
Hydrol. Earth Syst. Sci., 26, 551–569, 2022
https://doi.org/10.5194/hess-26-551-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Improved understanding of regional groundwater
drought development through time series modelling:
the 2018–2019 drought in the Netherlands
Esther Brakkee1, Marjolein H. J. van Huijgevoort1, and Ruud P. Bartholomeus1,2

1KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
2Soil Physics and Land Management Group, Wageningen University, 6708 PB Wageningen, the Netherlands

Correspondence: Esther Brakkee (esther.brakkee@kwrwater.nl)

Received: 30 January 2021 – Discussion started: 29 March 2021
Revised: 1 October 2021 – Accepted: 12 December 2021 – Published: 2 February 2022

Abstract. The 2018–2019 drought in north-western and cen-
tral Europe caused severe damage to a wide range of sec-
tors. It also emphasised the fact that, even in countries with
temperate climates, adaptations are needed to cope with in-
creasing future drought frequencies. A crucial component of
drought management strategies is to monitor the status of
groundwater resources. However, providing up-to-date as-
sessments of regional groundwater drought development re-
mains challenging due to the limited availability of high-
quality data. This limits many studies to small selections of
groundwater monitoring sites, giving an incomplete image
of drought dynamics. In this study, a time series modelling-
based method for data preparation was developed and ap-
plied to map the spatio-temporal development of the 2018–
2019 groundwater drought in the south-eastern Netherlands,
based on a large set of monitoring data. The data prepara-
tion method was evaluated for its usefulness and reliabil-
ity for data validation, simulation, and regional groundwa-
ter drought assessment. The analysis showed that the 2018–
2019 meteorological drought caused extreme groundwater
drought throughout the south-eastern Netherlands, breaking
30-year records almost everywhere. Drought onset and du-
ration were strongly variable in space, and higher-elevation
areas suffered from severe drought well into 2020. Ground-
water drought development appeared to be governed dom-
inantly by the spatial distribution of rainfall and the land-
scape type. The time series modelling-based data prepara-
tion method was found to be a useful tool to enable a spa-
tially detailed record of regional groundwater drought de-
velopment. The automated time series modelling-based data

validation improved the quality and quantity of useable data,
although optimal validation parameters are probably context
dependent. The time series simulations were generally found
to be reliable; however, the use of time series simulations
rather than direct measurement series can bias drought esti-
mations, especially at a local scale, and underestimate spatial
variability. Further development of time-series-based valida-
tion and simulation methods, combined with accessible and
consistent monitoring data, will be valuable to enable better
groundwater drought monitoring in the future.

1 Introduction

In the summer of 2018, a severe drought hit large parts of
north-western and central Europe. Extremely low precipita-
tion coincided with high temperatures, both breaking multi-
decadal records in many places (see Bakke et al., 2020; Philip
et al., 2020; Toreti et al., 2019). Recurring drought in sum-
mer 2019 and early 2020 worsened the situation in large parts
of the area. Drying soils and declining water reserves caused
damage to agricultural production and natural ecosystems,
problems with drinking water and energy production, and
widespread forest fires, among other impacts (Bakke et al.,
2020; Bastos et al., 2020; Buras et al., 2020; Philip et al.,
2020). The kind of “hot drought” that occurred in 2018–2019
is expected to become more frequent in the future in central
and northern Europe (Philip et al., 2020; Toreti et al., 2019).

The Netherlands was one of the countries most hit by
these weather extremes (Bakke et al., 2020). The damage was
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felt mainly in the southern and eastern parts of the country
(Van de Velde et al., 2019; Van den Eertwegh et al., 2019;
Witte et al., 2020b). In a country traditionally more focused
on discharging water surpluses, the drought of 2018–2019
was felt by many water managers as a wake-up call, sparking
a widespread search for solutions to prepare water systems
for increasingly frequent drought extremes (De Lenne and
Worm, 2020; IenW, 2019; Witte et al., 2020a; Van de Velde et
al., 2019). In the south-eastern Netherlands, as in many other
parts of the world, groundwater is a crucial water source. Ac-
cordingly, much of the damage in 2018 was directly related
to deep declines in groundwater levels (LCW, 2020). Among
other effects, the groundwater shortages caused severe dam-
age in peatland and brook ecosystems (Witte et al., 2020b)
as well as concerns over the sustainability of increased irri-
gation and drinking water abstractions (Van de Velde et al.,
2019; Van den Eertwegh et al., 2019). Groundwater is of-
ten the most persistent water store in the landscape, reacting
latest as a meteorological drought propagates into the hydro-
logical system (Van Loon, 2015). This makes proper man-
agement of the groundwater a crucial component of drought
management strategies.

Previous studies have shown that the response of ground-
water to meteorological drought can vary strongly in space.
Variations in groundwater response are caused by differences
in geology, water management, and other catchment charac-
teristics (Bloomfield et al., 2015; Hellwig et al., 2020; Peters
et al., 2006; Van Loon and Laaha, 2015). Therefore, to be
able to mitigate and prevent drought damage, it is essential to
understand how groundwater drought develops in both time
and space. In recent years, water managers in the Nether-
lands have indeed expressed the need for more up-to-date,
location-specific drought information and predictions to be
able to take appropriate measures (IenW, 2019; Pezij et al.,
2019; Witte et al., 2020a).

Multiple recent research efforts have aimed at better un-
derstanding the variations in groundwater drought and its im-
pacts at national and European scales (Bakke et al., 2020;
Hellwig et al., 2020; Margariti et al., 2019; Van Loon et al.,
2017; Brauns et al., 2020). The 2018(–2019) drought in Eu-
rope has so far been studied at larger scales from a meteo-
rological perspective (Bakke et al., 2020; Philip et al., 2020;
Toreti et al., 2019) as well as from a hydrological perspec-
tive in Scandinavia and Switzerland, among others (Bakke et
al., 2020; Brunner et al., 2019). For the Netherlands, some
assessments of the drought with respect to groundwater have
been made based on small numbers of measurement sites and
physically based modelling studies (Van den Eertwegh et al.,
2019). However, a more detailed image of how the 2018–
2019 drought manifested itself in the groundwater and how
this varied in space, based on measurement data, is still lack-
ing. This could provide valuable insights into groundwater
drought dynamics and mitigation options in the Netherlands
and similar groundwater-dominated lowland regions.

Groundwater heads are widely monitored in observation
wells. However, analysis of groundwater drought from these
data over large areas is often challenged by data quantity or
quality (Kumar et al., 2016). Firstly, data usually have to be
obtained from multiple organisations, and they contain er-
rors and other perturbations. Secondly, the length of mea-
sured time series is often not sufficient for drought analy-
sis, for which at least 30-year series are recommended (Link
et al., 2020). As a result, many groundwater drought studies
have focused on relatively few measurement wells with near-
natural, long series or on simplified proxies (Bakke et al.,
2020; Van Loon et al., 2017; Van den Eertwegh et al., 2019;
Kumar et al., 2016). This may give an incomplete image
of the true variability in drought dynamics. In addition, the
available data usually lag behind the present, hindering the
up-to-date drought assessments that water managers need.

To deal with these challenges, several studies have de-
veloped methods for automated validation and lengthening
of groundwater head time series (Marchant and Bloomfield,
2018; Peterson et al., 2018; von Asmuth et al., 2012). This is
usually done with various types of statistical models (Peter-
son et al., 2018; Van Loon et al., 2017). One type of sta-
tistical modelling that has proven very useful for ground-
water data is time series modelling with impulse-response
functions (Bakker and Schaars, 2019; von Asmuth et al.,
2002). These models describe groundwater head variations at
a specific location as a function of driving variables, usually
weather data, and a fitted impulse-response function. This
type of impulse-response time series modelling (TSM) al-
lows accurate simulations to be made without the need for in-
formation on site characteristics. The simulations can be used
to identify errors and other atypical behaviour in the data as
well as to lengthen and harmonise time series, as shown by
studies such as Zaadnoordijk et al. (2019), Bartholomeus et
al. (2008), and Marchant and Bloomfield (2018). As such,
TSM can enable drought studies to use more observation
points and to perform real-time monitoring, without the need
for a complex physically based model. Marchant and Bloom-
field (2018) were the first to develop a full time series model-
based method to study groundwater drought over a large re-
gion in the UK. Although TSM-based analyses appear to be
a valuable tool for groundwater drought assessment, their
wider applicability for various cases has not yet been well
explored. To be able to widely use TSM data preparation for
drought studies, several questions need to be answered.

Firstly, it is not yet clear which methods are optimal for
groundwater data validation. Raw groundwater data sets are
usually strongly influenced by errors and disturbances, which
can hamper the reliability of analyses such as model cali-
bration and calculation of groundwater characteristics (Post
and von Asmuth, 2013; Peterson et al., 2018; Ritzema et al.,
2018). Time series modelling can be used to identify time se-
ries influenced by disturbances after analysis (e.g. Marchant
and Bloomfield, 2018) but also to remove irregularities from
the data beforehand. In addition, TSM-based data cleaning
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Figure 1. The study area, showing (a) elevation (AHN, 2019) and (b) soil types (WUR, 2006). The higher-elevation limestone–loess hill
landscape in southern Limburg (LLH) and glacier-pushed sand ridges (GPR) are indicated.

can be combined with other more basic consistency checks,
improving its effectiveness (Peterson et al., 2018). This val-
idation method has not yet been evaluated for the case of
groundwater drought analysis.

Secondly, the reliability of time series simulations for
groundwater drought analysis has not been properly tested.
To understand the added value of using TSM data prepa-
ration, the gain in spatial and temporal cover needs to be
balanced with a potential loss of information by cleaning
and simulation. Researchers have often used TSM simula-
tions directly as replacement of the data. This may be justi-
fied, as these simulations often have a very good fit to ob-
servations (Bakker and Schaars, 2019; Zaadnoordijk et al.,
2019); however, this approach inevitably also strips out part
of the external influences that are not explicitly included in
the model drivers (Peterson et al., 2018; Zaadnoordijk et al.,
2019). Drought occurrence and development can be strongly
affected by human impacts as well as by local-scale nat-
ural influences, such as surface water influence (Margariti
et al., 2019; Van den Eertwegh et al., 2019). As such, ex-
cluding such external drivers of groundwater levels may pro-
vide an incomplete image of drought dynamics (Van Loon
et al., 2016). In addition, models may have intrinsic diffi-
culties to correctly represent groundwater behaviour during
extreme drought conditions, which may cause deviating soil
and groundwater flow processes (Hellwig et al., 2020; Avanzi
et al., 2020). This is especially important when time series
models are used for “nowcasting” groundwater observation
series. Under extreme drought conditions, this (by defini-
tion) involves modelling system conditions not present in the
calibration period and may give incorrect results. Therefore,
it is important to understand how the use of TSM simula-
tions rather than measurement series affects the assessment
of drought behaviour.

Given these knowledge gaps, the current study aims to
evaluate the usefulness of a time series modelling-based
data preparation method for regional analysis of groundwa-
ter drought. A method is developed consisting of data vali-
dation, simulation, and drought assessment (Sect. 3) and is
applied to the 2018–2019 groundwater drought in the south-
eastern Netherlands in order to characterise its development
and recovery in time and space (Sect. 4). The usefulness of
the method is evaluated by its performance and reliability
with regard to groundwater data validation and simulation as
well as by its added value for the resulting regional drought
assessment (Sect. 5).

2 Study area and data

The study area covers roughly the south-eastern half of the
Netherlands (Fig. 1). This is a low-topography area above
sea level, dominated by Pleistocene deposits. The study area
has mainly sandy sediments at the surface but is also partially
covered by river clays and loess deposits (Fig. 1b). The eleva-
tion is mostly between 0 and 30 m above mean sea level, with
locally higher areas (Fig. 1a). Higher elevations occur in the
limestone–loess hill landscape of southern Limburg and on
glacier-pushed ridges in Utrecht and Gelderland (areas indi-
cated in Fig. 1a). Land use is dominated by agriculture, while
the glacial ridges are covered mainly with forest. The area
has a temperate climate with a yearly precipitation surplus
(precipitation of 700–950 mm yr−1 and reference evapotran-
spiration of around 600 mm yr−1). In addition, the groundwa-
ter system is affected by abstractions for drinking water and
irrigation as well as by drainage systems in the lowest-lying
parts of the study area.
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Figure 2. Method workflow.

Groundwater head data were supplied by several regional
water managing bodies. For some areas, additional series
were obtained from the Dutch national groundwater database
DINO (TNO, 2022). The data consist of groundwater head
time series with a bimonthly to sub-daily frequency, mostly
running until spring 2019. In addition, metadata of the mon-
itoring wells were available, including location, filter depth,
and surface level. Only data from the first filter of boreholes
were used, generally representing the phreatic level. Those
series were selected that contained ≥ 10 years of data, to en-
sure sufficient data for time series model fitting (see Zaadno-
ordijk et al., 2019), and that ended after 31 August 2018. The
2018–2019 meteorological drought peaked in summer 2018;
therefore, summer 2018 was chosen as the focus period for
model evaluation. This resulted in 2722 series for further
analysis.

Daily precipitation (P ) and reference evapotranspira-
tion (ETref) were obtained from the Royal Netherlands Me-
teorological Institute (KNMI) for January 1990 to May 2020
(KNMI, 2020). Data were used from 15 general weather sta-
tions (for ETref) and 114 precipitation stations distributed ho-
mogeneously over the study area. Reference evapotranspira-
tion is determined by KNMI following Makkink (1957). The
ETref series did not always cover the full period of interest;
gaps were filled with the nearest station that did have full data
(maximum distance of around 50 km).

3 Methods

The method for data preparation and drought analysis con-
sists of three components (Fig. 2): (1) validation of the ob-
served groundwater heads, (2) simulation of groundwater
heads, and (3) conversion to a standardised groundwater in-
dex (SGI). Each step is evaluated by one or more tests. In
addition, the resulting drought assessment for the case study
region is explored as an example of a regional-scale applica-
tion.

3.1 Time series modelling method

This study has made use of time series modelling with prede-
fined impulse-response functions, as developed by von As-
muth et al. (2002). Time series modelling was done with
the Pastas package for Python developed by Collenteur et
al. (2019). The used model set-up largely follows Collenteur
et al. (2019) and is described in more detail in Appendix A.
In short, groundwater levels (GWL) were simulated as a base
level d , overlain by a temporal fluctuation in response to ex-
ternal stresses – in this case only recharge. Here, recharge is
estimated as follows:

R(t)= P(t)+ f ·ETref(t), (1)

where f is a calibration parameter. The use of the linear
recharge model of Eq. (1) is a simplification that may not be
optimal for all locations in this study (Collenteur et al., 2021;
Bakker and Schaars, 2019). However, as linear recharge
models have been successfully applied in many cases in the
Netherlands (e.g. Zaadnoordijk et al., 2019; von Asmuth
et al., 2012) and as we aimed to explore the potential of
impulse-response time series modelling for drought studies
rather than to compare different model set-ups, we chose to
use the simplest model set-up possible (see Sect. 5.1.2 for
further comments).

The response of groundwater to a recharge impulse is
modelled by a scaled gamma function as in von Asmuth et
al. (2002) and Collenteur et al. (2019) (see Appendix A).
The variation in groundwater heads over time is calculated
by convolution of this impulse-response function with the
recharge time series.

This gives five parameters to be calibrated for each in-
dividual location. Parameter A represents the long-term re-
sponse of the groundwater level to a constant recharge input
of one unit, in this case 1 mm d−1; a and n determine the
shape of the recharge response function; f is the influence
of ETref relative to precipitation; and d is the groundwater
base level. For purposes of parameter calibration, an expo-
nential noise model is also fitted to the residuals with the
additional noise decay parameter α.
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Table A1 gives the calibration settings used for each pa-
rameter. The default method for parameter optimisation was
used, minimising the weighted squared noise using a least
squares method (Collenteur et al., 2019).

3.2 Series validation

Raw groundwater data sets are usually strongly influenced
by errors and disturbances. Often no information is avail-
able on potential sources of deviations, and these have to
be identified from the groundwater data themselves (Post
and von Asmuth, 2013; Peterson et al., 2018; Ritzema et
al., 2018). Phreatic groundwater levels typically follow an
annual cycle, overlain by faster fluctuations in response to
rainfall and evapotranspiration. An actual series of measured
groundwater heads will often show deviations from this ex-
pected pattern. Deviations may be of short duration, such as
those caused by a typing error, temporary instrument failure,
or short-term groundwater abstraction, and can be denoted
outliers: a small number of measurements far from the ex-
pected level, occurring over a short period (days or weeks)
relative to the general (seasonal) fluctuations in most ground-
water series (e.g. Peterson et al., 2018). Deviations may also
be structural, affecting the series’ behaviour over months or
longer. These are visible as level shifts, trends, and other ab-
normal patterns in the data series (see Sect. S1 in the Supple-
ment). Such long-term deviations can be caused by errors,
such as instrument drift; however, they can also reflect real
groundwater behaviour caused by local natural or human in-
fluences, such as surface water influence or abstraction (Post
and von Asmuth, 2013; Zaadnoordijk et al., 2019; Margariti
et al., 2019). Logbook notes from data collectors available
for a small subset of our data set indeed showed frequent
disturbances such as short-term abstractions, changes in wa-
ter management, sensor problems, relocation of wells, well
maintenance, and other issues.

To prepare the data for the drought analysis, we used a
validation set-up that treats short-term (outliers) and long-
term deviations separately. The validation method aims to
remove all important outliers: erroneous outliers will lead to
incorrect conclusions on the occurrence of extremes, while
real short-term disturbances in the groundwater heads are
also less relevant for understanding the slow-developing im-
pacts of drought, which is generally considered to occur on
timescales of months to years (van Loon, 2015). Erroneous
long-term deviations are also undesirable for drought anal-
ysis, as these disturb the groundwater level distribution on
which drought thresholds are based (see Sect. 3.3). However,
real long-term deviations in the groundwater level, such as
those caused by long-term abstraction and land use effects,
should ideally be retained to capture the real variability in
drought behaviour (Van Loon et al., 2016). Whether atypical
behaviour in a series is caused by errors or by real external
influences is very difficult to distinguish by automated meth-
ods. Our approach is, therefore, to classify the series accord-

ing to their long-term behaviour; this allows for the retention
of some of the potentially influenced series in the analysis
while also acknowledging their lower reliability.

The outlier cleaning consisted of the following steps (see
Table 1 for parameters):

1. Basic metadata consistency check. Measurements be-
low the well filter or > THinund above the surface level
were removed, as these are likely to point to erroneous
measurements or metadata.

2. Removing far outliers by range. As a fast first cleaning
step, far outliers were identified by isolating the top and
bottom fraction of the measurement range (Frange) and
identifying them as outliers if their removal caused a
reduction in range of > THred.

3. Outlier removal by time series modelling. A model was
fitted for each series using precipitation and ETref from
the nearest weather stations. All measurements outside
a range of nsd times the standard deviation of the resid-
uals around the simulation were removed. This step was
repeated niter times to deal with outliers disturbing the
model fitting (Peterson et al., 2018; Leunk, 2014).

For the long-term behaviour classification, a new time se-
ries model was fitted on the resulting cleaned series. The
explained variance percentage (EVP, equal to r2

· 100) and
model parameters A, f , and d were saved. In addition, a
linear trend was fitted through the residual series, and the
p value and r2 of the trend were saved. Finally, the series
were checked for consecutive periods with missing data of
> 4 years which would hamper the required 10-year data
period (Sect. 2); if consecutive periods with missing data
of > 4 years were present, only the time period after the
last data gap was used. Based on these indicators, the series
were ordered into four categories of long-term behaviour (see
Sect. S1 for examples):

1. Discarded series. These are series with very strong
deviations from the expected behaviour (as indicated
by EVP< THEVP) or insufficient data for analysis (<
10 years, data gaps> 4 years, or no data over June–
August 2018).

2. Deep-groundwater series. These are series with a mean
water table depth (WTD)> 5 m that typically show a
very slow, smoothed behaviour and often poor model
fit; the used validation method is probably less suitable
for these series.

3. Atypical series. These are series with mild deviations
and EVP≥ THEVP, but they contain a trend or atypical
parameters. This points to potential errors, external (hu-
man) influence, or groundwater processes that deviate
from the TSM assumptions used in this study. Locations
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Table 1. Parameters used for the series validation.

Parameter Value used Justification

O
ut

lie
rs

MetaCheck Metadata check performed Yes

THinund Maximum allowed inundation 0.2 m Shallow inundation possible in study
area, deep inundation unlikely (Leunk,
2014)

Frange Fraction of range identified as potential 0.2 Tested
outlier in far outlier cleaning

THred Minimum range reduction (fraction) to 0.5 Tested
remove outliers

nsd Threshold number of standard deviations to 4 Tested
remove outliers

niter Number of iterations in TSM outlier cleaning 2 Tested

L
on

g-
te

rm
cl

as
si

fic
at

io
n THEVP EVP threshold to discard series 60 % Visually estimated as suitable (see

Sect. S2)

THr2 The r2 threshold of trend in residuals to mark 0.15 Tested
series as atypical

THf Threshold in f value to mark series as atypical >−0.05 or Close to parameter bounds (see Table A1)
<−1.95

THA Threshold in A value to mark series as > 1.5 Far from normal range of values for the
atypical given data set (see Table A1)

were marked as atypical if they had a trend in the residu-
als with p < 0.05 and r2 > THr2 or if they had unusual
values for the f and A parameters (THf and THA).

4. Normal series. These are series with EVP≥ THEVP and
no other issues.

The cleaned measurement series of the normal, atypical, and
deep categories were aggregated to daily means and saved
for further use. Table 1 shows the validation parameters used
for this study. Several parameters were chosen by initial
trial-and-error testing; the sensitivity to these parameters was
tested as explained in the following.

The performance of the validation method was evaluated
on a test set of 180 randomly selected series (30 from each
province). These series were visually checked for the occur-
rence of (1) outliers (series to clean); (2) serious long-term
deviations, such as level shifts or strong trends (series to dis-
card); and (3) milder long-term deviations, such as lighter
trends (series to mark as atypical); see Figs. S1–S4 in the
Supplement for examples.

The validation routine was applied to the test set with the
standard parameters shown in Table 1 and with 20 alternative
parameter sets (Table S1 in the Supplement). In sets 2–11,
the parameters were varied individually to more conserva-
tive (less cleaning and discarding) and more rigorous values
(more cleaning and discarding); in sets 12–19, combinations
of conservative and rigorous outlier cleaning as well as long-

term deviation identification parameters were tested; and in
sets 20 and 21, versions were tested with only TSM-based
outlier cleaning (no basic cleaning step) and no outlier clean-
ing at all.

The validation results from all parameter sets were com-
pared to the visual validation and scored by (1) correct iden-
tification of outliers (cleaned if needed), (2) correct identifi-
cation of serious long-term deviations (discarded if needed),
and (3) correct identification of mild long-term deviations
(marked as atypical if needed). Scoring was done as true or
false positive (deviations correctly recognised) and true or
false negative (absence of deviations correctly recognised)
for the three categories.

3.3 Series simulation

The cleaned series from the validation step were used to
simulate groundwater heads for the drought analysis. It was
chosen to use simulated series, rather than interpolating the
measurement series with TSM (Marchant and Bloomfield,
2018), to ensure regular series without sudden level shifts
and prevent influence of remaining outliers. A model was fit-
ted on the cleaned measurement series (see Sect. 3.1 and Ap-
pendix A); for those models with an EVP > 60 % (Table 1),
a groundwater head series with a daily time step was simu-
lated for the period of interest, in this case 1 January 1990
to 31 May 2020. As most measurement series originally ran
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until spring 2019, roughly 1 year of “nowcasting” was added
to the data.

The performance of the simulations was assessed by the
root-mean-square error (RMSE), the mean error (ME), and
the rank correlation (Spearman’s ρ) of the simulated ground-
water levels (GWL) over the full length of the measure-
ment series. ME was calculated as ME=mean(GWLsim−

GWLobs) to quantify bias. To assess model performance un-
der dry conditions specifically, the measurements of each
series were subdivided into “low-head periods” (measured
head< 20th percentile), “medium-head periods” (20th to
80th percentile), and “high-head periods” (> 80th per-
centile), and the RMSE and ME were recalculated for these
periods. In addition, the RMSE and ME were determined
specifically over July–November 2018, the period during
which the meteorological and hydrological droughts peaked.
The RMSE and ME were expressed both as the absolute
value in metres and as a fraction of the mean water table
depth at the location. The latter measure may give a better
image of the scale of the errors, as the impact of a small
change in groundwater head on vegetation and hydrological
processes is generally much larger where groundwater lev-
els are normally shallow (Bartholomeus et al., 2012; Witte et
al., 2020b). Finally, average performance metrics were cal-
culated for the three long-term behaviour categories (normal,
atypical, and deep) separately.

The sensitivity of the simulation of drought conditions to
the calibration period was also tested. Models were recali-
brated on the period until the start of the 2018 growing sea-
son (1 April 2018), and the groundwater behaviour for the
rest of 2018 was “nowcasted” with the available weather
data. Simulation performance was again evaluated using the
RMSE and ME over July–November 2018 and was com-
pared with the simulations calibrated on the full period.

The groundwater behaviour at an individual measurement
location can be summarised through the recharge response
time, which can be derived from the fitted time series mod-
els. Here, the response time was defined as the time after
which 50 % of the groundwater head response to a recharge
event has occurred (e.g. Zaadnoordijk et al., 2019). It was
derived by intersecting the step response function obtained
from Pastas (function get_step_response) with the line 0.5A.
These response times are a characteristic of the full ground-
water series, not just the drought period. Still, the response
times and their spatial distribution give a further indication
of the validity of the time series models and the drivers of
groundwater drought development.

3.4 Drought index

To identify drought periods in time series of hydrological
variables and to compare drought severity between locations,
standardised drought indices are used. We quantified the de-
velopment of meteorological drought over 2018–2020 using
the standardised precipitation evaporation index, aggregated

over 3 months (SPEI-3) (Vicente-Serrano et al., 2010). The
study area was divided into four zones (see Fig. 2); the SPEI-
3 for each zone was calculated from the average precipita-
tion of all weather stations within the zone and the distance-
weighted mean ETref of the three stations closest to the mid-
point. This midpoint method was necessary to obtain repre-
sentative values for each zone from the relatively few evapo-
transpiration stations present (15). The SPEI was calculated
by a normal distribution transformation; the 3-month accu-
mulation time was chosen because this most clearly showed
the meteorological droughts at a timescale comparable to the
variations in groundwater level.

For groundwater heads, the standardised groundwater in-
dex (SGI) was applied (Bloomfield and Marchant, 2013).
The SGI method consists of transforming a measured
groundwater head series at a specific location to a stan-
dard normal distribution; this produces a drought index se-
ries varying roughly between −3 and 3, indicating condi-
tions from extremely dry to extremely wet compared with the
normal situation. When analysing drought indices for multi-
ple locations, a common reference period must be used. It is
generally recommended to use a period of at least 30 years
to ensure a proper estimation of the long-term “normal situ-
ation” (McKee et al., 1993; Van Loon et al., 2016; Ritzema
et al., 2018). Here, the period from January 1990 to Decem-
ber 2019 is used throughout as the reference period.

For precipitation, the transformation step is usually done
by fitting a gamma distribution function to the data (Mc-
Kee et al., 1993). For groundwater heads, however, distribu-
tion shapes vary widely between locations (Bloomfield and
Marchant, 2013; Dawley et al., 2019; Loáiciga, 2015). Fitting
individual parametric distribution functions to each location
based on the 30-year monthly series used here is likely to
give unreliable results; for example, Link et al. (2020) found
that more than 100 data points are needed for fitting reli-
able parametric distributions on hydrological series in most
cases, while incorrect transformations give a high risk of bi-
ased drought index values (Svensson et al., 2017). There-
fore, groundwater levels were transformed using a normal
scores transform (see e.g. Bloomfield and Marchant, 2013).
This is a non-parametric transformation method that has the
advantage of being simple and transparent and also circum-
vents the risk of bias due to erroneous distribution fits. For
each location, the simulated series was first aggregated to
monthly mean levels. Transformation was then done sepa-
rately for each calendar month. For each calendar month with
n years of data, in this case 30, cumulative probability val-
ues are taken, uniformly spaced over the interval (1/2n) to
(1− 1/2n); the corresponding SGI values are found by ap-
plying an inverse cumulative distribution function to these
values. The resulting SGI values are assigned to the ground-
water head measurements of the given calendar month by
their rank from low to high. This method of calculating SGIs
results in a limited number of “discrete” SGI values that cor-
respond directly to the rank of the groundwater level com-
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Table 2. Categories used for the standardised groundwater index,
with the corresponding groundwater level rank in a 30-year record.

SGI Drought category Rank (dry to wet)

> 0 No drought > 15 (wettest 15 years)
0 to −1 Mild drought 6–15
−1.5 to −1 Moderate drought 3–5
−2 to −1.5 Severe drought 2
<−2 Extreme drought 1 (driest year)

pared to the rest of the reference period. Table 2 gives the
SGI values and their corresponding rank and drought severity
in this study. The drought severity classes follow the classifi-
cation by McKee et al. (1993) that has been frequently used
in drought studies. Note that the SGI, unlike the SPEI, is not
aggregated over multiple months; therefore, the SGI values
given here represent “SGI-1”.

The SGI values for the months outside the reference pe-
riod (January–May 2020) were estimated by linearly inter-
polating the groundwater head–SGI relation for the calendar
month. If the heads fell outside the range reached in the refer-
ence period, they were assigned the most extreme SGI value.

To test how the use of TSM simulations rather than mea-
surement series affects drought analysis, SGI values were
also calculated directly for a selection of locations that had
long measurement series. To collect enough series for com-
parison while preventing the influence of differing time pe-
riods, a minimum of 27 years was used. All series with at
least 27 years of data (starting before 1 January 1993) were
selected from the cleaned measurement series, resulting in
531 series. The SGI values for 2018 were calculated in the
same way as for the simulated series, with the SGI of a cal-
endar month calculated only if at least 25 years of data were
available. Thus, in some cases, the number of data points will
be some smaller than for the simulation-based SGI. However,
an n of 25 instead of 30 does not affect the classification for
the lowest drought categories (as shown in Table 2); more-
over, an exploratory test (not shown) indicated that the slight
period mismatch did not affect the patterns in the resulting
comparison. The simulation-based and measurement-based
SGI values were compared by correlation (Spearman’s ρ).

4 Results

4.1 Usefulness of the TSM method for drought data
validation and simulation

4.1.1 Validation performance

The validation performance for the standard validation pa-
rameter set is shown in Table 3. For a large majority of
test series, the routine performed a correct action with re-
gard to cleaning outliers, discarding strongly deviating se-

ries and marking atypical series. In the outlier cleaning, there
is a relatively large fraction of false positives (removal of
non-existing outliers). This mainly occurs for points in well-
modelled series, without affecting the character of the se-
ries or the drought extremes. The false negatives (outliers not
recognised) partly concerned influential outliers; another rel-
atively frequent problem was the incomplete removal of a
group of outliers (not shown in Table 3). With regard to the
strong long-term deviations, there is a relatively large frac-
tion of false positives (unduly discarded series). This is partly
caused by the incomplete outlier cleaning for some of the se-
ries. The number of series marked as atypical by both the
visual and automated validation is relatively small. This cat-
egory is hard to identify consistently by visual inspection,
which may explain the false positives and negatives.

The parameter sensitivity test (see Table 4 and Sect. S2)
showed that the standard parameter set performed relatively
well in comparison with other parameter sets. The sensi-
tivity to the parameters of the far outlier cleaning (Frange,
THred) and the number of iterations in the TSM outlier clean-
ing (niter) was low, while the standard deviation range for the
TSM cleaning (nSD) and the thresholds for discarding and
marking series (THEVP and THr2 ) did have a large effect. Ap-
plying an outlier cleaning step generally increased the simu-
lation performance (mean EVP of 60 % to 62 %, set 1 vs. 21)
and allowed more series to be retained for analysis (60 % to
64 % of series), with the TSM cleaning being responsible
for most of the outlier cleaning. Taking a conservative low
EVP threshold appears to give a good performance on the
strong deviation identification (set 8 and 16), but the number
of false negatives is high; in contrast, a strict EVP thresh-
old of 80 % causes the majority of series to be discarded.
Changing the threshold on the residual trend to mark series
as atypical (set 10 and 11) caused either almost all or almost
no series to be marked and did not substantially improve the
performance.

When applied to the full study data set, the validation pro-
cedure discarded 31 % of the groundwater head measurement
series, so that 1869 of the original 2722 series remained for
analysis. A poor model fit was the most frequent cause for
discarding measurement series. A total of 10 % of the series
were maintained as atypical series, while another 12 % of lo-
cations had a deep groundwater table; these series were less
suitable for the validation method used.

4.1.2 Simulation performance

In the simulation step, 1632 locations were modelled with
sufficient quality (EVP> 60 %). Overall, these series were
simulated with an average error of 14 cm, resulting on aver-
age in a 20 % error in the groundwater table depth (Table 5).
The bias is low with a value of −1 mm. Subdivision into
dry, normal, and wet conditions (0–20th, 20–80th, and 80–
100th percentile of groundwater levels respectively) shows
that the errors are larger for more extreme groundwater levels
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Table 3. Validation performance for the standard parameter set (Table 1). The number of series with insufficient data is 19, so ntotal = 161.
The terms used in the table are as follows: true positive – identified in both manual and automatic validation; true negative – not identified
in either manual or automatic validation; false positive – identified in automatic validation but not in manual validation; false negative –
identified in manual but not in automated validation; excl. deep – excluding deep-GWL series. The last column shows the percentage of
series with outliers and long-term deviations correctly or reasonably identified.

Outliers True positive True negative False positive False negative False negative Correct clean
excl. deep action

71 (44 %) 56 (35 %) 26 (16 %) 8 (5 %) 6 (4 %) 79 %

Strong long-term True positive True negative False positive False negative False positive Correct
deviations excl. deep discard action

32 (20 %) 103 (64 %) 26 (16 %) 0 (0 %) 22 (14 %) 84 %

Mild long-term True positive True negative False positive False negative False positive Correct mark
deviations excl. deep action

7 (4 %) 131 (81 %) 11 (7 %) 12 (7 %) 7 (4 %) 86 %

Table 4. Summary results of validation parameter sensitivity test. No. discard and No. atypical refer to the number of series discarded or
marked as atypical respectively. Cleaning correct %, discard correct %, and marking correct % refer to the percentage of series with correct
action identified for cleaning, discarding, and marking respectively. See Table S1 for an explanation of the parameter sets.

Set Name Mean No. No. Cleaning Discard Marking
EVP discard atypical correct correct correct
[%] % % %

1 Standard 61.9 58 18 79 84 86
2 FarOutliersConservative 62 58 18 80 84 86
3 FarOutliersRigorous 61.9 58 18 79 84 86
4 OutliersConservative 60.6 64 17 80 81 86
5 OutliersRigorous 68.8 41 28 60 86 82
6 IterationsConservative 61.7 61 18 79 82 86
7 IterationsRigorous 62.2 58 18 79 84 86
8 EVPConservative 61.9 29 33 79 86 80
9 EVPRigorous 61.9 119 4 79 47 88
10 TrendConservative 61.9 58 7 79 84 88
11 TrendRigorous 61.9 58 39 79 84 74
12 OutliersConservative_EVPConservative 60.5 29 30 80 86 82
13 OutliersConservative_EVPRigorous 60.5 122 4 80 45 88
14 OutliersConservative_TrendConservative 60.5 66 7 80 80 88
15 OutliersConservative_TrendRigorous 60.5 66 36 80 80 75
16 OutliersRigorous_EVPConservative 71.1 15 45 59 89 75
17 OutliersRigorous_EVPRigorous 71.1 82 8 59 68 87
18 OutliersRigorous_TrendConservative 71.1 36 13 59 87 85
19 OutliersRigorous_TrendRigorous 71.1 36 45 59 87 72
20 Standard_TSMcleaningOnly 62.1 57 19 79 84 86
21 Standard_NoOutlierCleaning 59.9 64 16 68 81 88

(dry and wet conditions). More precisely, the models tend to
underestimate the extremes: there is a positive average bias in
periods of low groundwater levels and a negative bias when
groundwater levels are in their high ranges. Furthermore,
during the main period of groundwater drought in July–
November 2018, the simulation error is above average with
a value of 18 cm. However, the ranking of the groundwater
level is generally simulated well (mean Spearman’s ρ 0.90),
so that these absolute errors may not always propagate to

the SGI values. Subdivision by the three quality types (bot-
tom lines of Table 5) shows that the model performance de-
creases from normal to atypical to deep-groundwater series.
For deep-groundwater locations, however, the errors lead to
relatively small relative errors in WTD due to the large WTD
at these sites.
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Table 5. Performance of the groundwater head simulations for several subperiods and the three series types (Sect. 3.2). RMSE represents
root-mean-square error, and ME is the mean error of simulations vs. measurements, given in metres and as fraction of the mean groundwater
table depth (WTD).

RMSE ME Spearman’s ρ

Mean value (range) Fraction Mean value (range) Fraction Mean value
[m] WTD [–] [m] WTD [–] (range)

Period Full period 0.14 (0.03 to 1.7) 0.20 −1.2× 10−3 (−0.2 to 0.3) 8.1× 10−3 0.90 (0.63 to 0.98)
Dry 0.16 (0.03 to 2.0) 0.25 0.076 (−0.7 to 0.6) 0.15
Normal 0.12 (0.02 to 1.6) 0.18 −3.3× 10−3 (−0.3 to 0.4) 0.039
Wet 0.15 (0.03 to 1.7) 0.20 −0.070 (−1.3 to 0.3) 0.089
Jul–Nov 2018 0.18 (6.0× 10−3 to 3.2) 0.29 −0.010 (−2.9 to 1.5) 0.22
Calibrated until 1 April 2018 0.20 (1.0× 10−3 to 3.7) 0.31 −0.015 (−3.5 to 1.2) 0.24

Series Normal series 0.13 (0.03 to 0.39) 0.21 0.7× 10−4 (−0.04 to 0.07) 7.2× 10−3 0.90 (0.73 to 0.98)
type Atypical series 0.15 (0.05 to 0.66) 0.24 1.5× 10−3 (−0.1 to 0.1) 0.015 0.88 (0.70 to 0.97)

Deep series 0.23 (0.05 to 1.7) 0.018 2.6× 10−3 (−0.2 to 0.3) 2.6× 10−3 0.84 (0.63 to 0.98)

Figure 3. Development of the meteorological drought over 2018–2020 in the western, northern, central eastern, and south-eastern sections
of the study area given by the 3-month SPEI. The map shows the four sections.

4.1.3 Calibration period sensitivity

In addition to the fully calibrated simulations, the sensitivity
of the model simulations during drought to the calibration pe-
riod used was tested (Table 5, last row of “Period”). When the
2018 drought summer was simulated with a TSM model cal-
ibrated until spring 2018, the average error in the predicted
groundwater heads was 20 cm, giving a relative error in the
groundwater depth of 31 % and, thus, performing slightly
poorer than the fully calibrated simulations (error of 20 %).
Similar to the fully calibrated simulations, there is a (small)
negative mean error, indicating that the declines in ground-
water level over summer and, thus, the severity of drought
are slightly overestimated. This means that, as expected, the
simulation of groundwater levels under extreme drought con-
ditions outside the range of conditions in the model calibra-
tion has a relatively low reliability. However, the difference in
average error is only 0.03 m, indicating that the effect is rel-
atively small compared with the error already present in the
fully calibrated simulations. There are no clear spatial pat-
terns in the RMSE of the simulations (not shown). Thus, the
sensitivity to the calibration period appears to be independent
of specific catchment characteristics in the study area.

Figure 4. Monthly distributions of the standardised groundwater
index over 2018 in the south-eastern Netherlands (months shown as
yyyy-mm).

4.2 Development and recovery of the
2018–2019 groundwater drought in the
Netherlands

The groundwater drought of 2018–2019 was driven by
exceptionally dry weather conditions. The meteorological
drought started in spring 2018 and peaked in late summer
(Fig. 3). After a relatively normal winter, summer 2019 again
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Figure 5. Groundwater drought development in 2018: SGI of simulated series in April, July, and October 2018. WTD denotes water table
depth.

Figure 6. Groundwater drought over 2019–2020: SGI of extended groundwater series for April, July, March, and May 2019–2020. WTD
denotes water table depth.

showed moderate to severe drought. The winter of 2019–
2020 was relatively wet, but exceptionally low rainfall in
spring 2020 caused a return to extreme meteorological
drought conditions. The meteorological drought was not spa-
tially uniform. Especially in spring 2018 and summer 2019,
the western part of the study area experienced less dry con-
ditions than the east (Fig. 3).

The development of the groundwater drought in the south-
eastern Netherlands over 2018 is visualised in Figs. 4 and 5.
The 2018 growing season started with uniformly normal to
high groundwater levels over the study area (Fig. 4). Drought
started developing in May and June, with drought onset vary-
ing between locations. By July and August, severe to ex-
treme groundwater drought occurred over most of the area.
In September, heavy rain in the west of the study area slightly
alleviated the drought conditions. However, the drought sit-
uation worsened again in autumn, reaching its height in Oc-
tober and November when the simulations show almost uni-
form extreme drought over the study area. By December, a
slow recovery is visible.

The simulated data show distinct spatial patterns in the de-
velopment of the groundwater drought (Fig. 5). Especially
southern Limburg and the ridges in Utrecht and Gelderland

Figure 7. Response time to recharge as derived from the fitted re-
sponse functions. See Fig. 1 for the location of subregions.

with their distinct geology and topography (see Fig. 1) re-
acted more slowly than the rest of the study area and had
not yet experienced drought conditions in 2018. Moreover,
the fast recovery of the low-lying western Utrecht area in au-
tumn stands out.
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The simulations over 2019–2020 show that drought re-
covery was also strongly variable in space (Fig. 6). In
spring 2019, groundwater heads in the west of the study area
were again approaching normal levels, but the eastern re-
gions had recovered poorly. By this time, extreme ground-
water drought had also developed on the high ridges and in
southern Limburg. The summer of 2019 again brought severe
to extreme groundwater drought, this time clearly concen-
trated in the east of the study area, corresponding to the dif-
ferences in meteorological drought. In March 2020, ground-
water levels had returned to relatively high levels; however,
the exceptionally dry weather in April rapidly resulted in a
new severe drought situation by May.

The groundwater response times derived from the time se-
ries models are shown in Fig. 7. The response times are gen-
erally relatively short: 94 % of locations have a response time
of less than 1 year. However, parts of the study area, espe-
cially the central ridges and the southern loess hills, show
longer response times (Fig. 1). Thus, the spatial distribution
of the response time corresponds with the topography and
geology of the landscape. It also matches the patterns in the
propagation speed of meteorological drought to groundwater
drought in 2018–2020 (Figs. 5, 6).

4.3 Usefulness of the TSM method for regional drought
assessment

For a subset of the locations (n= 531), a long groundwater
measurement series was available, and the SGI values result-
ing from the simulated series could be compared to those ob-
tained directly from the cleaned measurement series (Fig. 8).
The comparison shows that the simulations follow the same
general drought behaviour as the measurement series, as the
two follow a 1 : 1 line (Spearman’s ρ = 0.8). However, the
simulations generally show a smaller spatial variation than
the measurements. This is also visible in measurement-based
SGI maps (Fig. 9), which show more scatter and local ex-
tremes than the simulation-based drought maps. In addi-
tion, the simulations for 2018 tend to slightly overestimate
drought severity at the low ends of the drought (lower left
in Fig. 8). This is contrary to the general tendency of the
head simulations towards positive bias during drought peri-
ods (shown in Table 5).

5 Discussion

5.1 Usefulness of TSM data preparation for drought
analysis

The performed study aimed to evaluate the usefulness of
time series modelling-based data processing methods for
groundwater drought studies. The application of a TSM-
based method to the 2018–2019 drought in the Netherlands
has provided new insights into how TSM methods can be
used for data validation, how reliable they are for the quan-

Figure 8. Comparison of SGI values over April–December 2018
based on cleaned long measurement series (x axis) and based on
simulated series (y axis) for all location–month combinations (grey
dots). Black dots show the average over all locations for each
month, with quartiles (spatial variation).

tification of extreme groundwater drought situations, and
how they can contribute to regional groundwater drought as-
sessments.

5.1.1 Validation methods for groundwater data

A validation method was applied that combines basic error
tests with time series modelling-based identification of irreg-
ularities while also treating short-term outliers and long-term
atypical behaviour separately. Pre-analysis outlier cleaning
was found to improve the useability of series for the TSM
simulations as well as the identification of long-term series’
behaviour. Therefore, outlier cleaning is likely to improve re-
sults compared with performing a more limited validation or
identifying impacted series only after simulation. The vali-
dation method performed reasonably with regard to outlier
removal, although not optimally (Tables 3, S2). The time-
series-based outlier cleaning appeared more effective in com-
parison with basic cleaning methods, although the latter can
be valuable as a computationally cheap cleaning step for
large data sets.

The TSM-based validation also appeared suitable for iden-
tifying long-term atypical behaviour in the head measure-
ment series. However, the thresholds for separating series in
different reliability classes (here “discard” and “atypical”)
are likely to be dependent on the data used and the aim of
the study, and they are difficult to set objectively. The current
study aimed to provide a spatially detailed regional drought
assessment, covering the range of site conditions; this re-
quires retaining as many series as possible while also remov-
ing the most unreliable and disturbed series as well as iden-
tifying series with milder, potentially unreliable behaviour.
The chosen parameters were found reasonable to reach this
separation (see Figs. S5 and S6), but setting objective pa-
rameter values would require comparison with a large data
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Figure 9. SGI for April, July, and October 2018 based directly on cleaned long measurement series. Empty symbols indicate insufficient
data to enable drought index quantification.

set with detailed information on the sources of variations and
errors, which was not available in this study.

In this study, we could not explicitly separate erroneous
and real atypical patterns. Many of the long-term non-
weather influences on the groundwater, such as structural
abstractions and land use, are likely to be included implic-
itly in the simulations, as the time series models will model
any external influence that correlates with weather or mod-
ifies the recharge response. Still, the validation is likely to
retain some series with erroneous patterns and discard some
real behaviour. The separation of errors could be improved
by including additional driving factors in the time series
modelling, such as surface water fluctuations (Bakker and
Schaars, 2019; Van Loon et al., 2016; Zaadnoordijk et al.,
2019); however, this requires substantially more data and
modelling effort. Another potential approach is to make use
of the spatial coherence of groundwater behaviour to separate
errors. For example, Lehr and Lischeid (2020) and Marchant
and Bloomfield (2018) used the spatial coherence of ob-
served groundwater patterns as an indication of their relia-
bility as well as to relate clusters of similar series to some
external (human) impact. It would be valuable to explore
such extensions of TSM to improve validation methods for
groundwater drought analysis. This will allow for a better
understanding of the different natural and human drivers of
drought development.

Although the validation and simulation method generally
performed well for the given data, it was less suitable for
locations with deep groundwater tables (here > 5 m), domi-
nated by multi-year head fluctuations. Here, model fit was of-
ten low, leading to poor outlier identification and models be-
ing discarded for a large proportion of these locations (66 %
discarded vs. 27 % for shallower locations). This issue was
also found by Marchant and Bloomfield (2018) and Zaadno-
ordijk et al. (2019) for locations with thick unsaturated zones.
To enable TSM simulation in such cases, measurement series
are needed that are substantially longer than the minimum of
10 years used here in order to include several response cycles
of the groundwater system.

5.1.2 Reliability of TSM groundwater level simulations
during extreme drought

It was found that impulse-response function-based time se-
ries models on a general level produced reliable groundwa-
ter head simulations. They described most of the ground-
water head series very closely, with a low overall bias (Ta-
ble 5). The comparison of simulation- and measurement-
based SGI values (Fig. 8) showed a good correlation (Spear-
man’s ρ = 0.8). Moreover, as discussed further below, the
general patterns shown by the drought index maps match
well with the experience of water managers during the 2018–
2019 drought.

However, the model simulations also showed important
deviations, especially at local scales and during the most se-
vere drought periods. The simulation RMSE and mean errors
amounted locally to high levels (Table 5), especially dur-
ing more extreme conditions. Furthermore, relative errors,
expressed as a fraction of the WTD, were often large (Ta-
ble 5). This means that the application of the current TSM
method could lead to misinterpretations of drought impacts
at local scales, for example, on the survival of marsh vege-
tation or groundwater-dependent streams (Bartholomeus et
al., 2012; Witte et al., 2020b). Generally, extreme condi-
tions were underestimated somewhat by the time series mod-
els. This overall underestimation of extreme conditions was
also found by Mackay et al. (2015) with a process-based
groundwater model. Interestingly, the simulations for sum-
mer 2018 showed an overestimation of drought conditions,
where the simulations appeared to miss the variability to-
wards less-extreme drought that is visible in the measure-
ments (Figs. 8, 9).

The model deviations during drought may be due to exter-
nal influences not accounted for by the model, such as sur-
face water influence and local irrigation, both of which are
widespread in the study area. Indeed, local influences such
as external water supply were found to alleviate groundwater
drought locally in 2018 (Van den Eertwegh et al., 2019). In
addition, the models may have underestimated the severity
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of earlier droughts; this would inflate the extremeness of the
2018 drought. Similar bias issues can be seen in Hellwig et
al. (2020), who analysed groundwater drought in Germany
using a physically based model. Their simulations overes-
timated drought severity during a drought in 1973, but not
in 2003, confirming that bias can differ between individual
drought events.

In addition, the deviations may be related to the model set-
up itself. As noted before, we have worked with a simple
linear recharge model here. Although this has been shown
to suffice in many situations (e.g. Zaadnoordijk et al., 2019;
von Asmuth et al., 2012), there are also various cases where
linear recharge models were shown to be invalid (Bakker and
Schaars, 2019; Collenteur et al., 2021). Non-linear or thresh-
old responses in the soil–groundwater system may be es-
pecially important during extreme conditions, as evapotran-
spiration and deep percolation may become limited by low
soil moisture or drainage may become disconnected (Bakker
and Schaars, 2019; Aulenbach and Peters, 2018; Peterson
and Western, 2014). Indeed, several studies have shown that
non-linear recharge representations can improve model per-
formance during (extreme) drought conditions (Berendrecht
et al., 2006; Peterson and Western, 2014; Collenteur et al.,
2021). The overestimation of drought severity in 2018 found
here (Fig. 8) may, among other factors, be related to a lack of
evapotranspiration limitation in the models (Collenteur et al.,
2021). The effect of extreme drought on evapotranspiration
and flow paths can be complex and spatially variable (Teuling
et al., 2013; Avanzi et al., 2020). Therefore, further exploring
the value of non-linear time series models for groundwater
drought analyses in different situations is an important topic
for future research.

The reliability of groundwater simulations during extreme
drought was found to be sensitive to the calibration period
used, with reliability decreasing when the calibration period
lacked similarly extreme conditions. This is an important as-
pect for the application of TSM for groundwater level now-
casting for real-time drought assessment. However, the dif-
ference in simulation performance compared with simula-
tions that did include the 2018 drought in their calibration
was relatively small (Tables 5, 6). This suggests that the type
of impulse-response time series models used in this study
are relatively robust for series lengthening and nowcasting,
even under drought conditions. This is also shown by the
lengthened series over 2019–2020, which matched well with
general observations provided by other studies and reports
(LCW, 2020; Van den Eertwegh et al., 2019). Still, if water
managers are to be provided structurally with up-to-date in-
formation on regional groundwater drought, any models have
to be recalibrated frequently; hence, reliable, recent measure-
ment data remain important.

Despite the potential loss of information caused by TSM-
based data preparation, consisting of processes and exter-
nal influences not included in the models, it also provides
important gains. Given the spatial variability in hydrologi-

cal drought dynamics and the need for long data series for
drought identification, TSM methods can be especially use-
ful in drought studies to increase the amount of data avail-
able without the need for additional site information. In this
study, it enabled a regional image of drought development
(Figs. 5, 6) that is far more detailed than that obtained by
using direct measurement series only (Fig. 9). In addition,
the model parameters gave additional insight in groundwater
behaviour, for example, through the response time (Bakker
and Schaars, 2019; Collenteur et al., 2019). Thus, TSM data
preparation, especially if further developed, can likely be
useful in many regional groundwater drought studies. How-
ever, in some cases, direct use of data, inclusion of more
external drivers, or (a combination with) more physically
based model methods will be more suitable (e.g. Bakker and
Schaars, 2019), as may have been the case for more local
scales in this study. Therefore, the application of TSM meth-
ods remains dependent on the aim and scale of a drought case
study.

5.2 Analysis of the 2018–2019 groundwater drought in
the Netherlands

5.2.1 Spatio-temporal development of groundwater
drought in 2018–2019

The regional-scale analysis of the 2018–2019 groundwater
drought in the south-eastern Netherlands provided a new, de-
tailed image of the drought development in time and space.
The analysis showed that extreme groundwater drought was
widespread over the study region in 2018 and 2019, break-
ing 30-year records for the summer and autumn months al-
most everywhere (Fig. 4). However, the timing and dura-
tion of the drought varied strongly in space. In the western
parts of the study area, drought was terminated before the
end of 2018, whereas the higher-lying areas did not reach
drought conditions until 2019 (Figs. 5, 6). This image cor-
responds well with how the drought was generally experi-
enced by water managers. The Dutch commission on wa-
ter allocation (LCW), which regularly surveys the drought
status in the Netherlands based on input from water man-
agers, reported widespread exceptional drops in groundwa-
ter levels, especially in the higher-lying sandy areas of the
country, combined with a relatively fast recovery in the
west (LCW, 2020). Moreover, the severe damage observed
in groundwater-dependent ecosystems in the south-eastern
Netherlands (Witte et al., 2020a) and widespread drying of
groundwater-fed streams (Van den Eertwegh et al., 2019)
match the assessment of an extreme groundwater situation.

The time series models made it possible to extend the
available groundwater head measurement series beyond 2018
and obtain an estimate of drought recovery dynamics
over 2019–2020. This showed that despite near-normal to
high rainfall in the winters of 2018–2019 and 2019–2020
(Fig. 3), groundwater levels were restored only locally,
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and severe groundwater drought continued into 2019 or
even 2020 over large parts of the study area (Fig. 6). These
findings are consistent with general reports of the situation by
local water managers (LCW, 2020; Van den Eertwegh et al.,
2019). The results confirm that the drought should be viewed
as a multi-year event rather than a single-year summer
drought. The multi-year character increases the risk of last-
ing negative effects, especially in natural ecosystems. In ad-
dition, it stresses the importance of winter season groundwa-
ter management and water retention as determining factors in
drought development. Both of these issues have already be-
come apparent in the Netherlands after 2018 (De Lenne and
Worm, 2020; Witte et al., 2020a, b).

5.2.2 Driving factors of spatial drought distribution

The current study did not aim to fully quantify the driving
factors of the spatial variations in drought dynamics. How-
ever, the results suggest that the variation in drought sever-
ity, timing, and duration was governed mainly by the spa-
tial distribution in rainfall and the landscape type. The influ-
ence of spatial variations in weather was visible in late 2018
and 2019. In this period, a gradient in meteorological drought
towards the east caused groundwater drought to be concen-
trated in this area. The effect of the landscape type is vis-
ible for the higher-elevation parts of the study area, espe-
cially the glacial sand ridges and the limestone–loess hills,
which clearly had a later, longer-lasting drought response
than lower-lying areas (Figs. 5, 6). This pattern is also visible
in the groundwater response times (Fig. 7). The slow drought
response in the higher-elevation areas is likely explained by
a thick unsaturated zone and low drainage density, whereas
the fast recovery of the low-lying western parts may have
been aided by thinner unsaturated zones and possibly some
surface water influence. Other studies have found that these
factors influence drought behaviour (Bloomfield et al., 2015;
Hellwig et al., 2020; Peters et al., 2006; Van Loon and Laaha,
2015; Kumar et al., 2016). In addition, the elevation and ge-
ology in the study area correlate with variations in land use,
soil type, and aquifer characteristics; these factors may have
played an additional role.

The dominant role of landscape position in shaping
drought development calls for locally adapted but also re-
gionally coordinated mitigation strategies. The response
times obtained from the time series analysis form a useful
first indicator of the landscape characteristics that control
the propagation of meteorological drought to groundwater
drought. The response times found here are somewhat shorter
than the drought response times reported by Van Loon et al.
(2017) for part of the eastern Netherlands. However, they are
very similar to those found by Zaadnoordijk et al. (2019),
who performed time series analysis on groundwater series
from the whole Netherlands. As they used different data and
different model quality criteria, the similarity is reassuring
and points to the stability of the time series models.

6 Conclusions

The performed study aimed to evaluate the usefulness of
time series modelling-based data processing methods for
regional-scale groundwater drought assessment. A TSM-
based method was set up for data validation and drought
quantification and applied to the regional 2018–2019 ground-
water drought in the south-eastern Netherlands to test its use-
fulness and reliability. Automated TSM-based data valida-
tion was found to be able to improve the quality of input
data. However, optimal validation parameters are likely to
be context dependent. In addition, improvements in the val-
idation method are desired, especially in the separation of
real and erroneous head disturbances. The simulated ground-
water head series were generally found to be reliable; how-
ever, it was shown that the use of time series simulations may
bias drought estimations and underestimate spatial variabil-
ity, producing large errors at a local scale. Still, the use of
time series model simulations in drought analysis provides
large advantages, as it enables a spatially detailed record of
drought development that may be impossible to obtain with
direct measurement series only.

The drought analysis for the south-eastern Netherlands
provided a complete, detailed image of the development of
the 2018–2019 groundwater drought in time and space. The
findings confirm that the meteorological drought in 2018
caused extreme groundwater drought throughout the south-
eastern Netherlands, starting in late spring and peaking in
October–November of that year. The timing of drought onset
and the duration of drought varied strongly in space. Drought
development appeared to be governed dominantly by the spa-
tial distribution of rainfall and the landscape type. In much
of the area, the drought continued as a multi-year event
into 2019 and 2020, especially in the eastern and higher-
elevation regions.

Taken together, we conclude that time series modelling
forms a useful tool to obtain a fast, detailed, and up-to-date
image of drought development; however, for a proper under-
standing of the different driving factors of drought, the avail-
ability of recent and consistent monitoring data remains cru-
cial.

Appendix A: Time series model set-up

Groundwater head modelling was done by impulse-response
transfer function-noise models using the Pastas package in
Python (Python 3.6, Collenteur et al., 2020). The model set-
up used in this study largely follows Collenteur et al. (2019).
The code for building and simulating the models, as applied
in the validation and simulation steps in this study, is given
in Fig. A1.

The working of impulse-response-type transfer function-
noise models for groundwater series is explained in von As-
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Figure A1. Python code used for building time series models with Pastas.

muth et al. (2002) and Collenteur et al. (2019). In principle,
the method models groundwater heads as

h(t)=

M∑
m=1

hm(t)+ d + r(t), (A1)

where hm represents the variations in heads caused by one or
several stresses m, d is the base level, and r is the residual
at time t . Here, only recharge was used as an explanatory
variable. Recharge is estimated as a linear combination of
precipitation P and reference evapotranspiration ETref:

R(t)= P(t)+ f ·ETref(t), (A2)

where f is a model parameter. The response of groundwa-
ter to a recharge impulse is calculated with a scaled gamma
function (option ps.Gamma in Pastas):

θ(t)= A
tn−1

an0(n)
e−t/a, (A3)

where 0 is the Gamma function, A is a scale parameter, and
a and n are shape parameters. The variation in groundwa-
ter heads over time hm is obtained by convolution of this
impulse-response function with the recharge time series.

This gives five parameters to be fitted for each individual
location. For purposes of parameter calibration, an autore-
gressive (AR-1) noise model is also fitted to the residuals,
giving the additional noise decay parameter α. The default
method for parameter optimisation was used, which min-
imises the sum of weighted squared noise by a least squares
method (ps.LeastSquares). Table A1 gives the calibration set-
tings for each of the parameters as well as the range found in
the raw groundwater head series in this study. Based on these
ranges, additional bounds were set for parameters A and f
for the long-term behaviour classification (see Sect. 3.2); se-
ries with unusual parameters beyond these bounds were clas-
sified as “atypical” and potentially unreliable.
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Table A1. Parameter calibration settings: initial value and bounds
during optimisation (default settings in Pastas); the range of values
found in this study when modelling the initial 2723 cleaned series;
and reliability bounds used for the series classification.

Initial Allowed Found Reliability
value range values bounds for
(Pastas) (Pastas) in this classification

study
(10th–90th
percentile)

A 1/σrecharge > 0 0.10 to 1.2 < 1.5
a 10 72 to 473
n 1 0.61 to 1.9
f −1 −2 to 0 −1.4 to −0.44 −1.95 to −0.05
d Mean of series 0.95 to 41
α 15 17 to 636

Except for the simulations used to test the calibration pe-
riod effect, the full period of available data between 1990
and 2019 was used for calibration. Calibration was done at
a weekly time step (recharge and observation series subsam-
pled to a weekly frequency before optimisation) to allow for
a more even spread of optimisation points over time. Sim-
ulation of series was done at a daily time step from 1 Jan-
uary 1990 to 31 May 2020.

Code and data availability. All code for data process-
ing, modelling, and visualisation is available upon re-
quest from the first author. Groundwater data are freely
available from the national groundwater database DINO
(https://www.dinoloket.nl/ondergrondgegevens; TNO, 2022).
The weather data used in this paper can be obtained from the
Royal Dutch Meteorological Institute (KNMI) via http://projects.
knmi.nl/klimatologie/daggegevens/selectie.cgi (KNMI, 2020a) or
through a script via https://www.knmi.nl/kennis-en-datacentrum/
achtergrond/data-ophalen-vanuit-een-script (KNMI, 2020b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-551-2022-supplement.
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