Articles | Volume 26, issue 21
https://doi.org/10.5194/hess-26-5449-2022
https://doi.org/10.5194/hess-26-5449-2022
Research article
 | 
01 Nov 2022
Research article |  | 01 Nov 2022

Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States

Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme

Related authors

PDO-driven interdecadal variability of snowfall over the Karakoram and Western Himalaya
Priya Bharati, Pranab Deb, and Kieran M. R. Hunt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2845,https://doi.org/10.5194/egusphere-2024-2845, 2024
Short summary
A novel explainable deep learning framework for reconstructing South Asian palaeomonsoons
Kieran M. R. Hunt and Sandy P. Harrison
EGUsphere, https://doi.org/10.5194/egusphere-2024-2128,https://doi.org/10.5194/egusphere-2024-2128, 2024
Short summary
Western disturbances and climate variability: a review of recent developments
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-820,https://doi.org/10.5194/egusphere-2024-820, 2024
Short summary
Increasing frequency and lengthening season of western disturbances are linked to increasing strength and delayed northward migration of the subtropical jet
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356, https://doi.org/10.5194/wcd-5-345-2024,https://doi.org/10.5194/wcd-5-345-2024, 2024
Short summary
Non-linear intensification of monsoon low-pressure systems by the BSISO
Kieran M. R. Hunt and Andrew G. Turner
Weather Clim. Dynam., 3, 1341–1358, https://doi.org/10.5194/wcd-3-1341-2022,https://doi.org/10.5194/wcd-3-1341-2022, 2022
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Changes in mean evapotranspiration dominate groundwater recharge in semi-arid regions
Tuvia Turkeltaub and Golan Bel
Hydrol. Earth Syst. Sci., 28, 4263–4274, https://doi.org/10.5194/hess-28-4263-2024,https://doi.org/10.5194/hess-28-4263-2024, 2024
Short summary
Merging modelled and reported flood impacts in Europe in a combined flood event catalogue for 1950–2020
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024,https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Global-scale evaluation of precipitation datasets for hydrological modelling
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024,https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Influence of irrigation on root zone storage capacity estimation
Fransje van Oorschot, Ruud J. van der Ent, Andrea Alessandri, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 2313–2328, https://doi.org/10.5194/hess-28-2313-2024,https://doi.org/10.5194/hess-28-2313-2024, 2024
Short summary
River flow in the near future: a global perspective in the context of a high-emission climate change scenario
Omar V. Müller, Patrick C. McGuire, Pier Luigi Vidale, and Ed Hawkins
Hydrol. Earth Syst. Sci., 28, 2179–2201, https://doi.org/10.5194/hess-28-2179-2024,https://doi.org/10.5194/hess-28-2179-2024, 2024
Short summary

Cited articles

Adnan, R. M., Zounemat-Kermani, M., Kuriqi, A., and Kisi, O.: Machine learning method in prediction streamflow considering periodicity component, in: Intelligent data analytics for decision-support systems in hazard mitigation, Springer, 383–403, https://doi.org/10.1007/978-981-15-5772-9_18, 2021. a
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, Technical Memorandum NESDIS NGDC-24, NOAA, https://doi.org/10.7289/V5C8276M, 2009. a
Bennett, A. and Nijssen, B.: Deep learned process parameterizations provide better representations of turbulent heat fluxes in hydrologic models, Water Resour. Res., 57, e2020WR029328, https://doi.org/10.1029/2020WR029328, 2021. a
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, ISBN 978-0-470-71459-1, 2011. a
Booker, D. and Woods, R.: Comparing and combining physically-based and empirically-based approaches for estimating the hydrology of ungauged catchments, J. Hydrol., 508, 227–239, 2014. a
Download
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.