org/10.1088/1748-9326/4/3/035009, 2009. a
Perkins, K. S., Nimmo, J. R., Medeiros, A. C., Szutu, D. J., and von Allmen,
E.: Assessing effects of native forest restoration on soil moisture dynamics
and potential aquifer recharge, Auwahi, Maui, Ecohydrology, 7, 1437–1451,
https://doi.org/10.1002/eco.1469, 2014. a
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003. a
Pouladi, B., Bour, O., Longuevergne, L., de La Bernardie, J., and Simon, N.:
Modelling borehole flows from Distributed Temperature Sensing data to
monitor groundwater dynamics in fractured media, J. Hydrol., 598, 126450, https://doi.org/10.1016/j.jhydrol.2021.126450, 2021. a
Riedel, T. and Weber, T. K. D.: Review: The influence of global change on
Europe’s water cycle and groundwater recharge, Hydrogeol. J., 28,
1939–1959, https://doi.org/10.1007/s10040-020-02165-3, 2020. a, b
Roques, C., Bour, O., Aquilina, L., and Dewandel, B.: High yielding aquifers
in crystalline basement: insights about the role of fault zones, exemplified
by Armorican Massif, France, Hydrogeol. J., 24, 2157–2170, https://doi.org/10.1007/s10040-016-1451-6, 2016. a
Roques, C., Aquilina, L., Boisson, A., Vergnaud-Ayraud, V., Labasque, T.,
Longuevergne, L., Laurencelle, M., Dufresne, A., de Dreuzy, J. R., Pauwels,
H., and Bour, O.: Autotrophic denitrification supported by biotite dissolution in crystalline aquifers: (2) transient mixing and denitrification
dynamic during long-term pumping, Sci. Total Environ., 619–620, 491–503, https://doi.org/10.1016/j.scitotenv.2017.11.104, 2018. a, b
Rousseau-Gueutin, P., Love, A. J., Vasseur, G., Robinson, N. I., Simmons, C. T., and De Marsily, G.: Time to reach near-steady state in large aquifers, Water Resour. Rese., 49, 6893–6908, https://doi.org/10.1002/wrcr.20534, 2013. a
Rovey, C. W. and Cherkauer, D. S.: Scale Dependency of Hydraulic Conductivity
Measurements, Groundwater, 33, 769–780, https://doi.org/10.1111/j.1745-6584.1995.tb00023.x, 1995. a
Ruelleu, S., Moreau, F., Bour, O., Gapais, D., and Martelet, G.: Impact of
gently dipping discontinuities on basement aquifer recharge: An example from
Ploemeur (Brittany, France), J. Appl. Geophys., 70, 161–168,
https://doi.org/10.1016/j.jappgeo.2009.12.007, 2010. a, b, c
Sánchez-Vila, X., Carrera, J., and Girardi, J. P.: Scale effects in
transmissivity, J. Hydrol., 183, 1–22, https://doi.org/10.1016/S0022-1694(96)80031-X, 1996. a
Scanlon, B. R., Healy, R. W., and Cook, P. G.: Choosing appropriate technique
for quantifying groundwater recharge, Hydrogeol. J., 10, 18–39,
https://doi.org/10.1007/s10040-001-0176-2, 2002. a
Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., and Ian, S.: Global synthesis of groundwater recharge in semi-arid and arid regions, Hydrol. Process., 20, 3335–3370,
https://doi.org/10.1002/hyp.6335, 2006. a
Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M.,
McGuire, V. L., and McMahon, P. B.: Groundwater depletion and sustainability
of irrigation in the US High Plains and Central Valley, P. Natl. Acad. Sci. USA, 109, 9320–9325, https://doi.org/10.1073/pnas.1200311109, 2012. a
Schaller, M. F. and Fan, Y.: River basins as groundwater exporters and
importers: Implications for water cycle and climate modeling, J. Geophys. Res.-Atmos., 114, D04103, https://doi.org/10.1029/2008JD010636, 2009. a
Schuite, J., Flipo, N., Massei, N., Rivière, A., and Baratelli, F.:
Improving the Spectral Analysis of Hydrological Signals to Efficiently
Constrain Watershed Properties, Water Resour. Res., 55, 4043–4065,
https://doi.org/10.1029/2018WR024579, 2019. a, b
Shamsudduha, M., Taylor, R. G., Ahmed, K. M., and Zahid, A.: The impact of
intensive groundwater abstraction on recharge to a shallow regional aquifer
system: Evidence from Bangladesh, Hydrogeol. J., 19, 901–916,
https://doi.org/10.1007/s10040-011-0723-4, 2011. a
Sililo, O. T. and Tellam, J. H.: Fingering in unsaturated zone flow: A
qualitative review with laboratory experiments on heterogeneous systems,
Ground Water, 38, 864–871, https://doi.org/10.1111/j.1745-6584.2000.tb00685.x, 2000. a
Simunek, J., Van Genuchten, M. T., and Sejna, M.: The HYDRUS-1D software
package for simulating the one-dimensional movement of water, heat, and
multiple solutes in variably-saturated media, Riverside Research Reports 3, University of California, 1–240, https://www.ars.usda.gov/arsuserfiles/20360500/pdf_pubs/P2119.pdf (last access: 4 May 2022), 2005. a
Singhal, B. B. and Gupta, R. P.: Applied hydrogeology of fractured rocks:
Second edition, Springer Science & Business Media, https://doi.org/10.1007/978-90-481-8799-7, 2010. a
Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H.,
and MacDonald, A. M.: Evidence of the dependence of groundwater resources on
extreme rainfall in East Africa, Nat. Clim. Change, 3, 374–378,
https://doi.org/10.1038/nclimate1731, 2012.
a, b
Taylor, R. G., Scanlon, B., Doell, P., Rodell, M., van Beek, R., Wada, Y.,
Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L.,
Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J. F., Holman, I., and Treidel, H.:
Ground water and climate change, Nat. Clim. Change, 3, 322–329,
https://doi.org/10.1038/nclimate1744, 2013. a, b
Townley, L. R.: The response of aquifers to periodic forcing, Adv. Water Resour., 18, 125–146, https://doi.org/10.1016/0309-1708(95)00008-7, 1995. a, b
Troch, P. A., Martinez, G. F., Pauwels, V. R. N., Durcik, M., Sivapalan, M.,
Harman, C., Brooks, P. D., Gupta, H., and Huxman, T.: Climate and vegetation
water use efficiency at catchment scales, Hydrol. Process., 23, 2409–2414, https://doi.org/10.1002/hyp.7358, 2009. a
Wada, Y., Van Beek, L. P. H., Van Kempen, C. M., Reckman, J. W. T. M., Vasak,
S., and Bierkens, M. F. P.: Global depletion of groundwater resources,
Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL044571, 2010. a
Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend,
S., Satoh, Y., Van Vliet, M. T., Yillia, P., Ringler, C., Burek, P., and
Wiberg, D.: Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches, Geosci. Model Dev., 9, 175–222, https://doi.org/10.5194/gmd-9-175-2016, 2016. a
Wright, E. P. and Burgess, W. G.: The hydrogeology of crystalline basement
aquifers in Africa, Geol. Soc. Lond. Spec. Publ., 66, 1–27, https://doi.org/10.1144/GSL.SP.1992.066.01.01, 1992. a
Wyns, R., Baltassat, J. M., Lachassagne, P., Legchenko, A., Vairon, J., and
Mathieu, F.: Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France),
Bulletin de la Societe Geologique de France, 175, 21–34, https://doi.org/10.2113/175.1.21, 2004. a
Short summary
Recharge, defining the renewal rate of groundwater resources, is difficult to estimate at basin scale. Here, recharge variations are inferred from water table variations recorded in boreholes. First, results show that aquifer-scale properties controlling these variations can be inferred from boreholes. Second, groundwater is recharged by both intense and seasonal rainfall. Third, the short-term contribution appears overestimated in recharge models and depends on the unsaturated zone thickness.
Recharge, defining the renewal rate of groundwater resources, is difficult to estimate at basin...