Articles | Volume 26, issue 3
https://doi.org/10.5194/hess-26-551-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-551-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved understanding of regional groundwater drought development through time series modelling: the 2018–2019 drought in the Netherlands
Esther Brakkee
CORRESPONDING AUTHOR
KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
Marjolein H. J. van Huijgevoort
KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
Ruud P. Bartholomeus
KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
Soil Physics and Land Management Group, Wageningen University, 6708 PB Wageningen, the Netherlands
Related authors
No articles found.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Cited articles
AHN: AHN3 50 cm maaiveld, Esri [data set], https://www.arcgis.com/home/group.html?id=bd6fbbd182a9465ea269dd27ea985d1a#overview (last access: 30 September 2021), 2019.
Aulenbach, B. T., and Peters, N. E.: Quantifying Climate-Related Interactions in Shallow and Deep Storage and Evapotranspiration in a Forested, Seasonally Water-Limited Watershed in the Southeastern United States, Water Resour. Res., 54, 3037–3061, https://doi.org/10.1002/2017WR020964, 2018.
Avanzi, F., Rungee, J., Maurer, T., Bales, R., Ma, Q., Glaser, S., and Conklin, M.: Climate elasticity of evapotranspiration shifts the water
balance of Mediterranean climates during multi-year droughts, Hydrol. Earth
Syst. Sci., 24, 4317–4337, https://doi.org/10.5194/hess-24-4317-2020, 2020.
Bakke, S. J., Ionita, M., and Tallaksen, L. M.: The 2018 northern European
hydrological drought and its drivers in a historical perspective, Hydrol.
Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, 2020.
Bakker, M., and Schaars, F.: Solving Groundwater Flow Problems with Time
Series Analysis: You May Not Even Need Another Model, Groundwater, 57, 826–833, https://doi.org/10.1111/gwat.12927, 2019.
Bartholomeus, R. P., Witte, J.-P. M., van Bodegom, P. M., and Aerts, R.: The
need of data harmonization to derive robust empirical relationships between
soil conditions and vegetation, J. Veg. Sci., 19, 799–808, https://doi.org/10.3170/2008-8-18450, 2008.
Bartholomeus, R. P., Witte, J.-P. M., van Bodegom, P. M., van Dam, J. C., de
Becker, P., and Aerts, R.: Process-based proxy of oxygen stress surpasses
indirect ones in predicting vegetation characteristics, Ecohydrology, 5,
746–758, https://doi.org/10.1002/eco.261, 2012.
Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L.,
Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A.,
Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran, T., McGuire, P. C., Tian, H., Viovy, N., and Zaehle, S.: Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem
productivity, Sci. Adv., 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724, 2020.
Berendrecht, W. L., Heemink, A. W., van Geer, F. C., and Gehrels, J. C.: A
non-linear state space approach to model groundwater fluctuations, Adv. Water Resour., 29, 959–973, https://doi.org/10.1016/j.advwatres.2005.08.009, 2006.
Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013.
Bloomfield, J. P., Marchant, B. P., Bricker, S. H., and Morgan, R. B.: Regional analysis of groundwater droughts using hydrograph classification,
Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, 2015.
Brauns, B., Cuba, D., Bloomfield, J. P., Hannah, D. M., Jackson, C., Marchant, B. P., Heudorfer, B., Van Loon, A. F., Bessière, H., Thunholm, B., and Schubert, G.: The Groundwater Drought Initiative (GDI): Analysing and understanding groundwater drought across Europe, Proc. IAHS, 383, 297–305, https://doi.org/10.5194/piahs-383-297-2020, 2020.
Brunner, M. I., Liechti, K., and Zappa, M.: Extremeness of recent drought
events in Switzerland: dependence on variable and return period choice, Nat.
Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, 2019.
Buras, A., Rammig, A., and Zang, C. S.: Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003, Biogeosciences, 17, 1655–1672, https://doi.org/10.5194/bg-17-1655-2020, 2020.
Collenteur, R., Bakker, M., Caljé, R., and Schaars, F.: Pastas: open-source software for time series analysis in hydrology (Version 0.13), Zenodo [code], https://doi.org/10.5281/zenodo.3557725, 2020.
Collenteur, R. A., Bakker, M., Caljé, R., Klop, S. A., and Schaars, F.:
Pastas: Open Source Software for the Analysis of Groundwater Time Series,
Groundwater, 57, 877–885, https://doi.org/10.1111/gwat.12925, 2019.
Collenteur, R. A., Bakker, M., Klammler, G., and Birk, S.: Estimation of
groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data, Hydrol. Earth Syst.
Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, 2021.
Dawley, S., Zhang, Y., Liu, X., Jiang, P., Tick, G. R., Sun, H., Zheng, C.,
and Chen, L.: Statistical analysis of extreme events in precipitation, stream discharge, and groundwater head fluctuation: Distribution, memory, and correlation, Water, 11, 707, https://doi.org/10.3390/w11040707, 2019.
De Lenne, R. and Worm, B.: Droogte 2018 & 2019: steppeachtige verschijnselen op de `Hoge Zandgronden', De gevolgen voor beheer en beleid bij Waterschap
Vechtstromen, Stromingen, 26, 37–47, available at: https://www.nhv.nu/wp-content/uploads/2020/07/041850_NHV_00_Stromingen-2-2020-04-ARTIKEL-LENNE-HR.pdf, (last access: 22 January 2022), 2020.
Hellwig, J., de Graaf, I. E. M., Weiler, M., and Stahl, K.: Large-Scale
Assessment of Delayed Groundwater Responses to Drought, Water Resour. Res., 56, e2019WR025441, https://doi.org/10.1029/2019WR025441, 2020.
IenW: Nederland beter weerbaar tegen droogte: Eindrapportage Beleidstafel
Droogte, Ministerie van Infrastructuur en Waterstaat, available at:
https://www.rijksoverheid.nl/documenten/rapporten/2019/12/18/nederland-beter-weerbaar-tegen-droogte
(last access: 22 January 2022), 2019.
KNMI: Klimatologie, available at: http://projects.knmi.nl/klimatologie/daggegevens/selectie.cgi (last access: 22 January 2022), 2020a.
KNMI: Klimatologie/daggegevens, KNMI [data set], available at:
https://www.knmi.nl/kennis-en-datacentrum/achtergrond/data-ophalen-vanuit-een-script (last access: 25 June 2020), 2020b.
Kumar, R., Musuuza, J. L., Van Loon, A. F., Teuling, A. J., Barthel, R.,
Ten Broek, J., Mai, J., Samaniego, L., and Attinger, S.: Multiscale evaluation of the Standardized Precipitation Index as a groundwater drought
indicator, Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, 2016.
LCW: Archief droogtemonitoren 2018–2020, available at:
https://waterberichtgeving.rws.nl/LCW/droogtedossier/droogtemonitoren-archief/droogtemonitoren-2018
(last access: 30 January 2021), 2020.
Lehr, C. and Lischeid, G.: Efficient screening of groundwater head monitoring data for anthropogenic effects and measurement errors, Hydrol. Earth Syst. Sci., 24, 501–513, https://doi.org/10.5194/hess-24-501-2020, 2020.
Leunk, I.: Kwaliteitsborging grondwaterstands- en stijghoogtegegevens,
Validatiepilot; analyse van bestaande data, KWR Watercycle Research Institute, Nieuwegein, the Netherlands, 2014.059, available at:
https://edepot.wur.nl/317083 (last access: 22 January 2022), 2014.
Link, R., Wild, T. B., Snyder, A. C., Hejazi, M. I., and Vernon, C. R.: 100 years of data is not enough to establish reliable drought thresholds, J. Hydrol., 7, 100052, https://doi.org/10.1016/j.hydroa.2020.100052, 2020.
Loáiciga, H. A.: Probability Distributions in Groundwater Hydrology:
Methods and Applications, J. Hydrol. Eng., 20, 04014063,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001061, 2015.
Mackay, J. D., Jackson, C. R., Brookshaw, A., Scaife, A. A., Cook, J., and
Ward, R. S.: Seasonal forecasting of groundwater levels in principal aquifers of the United Kingdom, J. Hydrol., 530, 815–828, https://doi.org/10.1016/j.jhydrol.2015.10.018, 2015.
Makkink, G.: Testing the Penman formula by means of lysimeters, J. Institut. Water Eng., 11, 277–288, 1957.
Marchant, B. P. and Bloomfield, J. P.: Spatio-temporal modelling of the status of groundwater droughts, J. Hydrol., 564, 397–413,
https://doi.org/10.1016/j.jhydrol.2018.07.009, 2018.
Margariti, J., Rangecroft, S., Parry, S., Wendt, D. E., and Van Loon, A. F.:
Anthropogenic activities alter drought termination, Elementa, 7, 27, https://doi.org/10.1525/elementa.365, 2019.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology, 17–22 January 1993, Anaheim, California, 179–183, 1993.
Peters, E., Bier, G., van Lanen, H. A. J., and Torfs, P. J. J. F.: Propagation and spatial distribution of drought in a groundwater catchment, J. Hydrol., 321, 257–275, https://doi.org/10.1016/j.jhydrol.2005.08.004, 2006.
Peterson, T. J. and Western, A. W.: Nonlinear time-series modeling of unconfined groundwater head, Water Resour. Res., 50, 8330–8355,
https://doi.org/10.1002/2013WR014800, 2014.
Peterson, T. J., Western, A. W., and Cheng, X.: The good, the bad and the
outliers: automated detection of errors and outliers from groundwater hydrographs, Hydrogeol. J., 26, 371–380, https://doi.org/10.1007/s10040-017-1660-7,
2018.
Pezij, M., Augustijn, D. C. M., Hendriks, D. M. D., and Hulscher, S. J. M. H.: The role of evidence-based information in regional operational water
management in the Netherlands, Environ. Sci. Policy, 93, 75–82,
https://doi.org/10.1016/j.envsci.2018.12.025, 2019.
Philip, S. Y., Kew, S. F., van der Wiel, K., Wanders, N., and van Oldenborgh, G. J.: Regional differentiation in climate change induced drought trends in the Netherlands, Environ. Res. Lett., 15, 094081, https://doi.org/10.1088/1748-9326/ab97ca, 2020.
Post, V. E. A., and von Asmuth, J. R.: Review: Hydraulic head measurements – new technologies, classic pitfalls, Hydrogeol. J., 21, 737–750, https://doi.org/10.1007/s10040-013-0969-0, 2013.
Ritzema, H., Heuvelink, G., Heinen, M., Bogaart, P., van der Bolt, F.,
Hack-ten Broeke, M., Hoogland, T., Knotters, M., Massop, H., and Vroon, H.:
Review of the methodologies used to derive groundwater characteristics for a
specific area in The Netherlands, Geoderma Reg., 14, e00182, https://doi.org/10.1016/j.geodrs.2018.e00182, 2018.
Svensson, C., Hannaford, J., and Prosdocimi, I.: Statistical distributions for monthly aggregations of precipitation and streamflow in drought indicator applications, Water Resour. Res., 53, 999–1018, https://doi.org/10.1002/2016WR019276, 2017.
Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., and Spank, U.: Evapotranspiration amplifies European summer drought, Geophys. Res. Lett., 40, 2071–2075, https://doi.org/10.1002/grl.50495, 2013.
TNO: DINOloket Ondergrondgegevens, Nederland, T. G. D. [data set], available at: https://www.dinoloket.nl/ondergrondgegevens (last access: 25 June 2020), 2022.
Toreti, A., Belward, A., Perez-Dominguez, I., Naumann, G., Luterbacher, J.,
Cronie, O., Seguini, L., Manfron, G., Lopez-Lozano, R., Baruth, B., van den
Berg, M., Dentener, F., Ceglar, A., Chatzopoulos, T., and Zampieri, M.: The
Exceptional 2018 European Water Seesaw Calls for Action on Adaptation, Earth's Future, 7, 652–663, https://doi.org/10.1029/2019EF001170, 2019.
Van den Eertwegh, G., Bartholomeus, R., De Louw, P., Witte, F., van Dam, J.,
Van Deijl, D., Hoefsloot, P., Sharon, C., Van Huijgevoort, M., Hunink, J.,
Mulder, N., Pouwels, J., and De Wit, J.: Droogte in zandgebieden van Zuid-,
Midden- en Oost-Nederland: Rapportage fase 1: ontwikkeling van uniforme
werkwijze voor analyse van droogte en tussentijdse bevindingen, KnowH2O,
available at: https://edepot.wur.nl/511196 (last access: 22 January 2022), 2019.
Van de Velde, I., van der Kooij, S., Van Hussen, K., and Läkamp, R.:
Economische schade door droogte in 2018, Ecorys, Rotterdam, the Netherlands,
available at:
https://www.rijksoverheid.nl/documenten/rapporten/2019/08/31/economische-schade-door-droogte-in-2018
(last access: 22 January 2022), 2019.
Van Loon, A. F.: Hydrological drought explained, WIREs Water, 2, 359–392,
https://doi.org/10.1002/wat2.1085, 2015.
Van Loon, A. F. and Laaha, G.: Hydrological drought severity explained by
climate and catchment characteristics, J. Hydrol., 526, 3–14,
https://doi.org/10.1016/j.jhydrol.2014.10.059, 2015.
Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S.,
Wanders, N., Gleeson, T., Van Dijk, A. I. J. M., Tallaksen, L. M., Hannaford, J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., and Van Lanen, H. A. J.: Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches, Hydrol. Earth Syst. Sci., 20, 3631–3650,
https://doi.org/10.5194/hess-20-3631-2016, 2016.
Van Loon, A. F., Kumar, R., and Mishra, V.: Testing the use of standardised
indices and GRACE satellite data to estimate the European 2015 groundwater
drought in near-real time, Hydrol. Earth Syst. Sci., 21, 1947–1971,
https://doi.org/10.5194/hess-21-1947-2017, 2017.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
von Asmuth, J. R., Bierkens, M. F. P., and Maas, K.: Transfer function-noise
modeling in continuous time using predefined impulse response functions,
Water Resour. Res., 38, 23, https://doi.org/10.1029/2001WR001136, 2002.
von Asmuth, J. R., Maas, K., Knotters, M., Bierkens, M. F. P., Bakker, M.,
Olsthoorn, T. N., Cirkel, D. G., Leunk, I., Schaars, F., and von Asmuth, D.
C.: Software for hydrogeologic time series analysis, interfacing data with
physical insight, Environ. Model. Softw., 38, 178–190, https://doi.org/10.1016/j.envsoft.2012.06.003, 2012.
Witte, J. P., Runhaar, J., and van den Eertwegh, G.: Verdroging van de
Nederlandse natuur: bijna een halve eeuw goed onderzoek en falende politiek, Stromingen, 26, 65–80, available at:
https://www.nhv.nu/stroming/nieuws/verdroging-van-de-nederlandse-natuur-bijna-een-halve-eeuw-
goed-onderzoek-en-falende-politiek/ (last access: 22 January 2022), 2020a.
Witte, J. P., van Deijl, D., and van den Eertwegh, G.: Gevolgen voor de natuur op de hogere zandgronden van de droge jaren 2018 en 2019; Resultaten van een enquête onder deskundigen, FWE, KnowH2O, available at:
https://edepot.wur.nl/521008 (last access: 22 January 2022), 2020b.
WUR: Grondsoortenkaart 2006, Research, WUR [data set], available at:
https://www.wur.nl/en/show/Grondsoortenkaart.htm (last access: 22 January 2022), 2006.
Zaadnoordijk, W. J., Bus, S. A. R., Lourens, A., and Berendrecht, W. L.:
Automated Time Series Modeling for Piezometers in the National Database of
the Netherlands, Groundwater, 57, 834–843, https://doi.org/10.1111/gwat.12819, 2019.
Short summary
Periods of drought often lead to groundwater shortages in large regions, which cause damage to nature and the economy. To take measures, we need a good understanding of where and when groundwater shortage occurs. In this study, we have tested a method that can combine large amounts of groundwater measurements in an automated way and provide detailed maps of how groundwater shortages develop during a drought period. This information can help water managers to limit future groundwater shortages.
Periods of drought often lead to groundwater shortages in large regions, which cause damage to...