Articles | Volume 26, issue 21
https://doi.org/10.5194/hess-26-5449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Kieran M. R. Hunt
CORRESPONDING AUTHOR
Department of Meteorology, University of Reading, Reading, UK
National Centre for Atmospheric Sciences, University of Reading, Reading, UK
Gwyneth R. Matthews
Department of Meteorology, University of Reading, Reading, UK
European Centre for Medium-Range Weather Forecasts, Reading, UK
Florian Pappenberger
European Centre for Medium-Range Weather Forecasts, Reading, UK
Christel Prudhomme
European Centre for Medium-Range Weather Forecasts, Reading, UK
Department of Geography and Environment, Loughborough University, Loughborough, UK
UK Centre for Ecology and Hydrology, Wallingford, UK
Related authors
Priya Bharati, Pranab Deb, and Kieran Mark Rainwater Hunt
Weather Clim. Dynam., 6, 197–210, https://doi.org/10.5194/wcd-6-197-2025, https://doi.org/10.5194/wcd-6-197-2025, 2025
Short summary
Short summary
Our study highlights that the negative phase of the Pacific Decadal Oscillation (PDO) enhanced winter snowfall in the Karakoram and the Western Himalayas (KH) from 1940 to 2022. This is driven by deep convection, adiabatic cooling, and a wave-like atmospheric pattern linked to the subtropical jet (STJ). The PDO–STJ relationship offers insights into decadal snowfall predictability in KH, emphasizing the PDO's role in regional climate dynamics.
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
Weather Clim. Dynam., 6, 43–112, https://doi.org/10.5194/wcd-6-43-2025, https://doi.org/10.5194/wcd-6-43-2025, 2025
Short summary
Short summary
Western disturbances (WDs) are storms that predominantly affect north India and Pakistan during the winter months, where they play an important role in regional water security, but can also bring a range of natural hazards. In this review, we summarise recent literature across a range of topics: their structure and lifecycle, precipitation and impacts, interactions with large-scale weather patterns, representation in models, how well they are forecast, and their response to changes in climate.
Isa Dijkstra, Hannah C. Bloomfield, and Kieran M. R. Hunt
Adv. Geosci., 65, 127–140, https://doi.org/10.5194/adgeo-65-127-2025, https://doi.org/10.5194/adgeo-65-127-2025, 2025
Short summary
Short summary
Energy systems across the globe are evolving to meet climate mitigation targets. This requires rapid reductions in fossil fuel use and much more renewable generation. Renewable energy is dependent on the weather. A consequence of this is that there will be periods of low renewable energy production, driven by particular weather conditions. We look at the weather conditions during these periods and show the Indian energy sector could prepare for these events out to 14 days ahead.
Kieran M. R. Hunt and Sandy P. Harrison
Clim. Past, 21, 1–26, https://doi.org/10.5194/cp-21-1-2025, https://doi.org/10.5194/cp-21-1-2025, 2025
Short summary
Short summary
In this study, we train machine learning models on tree rings, speleothems, and instrumental rainfall to estimate seasonal monsoon rainfall over India over the last 500 years. Our models highlight multidecadal droughts in the mid-17th and 19th centuries, and we link these to historical famines. Using techniques from explainable AI (artificial intelligence), we show that our models use known relationships between local hydroclimate and the monsoon circulation.
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356, https://doi.org/10.5194/wcd-5-345-2024, https://doi.org/10.5194/wcd-5-345-2024, 2024
Short summary
Short summary
This study investigates changes in weather systems that bring winter precipitation to south Asia. We find that these systems, known as western disturbances, are occurring more frequently and lasting longer into the summer months. This shift is leading to devastating floods, as happened recently in north India. By analysing 70 years of weather data, we trace this change to shifts in major air currents known as the subtropical jet. Due to climate change, such events are becoming more frequent.
Kieran M. R. Hunt and Andrew G. Turner
Weather Clim. Dynam., 3, 1341–1358, https://doi.org/10.5194/wcd-3-1341-2022, https://doi.org/10.5194/wcd-3-1341-2022, 2022
Short summary
Short summary
More than half of India's summer monsoon rainfall arises from low-pressure systems: storms originating over the Bay of Bengal. In observation-based data, we examine how the generation and pathway of these storms are changed by the
boreal summer intraseasonal oscillation– the chief means of large-scale control on the monsoon at timescales of a few weeks. Our study offers new insights for useful prediction of these storms, important for both water resources planning and disaster early warning.
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
Geosci. Model Dev., 18, 921–937, https://doi.org/10.5194/gmd-18-921-2025, https://doi.org/10.5194/gmd-18-921-2025, 2025
Short summary
Short summary
We compared spatiotemporal forecasts of three machine learning models that learned water and energy
states on the land surface from a physical model scheme. The forecasting models were developed with reanalysis data and simulations on a European scale and transferred to the globe. We found that all approaches deliver highly accurate approximations of the physical dynamic at long time horizons, implying their usefulness to advance land surface forecasting with synthetic data.
states on the land surface from a physical model scheme. The forecasting models were developed with reanalysis data and simulations on a European scale and transferred to the globe. We found that all approaches deliver highly accurate approximations of the physical dynamic at long time horizons, implying their usefulness to advance land surface forecasting with synthetic data.
Priya Bharati, Pranab Deb, and Kieran Mark Rainwater Hunt
Weather Clim. Dynam., 6, 197–210, https://doi.org/10.5194/wcd-6-197-2025, https://doi.org/10.5194/wcd-6-197-2025, 2025
Short summary
Short summary
Our study highlights that the negative phase of the Pacific Decadal Oscillation (PDO) enhanced winter snowfall in the Karakoram and the Western Himalayas (KH) from 1940 to 2022. This is driven by deep convection, adiabatic cooling, and a wave-like atmospheric pattern linked to the subtropical jet (STJ). The PDO–STJ relationship offers insights into decadal snowfall predictability in KH, emphasizing the PDO's role in regional climate dynamics.
Gwyneth Matthews, Hannah L. Cloke, Sarah L. Dance, and Christel Prudhomme
EGUsphere, https://doi.org/10.5194/hess-2024-3989, https://doi.org/10.5194/hess-2024-3989, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Forecasts provide information crucial for managing floods and for water resource planning, but they often have errors. “Post-processing” reduces these errors but is usually only applied at river gauges, leaving areas without gauges uncorrected. We developed a new method that uses spatial information contained within the forecast to spread information about the errors from gauged locations to ungauged areas. Our results show that the method successfully makes river forecasts more accurate.
Ather Abbas, Yuan Yang, Ming Pan, Yves Tramblay, Chaopeng Shen, Haoyu Ji, Solomon H. Gebrechorkos, Florian Pappenberger, Jong Cheol Pyo, Dapeng Feng, George Huffman, Phu Nguyen, Christian Massari, Luca Brocca, Tan Jackson, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-4194, https://doi.org/10.5194/egusphere-2024-4194, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Our study evaluated 23 precipitation datasets using a hydrological model at global scale to assess their suitability and accuracy. We found that MSWEP V2.8 excels due to its ability to integrate data from multiple sources, while others, such as IMERG and JRA-3Q, demonstrated strong regional performances. This research assists in selecting the appropriate dataset for applications in water resource management, hazard assessment, agriculture, and environmental monitoring.
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
Weather Clim. Dynam., 6, 43–112, https://doi.org/10.5194/wcd-6-43-2025, https://doi.org/10.5194/wcd-6-43-2025, 2025
Short summary
Short summary
Western disturbances (WDs) are storms that predominantly affect north India and Pakistan during the winter months, where they play an important role in regional water security, but can also bring a range of natural hazards. In this review, we summarise recent literature across a range of topics: their structure and lifecycle, precipitation and impacts, interactions with large-scale weather patterns, representation in models, how well they are forecast, and their response to changes in climate.
Isa Dijkstra, Hannah C. Bloomfield, and Kieran M. R. Hunt
Adv. Geosci., 65, 127–140, https://doi.org/10.5194/adgeo-65-127-2025, https://doi.org/10.5194/adgeo-65-127-2025, 2025
Short summary
Short summary
Energy systems across the globe are evolving to meet climate mitigation targets. This requires rapid reductions in fossil fuel use and much more renewable generation. Renewable energy is dependent on the weather. A consequence of this is that there will be periods of low renewable energy production, driven by particular weather conditions. We look at the weather conditions during these periods and show the Indian energy sector could prepare for these events out to 14 days ahead.
Kieran M. R. Hunt and Sandy P. Harrison
Clim. Past, 21, 1–26, https://doi.org/10.5194/cp-21-1-2025, https://doi.org/10.5194/cp-21-1-2025, 2025
Short summary
Short summary
In this study, we train machine learning models on tree rings, speleothems, and instrumental rainfall to estimate seasonal monsoon rainfall over India over the last 500 years. Our models highlight multidecadal droughts in the mid-17th and 19th centuries, and we link these to historical famines. Using techniques from explainable AI (artificial intelligence), we show that our models use known relationships between local hydroclimate and the monsoon circulation.
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356, https://doi.org/10.5194/wcd-5-345-2024, https://doi.org/10.5194/wcd-5-345-2024, 2024
Short summary
Short summary
This study investigates changes in weather systems that bring winter precipitation to south Asia. We find that these systems, known as western disturbances, are occurring more frequently and lasting longer into the summer months. This shift is leading to devastating floods, as happened recently in north India. By analysing 70 years of weather data, we trace this change to shifts in major air currents known as the subtropical jet. Due to climate change, such events are becoming more frequent.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Kieran M. R. Hunt and Andrew G. Turner
Weather Clim. Dynam., 3, 1341–1358, https://doi.org/10.5194/wcd-3-1341-2022, https://doi.org/10.5194/wcd-3-1341-2022, 2022
Short summary
Short summary
More than half of India's summer monsoon rainfall arises from low-pressure systems: storms originating over the Bay of Bengal. In observation-based data, we examine how the generation and pathway of these storms are changed by the
boreal summer intraseasonal oscillation– the chief means of large-scale control on the monsoon at timescales of a few weeks. Our study offers new insights for useful prediction of these storms, important for both water resources planning and disaster early warning.
Gwyneth Matthews, Christopher Barnard, Hannah Cloke, Sarah L. Dance, Toni Jurlina, Cinzia Mazzetti, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 2939–2968, https://doi.org/10.5194/hess-26-2939-2022, https://doi.org/10.5194/hess-26-2939-2022, 2022
Short summary
Short summary
The European Flood Awareness System creates flood forecasts for up to 15 d in the future for the whole of Europe which are made available to local authorities. These forecasts can be erroneous because the weather forecasts include errors or because the hydrological model used does not represent the flow in the rivers correctly. We found that, by using recent observations and a model trained with past observations and forecasts, the real-time forecast can be corrected, thus becoming more useful.
Chloe Brimicombe, Claudia Di Napoli, Rosalind Cornforth, Florian Pappenberger, Celia Petty, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-242, https://doi.org/10.5194/nhess-2021-242, 2021
Revised manuscript not accepted
Short summary
Short summary
Heatwaves are an increasing risk to African communities. This hazard can have a negative impact on peoples lives and in some cases results in their death. This study shows new information about heatwave characteristics through a list of heatwave events that have been reported for the African continent from 1980 until 2020. Case studies are useful helps to inform the development of early warning systems and forecasting, which is an urgent priority and needs significant improvement.
Seán Donegan, Conor Murphy, Shaun Harrigan, Ciaran Broderick, Dáire Foran Quinn, Saeed Golian, Jeff Knight, Tom Matthews, Christel Prudhomme, Adam A. Scaife, Nicky Stringer, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021, https://doi.org/10.5194/hess-25-4159-2021, 2021
Short summary
Short summary
We benchmarked the skill of ensemble streamflow prediction (ESP) for a diverse sample of 46 Irish catchments. We found that ESP is skilful in the majority of catchments up to several months ahead. However, the level of skill was strongly dependent on lead time, initialisation month, and individual catchment location and storage properties. We also conditioned ESP with the winter North Atlantic Oscillation and show that improvements in forecast skill, reliability, and discrimination are possible.
Florian Pappenberger, Florence Rabier, and Fabio Venuti
Nat. Hazards Earth Syst. Sci., 21, 2163–2167, https://doi.org/10.5194/nhess-21-2163-2021, https://doi.org/10.5194/nhess-21-2163-2021, 2021
Short summary
Short summary
The European Centre for Medium-Range Weather Forecasts mission is to deliver high-quality global medium‐range (3–15 d ahead of time) weather forecasts and monitoring of the Earth system. We have published a new strategy, and in this paper we discuss what this means for forecasting and monitoring natural hazards.
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021, https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
Short summary
This paper describes how the research version of the European Centre for Medium-Range Weather Forecasts’ Integrated Forecast System is combined with climateprediction.net’s public volunteer computing resource to develop OpenIFS@home. Thousands of volunteer personal computers simulated slightly different realizations of Tropical Cyclone Karl to demonstrate the performance of the large-ensemble forecast. OpenIFS@Home offers researchers a new tool to study weather forecasts and related questions.
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
Short summary
A new river discharge reanalysis dataset is produced operationally by coupling ECMWF's latest global atmospheric reanalysis, ERA5, with the hydrological modelling component of the Global Flood Awareness System (GloFAS). The GloFAS-ERA5 reanalysis is a global gridded dataset with a horizontal resolution of 0.1° at a daily time step and is freely available from 1979 until near real time. The evaluation against observations shows that the GloFAS-ERA5 reanalysis was skilful in 86 % of catchments.
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
Short summary
It is important to understand historic droughts in order to plan and prepare for possible future events. In this study we use the standardised streamflow index for 1891–2015 to systematically identify, characterise and rank hydrological drought events for 108 near-natural UK catchments. Results show when and where the most severe events occurred and describe events of the early 20th century, providing catchment-scale detail important for both science and planning applications of the future.
Eric Sauquet, Bastien Richard, Alexandre Devers, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 3683–3710, https://doi.org/10.5194/hess-23-3683-2019, https://doi.org/10.5194/hess-23-3683-2019, 2019
Short summary
Short summary
This study aims to identify catchments and the associated water uses vulnerable to climate change. Vulnerability is considered here to be the likelihood of water restrictions which are unacceptable for agricultural uses. This study provides the first regional analysis of the stated water restrictions, highlighting heterogeneous decision-making processes; data from a national system of compensation to farmers for uninsurable damages were used to characterize past failure events.
Katie A. Smith, Lucy J. Barker, Maliko Tanguy, Simon Parry, Shaun Harrigan, Tim P. Legg, Christel Prudhomme, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 23, 3247–3268, https://doi.org/10.5194/hess-23-3247-2019, https://doi.org/10.5194/hess-23-3247-2019, 2019
Short summary
Short summary
This paper describes the multi-objective calibration approach used to create a consistent dataset of reconstructed daily river flow data for 303 catchments in the UK over 1891–2015. The modelled data perform well when compared to observations, including in the timing and the classification of drought events. This method and data will allow for long-term studies of flow trends and past extreme events that have not been previously possible, enabling water managers to better plan for the future.
Hylke E. Beck, Ming Pan, Tirthankar Roy, Graham P. Weedon, Florian Pappenberger, Albert I. J. M. van Dijk, George J. Huffman, Robert F. Adler, and Eric F. Wood
Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, https://doi.org/10.5194/hess-23-207-2019, 2019
Short summary
Short summary
We conducted a comprehensive evaluation of 26 precipitation datasets for the US using the Stage-IV gauge-radar dataset as a reference. The best overall performance was obtained by MSWEP V2.2, underscoring the importance of applying daily gauge corrections and accounting for reporting times. Our findings can be used as a guide to choose the most suitable precipitation dataset for a particular application.
Christophe Lavaysse, Jürgen Vogt, Andrea Toreti, Marco L. Carrera, and Florian Pappenberger
Nat. Hazards Earth Syst. Sci., 18, 3297–3309, https://doi.org/10.5194/nhess-18-3297-2018, https://doi.org/10.5194/nhess-18-3297-2018, 2018
Short summary
Short summary
Forecasting droughts in Europe 1 month in advance would provide valuable information for decision makers. However, these extreme events are still difficult to predict. In this study, we develop forecasts based on predictors using the geopotential anomalies, generally more predictable than precipitation, derived from the ECMWF model. Results show that this approach outperforms the prediction using precipitation, especially in winter and in northern Europe, where 65 % of droughts are predicted.
Lila Collet, Shaun Harrigan, Christel Prudhomme, Giuseppe Formetta, and Lindsay Beevers
Hydrol. Earth Syst. Sci., 22, 5387–5401, https://doi.org/10.5194/hess-22-5387-2018, https://doi.org/10.5194/hess-22-5387-2018, 2018
Short summary
Short summary
Floods and droughts cause significant damages and pose risks to lives worldwide. In a climate change context this work identifies hotspots across Great Britain, i.e. places expected to be impacted by an increase in floods and droughts. By the 2080s the western coast of England and Wales and northeastern Scotland would experience more floods in winter and droughts in autumn, with a higher increase in drought hazard, showing a need to adapt water management policies in light of climate change.
Rebecca Emerton, Ervin Zsoter, Louise Arnal, Hannah L. Cloke, Davide Muraro, Christel Prudhomme, Elisabeth M. Stephens, Peter Salamon, and Florian Pappenberger
Geosci. Model Dev., 11, 3327–3346, https://doi.org/10.5194/gmd-11-3327-2018, https://doi.org/10.5194/gmd-11-3327-2018, 2018
Short summary
Short summary
Global overviews of upcoming flood and drought events are key for many applications from agriculture to disaster risk reduction. Seasonal forecasts are designed to provide early indications of such events weeks or even months in advance. This paper introduces GloFAS-Seasonal, the first operational global-scale seasonal hydro-meteorological forecasting system producing openly available forecasts of high and low river flow out to 4 months ahead.
Maliko Tanguy, Christel Prudhomme, Katie Smith, and Jamie Hannaford
Earth Syst. Sci. Data, 10, 951–968, https://doi.org/10.5194/essd-10-951-2018, https://doi.org/10.5194/essd-10-951-2018, 2018
Short summary
Short summary
Potential evapotranspiration (PET) is necessary input data for most hydrological models, used to simulate river flows. To reconstruct PET prior to the 1960s, simplified methods are needed because of lack of climate data required for complex methods. We found that the McGuinness–Bordne PET equation, which only needs temperature as input data, works best for the UK provided it is calibrated for local conditions. This method was used to produce a 5 km gridded PET dataset for the UK for 1891–2015.
Louise Arnal, Hannah L. Cloke, Elisabeth Stephens, Fredrik Wetterhall, Christel Prudhomme, Jessica Neumann, Blazej Krzeminski, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, https://doi.org/10.5194/hess-22-2057-2018, 2018
Short summary
Short summary
This paper presents a new operational forecasting system (driven by atmospheric forecasts), predicting river flow in European rivers for the next 7 months. For the first month only, these river flow forecasts are, on average, better than predictions that do not make use of atmospheric forecasts. Overall, this forecasting system can predict whether abnormally high or low river flows will occur in the next 7 months in many parts of Europe, and could be valuable for various applications.
Shaun Harrigan, Christel Prudhomme, Simon Parry, Katie Smith, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 22, 2023–2039, https://doi.org/10.5194/hess-22-2023-2018, https://doi.org/10.5194/hess-22-2023-2018, 2018
Short summary
Short summary
We benchmarked when and where ensemble streamflow prediction (ESP) is skilful in the UK across a diverse set of 314 catchments. We found ESP was skilful in the majority of catchments across all lead times up to a year ahead, but the degree of skill was strongly conditional on lead time, forecast initialization month, and individual catchment location and storage properties. Results have practical implications for current operational use of the ESP method in the UK.
Hylke E. Beck, Noemi Vergopolan, Ming Pan, Vincenzo Levizzani, Albert I. J. M. van Dijk, Graham P. Weedon, Luca Brocca, Florian Pappenberger, George J. Huffman, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, https://doi.org/10.5194/hess-21-6201-2017, 2017
Short summary
Short summary
This study represents the most comprehensive global-scale precipitation dataset evaluation to date. We evaluated 13 uncorrected precipitation datasets using precipitation observations from 76 086 gauges, and 9 gauge-corrected ones using hydrological modeling for 9053 catchments. Our results highlight large differences in estimation accuracy, and hence, the importance of precipitation dataset selection in both research and operational applications.
Erin Coughlan de Perez, Elisabeth Stephens, Konstantinos Bischiniotis, Maarten van Aalst, Bart van den Hurk, Simon Mason, Hannah Nissan, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 21, 4517–4524, https://doi.org/10.5194/hess-21-4517-2017, https://doi.org/10.5194/hess-21-4517-2017, 2017
Short summary
Short summary
Disaster managers would like to use seasonal forecasts to anticipate flooding months in advance. However, current seasonal forecasts give information on rainfall instead of flooding. Here, we find that the number of extreme events, rather than total rainfall, is most related to flooding in different regions of Africa. We recommend several forecast adjustments and research opportunities that would improve flood information at the seasonal timescale in different regions.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Louise Crochemore, Maria-Helena Ramos, Florian Pappenberger, and Charles Perrin
Hydrol. Earth Syst. Sci., 21, 1573–1591, https://doi.org/10.5194/hess-21-1573-2017, https://doi.org/10.5194/hess-21-1573-2017, 2017
Short summary
Short summary
The use of general circulation model outputs for streamflow forecasting has developed in the last decade. In parallel, traditional streamflow forecasting is commonly based on historical data. This study investigates the impact of conditioning historical data based on circulation model precipitation forecasts on seasonal streamflow forecast quality. Results highlighted a trade-off between the sharpness and reliability of forecasts.
Simon Parry, Robert L. Wilby, Christel Prudhomme, and Paul J. Wood
Hydrol. Earth Syst. Sci., 20, 4265–4281, https://doi.org/10.5194/hess-20-4265-2016, https://doi.org/10.5194/hess-20-4265-2016, 2016
Short summary
Short summary
This paper identifies periods of recovery from drought in 52 river flow records from the UK between 1883 and 2013. The approach detects 459 events that vary in space and time. This large dataset allows individual events to be compared with others in the historical record. The ability to objectively appraise contemporary events against the historical record has not previously been possible, and may allow water managers to prepare for a range of outcomes at the end of a drought.
Louise Crochemore, Maria-Helena Ramos, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3601–3618, https://doi.org/10.5194/hess-20-3601-2016, https://doi.org/10.5194/hess-20-3601-2016, 2016
Short summary
Short summary
This study investigates the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. Eight variants of bias correction approaches based on the linear scaling and the distribution mapping methods are applied to the precipitation forecasts prior to generating the streamflow forecasts. One of the main results of the study is that distribution mapping of daily values is successful in improving forecast reliability.
Erin Coughlan de Perez, Bart van den Hurk, Maarten K. van Aalst, Irene Amuron, Deus Bamanya, Tristan Hauser, Brenden Jongma, Ana Lopez, Simon Mason, Janot Mendler de Suarez, Florian Pappenberger, Alexandra Rueth, Elisabeth Stephens, Pablo Suarez, Jurjen Wagemaker, and Ervin Zsoter
Hydrol. Earth Syst. Sci., 20, 3549–3560, https://doi.org/10.5194/hess-20-3549-2016, https://doi.org/10.5194/hess-20-3549-2016, 2016
Short summary
Short summary
Many flood disaster impacts could be avoided by preventative action; however, early action is not guaranteed. This article demonstrates the design of a new system of forecast-based financing, which automatically triggers action when a flood forecast arrives, before a potential disaster. We establish "action triggers" for northern Uganda based on a global flood forecasting system, verifying these forecasts and assessing the uncertainties inherent in setting a trigger in a data-scarce location.
Louise Arnal, Maria-Helena Ramos, Erin Coughlan de Perez, Hannah Louise Cloke, Elisabeth Stephens, Fredrik Wetterhall, Schalk Jan van Andel, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016, https://doi.org/10.5194/hess-20-3109-2016, 2016
Short summary
Short summary
Forecasts are produced as probabilities of occurrence of specific events, which is both an added value and a challenge for users. This paper presents a game on flood protection, "How much are you prepared to pay for a forecast?", which investigated how users perceive the value of forecasts and are willing to pay for them when making decisions. It shows that users are mainly influenced by the perceived quality of the forecasts, their need for the information and their degree of risk tolerance.
Dave MacLeod, Hannah Cloke, Florian Pappenberger, and Antje Weisheimer
Hydrol. Earth Syst. Sci., 20, 2737–2743, https://doi.org/10.5194/hess-20-2737-2016, https://doi.org/10.5194/hess-20-2737-2016, 2016
Short summary
Short summary
Soil moisture memory is a key aspect of seasonal climate predictions, through feedback between the land surface and the atmosphere. Estimates have been made of the length of soil moisture memory; however, we show here how estimates of memory show large variation with uncertain model parameters. Explicit representation of model uncertainty may then improve the realism of simulations and seasonal climate forecasts.
Jon Olav Skøien, Konrad Bogner, Peter Salamon, Paul Smith, and Florian Pappenberger
Proc. IAHS, 373, 109–114, https://doi.org/10.5194/piahs-373-109-2016, https://doi.org/10.5194/piahs-373-109-2016, 2016
V. Thiemig, B. Bisselink, F. Pappenberger, and J. Thielen
Hydrol. Earth Syst. Sci., 19, 3365–3385, https://doi.org/10.5194/hess-19-3365-2015, https://doi.org/10.5194/hess-19-3365-2015, 2015
C. Lavaysse, J. Vogt, and F. Pappenberger
Hydrol. Earth Syst. Sci., 19, 3273–3286, https://doi.org/10.5194/hess-19-3273-2015, https://doi.org/10.5194/hess-19-3273-2015, 2015
Short summary
Short summary
This paper assesses the predictability of meteorological droughts over Europe 1 month in advance using ensemble prediction systems.
It has been shown that, on average and using the most relevant method, 40 % of droughts in Europe are correctly forecasted, with less than 25 % false alarms.
This study is a reference for other studies that are motivated to improving the drought forecasting.
R. D. Field, A. C. Spessa, N. A. Aziz, A. Camia, A. Cantin, R. Carr, W. J. de Groot, A. J. Dowdy, M. D. Flannigan, K. Manomaiphiboon, F. Pappenberger, V. Tanpipat, and X. Wang
Nat. Hazards Earth Syst. Sci., 15, 1407–1423, https://doi.org/10.5194/nhess-15-1407-2015, https://doi.org/10.5194/nhess-15-1407-2015, 2015
Short summary
Short summary
We have developed a global database of daily, gridded Fire Weather Index System calculations beginning in 1980. Input data and two different estimates of precipitation from rain gauges were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications. This data set can be used for analyzing historical relationships between fire weather and fire activity, and in identifying large-scale atmosphere–ocean controls on fire weather.
F. Wetterhall, H. C. Winsemius, E. Dutra, M. Werner, and E. Pappenberger
Hydrol. Earth Syst. Sci., 19, 2577–2586, https://doi.org/10.5194/hess-19-2577-2015, https://doi.org/10.5194/hess-19-2577-2015, 2015
Short summary
Short summary
Dry spells can have a devastating impact on agricuture in areas where irrigation is not available. Forecasting these dry spells could enhance preparedness in sensitive regions and avoid economic loss due to harvest failure. In this study, ECMWF seasonal forecasts are applied in the Limpopo basin in southeastern Africa to forecast dry spells in the seasonal rains. The results indicate skill in the forecast which is further improved by post-processing of the precipitation forecasts.
A. Chiverton, J. Hannaford, I. P. Holman, R. Corstanje, C. Prudhomme, T. M. Hess, and J. P. Bloomfield
Hydrol. Earth Syst. Sci., 19, 2395–2408, https://doi.org/10.5194/hess-19-2395-2015, https://doi.org/10.5194/hess-19-2395-2015, 2015
Short summary
Short summary
Current hydrological change detection methods are subject to a host of limitations. This paper develops a new method, temporally shifting variograms (TSVs), which characterises variability in the river flow regime using several parameters, changes in which can then be attributed to precipitation characteristics. We demonstrate the use of the method through application to 94 UK catchments, showing that periods of extremes as well as more subtle changes can be detected.
I. Giuntoli, J.-P. Vidal, C. Prudhomme, and D. M. Hannah
Earth Syst. Dynam., 6, 267–285, https://doi.org/10.5194/esd-6-267-2015, https://doi.org/10.5194/esd-6-267-2015, 2015
Short summary
Short summary
We assessed future changes in high and low flows globally using runoff projections from global hydrological models (GHMs) driven by global climate models (GCMs) under the RCP8.5 scenario. Further, we quantified the relative size of uncertainty from GHMs and from GCMs using ANOVA. We show that GCMs are the major contributors to uncertainty overall, but GHMs increase their contribution for low flows and can equal or outweigh GCM uncertainty in snow-dominated areas for both high and low flows.
A. C. Spessa, R. D. Field, F. Pappenberger, A. Langner, S. Englhart, U. Weber, T. Stockdale, F. Siegert, J. W. Kaiser, and J. Moore
Nat. Hazards Earth Syst. Sci., 15, 429–442, https://doi.org/10.5194/nhess-15-429-2015, https://doi.org/10.5194/nhess-15-429-2015, 2015
G. Balsamo, C. Albergel, A. Beljaars, S. Boussetta, E. Brun, H. Cloke, D. Dee, E. Dutra, J. Muñoz-Sabater, F. Pappenberger, P. de Rosnay, T. Stockdale, and F. Vitart
Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, https://doi.org/10.5194/hess-19-389-2015, 2015
Short summary
Short summary
ERA-Interim/Land is a global land surface reanalysis covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim and a precipitation bias correction based on GPCP. A selection of verification results show the added value in representing the terrestrial water cycle and its main land surface storages and fluxes.
P. Trambauer, S. Maskey, M. Werner, F. Pappenberger, L. P. H. van Beek, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 2925–2942, https://doi.org/10.5194/hess-18-2925-2014, https://doi.org/10.5194/hess-18-2925-2014, 2014
E. Dutra, F. Wetterhall, F. Di Giuseppe, G. Naumann, P. Barbosa, J. Vogt, W. Pozzi, and F. Pappenberger
Hydrol. Earth Syst. Sci., 18, 2657–2667, https://doi.org/10.5194/hess-18-2657-2014, https://doi.org/10.5194/hess-18-2657-2014, 2014
E. Dutra, W. Pozzi, F. Wetterhall, F. Di Giuseppe, L. Magnusson, G. Naumann, P. Barbosa, J. Vogt, and F. Pappenberger
Hydrol. Earth Syst. Sci., 18, 2669–2678, https://doi.org/10.5194/hess-18-2669-2014, https://doi.org/10.5194/hess-18-2669-2014, 2014
C. C. Sampson, T. J. Fewtrell, F. O'Loughlin, F. Pappenberger, P. B. Bates, J. E. Freer, and H. L. Cloke
Hydrol. Earth Syst. Sci., 18, 2305–2324, https://doi.org/10.5194/hess-18-2305-2014, https://doi.org/10.5194/hess-18-2305-2014, 2014
L. Alfieri, F. Pappenberger, and F. Wetterhall
Nat. Hazards Earth Syst. Sci., 14, 1505–1515, https://doi.org/10.5194/nhess-14-1505-2014, https://doi.org/10.5194/nhess-14-1505-2014, 2014
G. Naumann, E. Dutra, P. Barbosa, F. Pappenberger, F. Wetterhall, and J. V. Vogt
Hydrol. Earth Syst. Sci., 18, 1625–1640, https://doi.org/10.5194/hess-18-1625-2014, https://doi.org/10.5194/hess-18-1625-2014, 2014
H. C. Winsemius, E. Dutra, F. A. Engelbrecht, E. Archer Van Garderen, F. Wetterhall, F. Pappenberger, and M. G. F. Werner
Hydrol. Earth Syst. Sci., 18, 1525–1538, https://doi.org/10.5194/hess-18-1525-2014, https://doi.org/10.5194/hess-18-1525-2014, 2014
E. Mwangi, F. Wetterhall, E. Dutra, F. Di Giuseppe, and F. Pappenberger
Hydrol. Earth Syst. Sci., 18, 611–620, https://doi.org/10.5194/hess-18-611-2014, https://doi.org/10.5194/hess-18-611-2014, 2014
P. Trambauer, E. Dutra, S. Maskey, M. Werner, F. Pappenberger, L. P. H. van Beek, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 193–212, https://doi.org/10.5194/hess-18-193-2014, https://doi.org/10.5194/hess-18-193-2014, 2014
F. Wetterhall, F. Pappenberger, L. Alfieri, H. L. Cloke, J. Thielen-del Pozo, S. Balabanova, J. Daňhelka, A. Vogelbacher, P. Salamon, I. Carrasco, A. J. Cabrera-Tordera, M. Corzo-Toscano, M. Garcia-Padilla, R. J. Garcia-Sanchez, C. Ardilouze, S. Jurela, B. Terek, A. Csik, J. Casey, G. Stankūnavičius, V. Ceres, E. Sprokkereef, J. Stam, E. Anghel, D. Vladikovic, C. Alionte Eklund, N. Hjerdt, H. Djerv, F. Holmberg, J. Nilsson, K. Nyström, M. Sušnik, M. Hazlinger, and M. Holubecka
Hydrol. Earth Syst. Sci., 17, 4389–4399, https://doi.org/10.5194/hess-17-4389-2013, https://doi.org/10.5194/hess-17-4389-2013, 2013
E. Dutra, F. Di Giuseppe, F. Wetterhall, and F. Pappenberger
Hydrol. Earth Syst. Sci., 17, 2359–2373, https://doi.org/10.5194/hess-17-2359-2013, https://doi.org/10.5194/hess-17-2359-2013, 2013
M. H. Ramos, S. J. van Andel, and F. Pappenberger
Hydrol. Earth Syst. Sci., 17, 2219–2232, https://doi.org/10.5194/hess-17-2219-2013, https://doi.org/10.5194/hess-17-2219-2013, 2013
C. Prudhomme and J. Williamson
Hydrol. Earth Syst. Sci., 17, 1365–1377, https://doi.org/10.5194/hess-17-1365-2013, https://doi.org/10.5194/hess-17-1365-2013, 2013
L. Alfieri, P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thielen, and F. Pappenberger
Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, https://doi.org/10.5194/hess-17-1161-2013, 2013
C. Prudhomme, T. Haxton, S. Crooks, C. Jackson, A. Barkwith, J. Williamson, J. Kelvin, J. Mackay, L. Wang, A. Young, and G. Watts
Earth Syst. Sci. Data, 5, 101–107, https://doi.org/10.5194/essd-5-101-2013, https://doi.org/10.5194/essd-5-101-2013, 2013
Related subject area
Subject: Global hydrology | Techniques and Approaches: Modelling approaches
The benefits and trade-offs of multi-variable calibration of the WaterGAP global hydrological model (WGHM) in the Ganges and Brahmaputra basins
The effect of climate change on the simulated streamflow of six Canadian rivers based on the CanRCM4 regional climate model
Drivers of global irrigation expansion: the role of discrete global grid choice
Changes in mean evapotranspiration dominate groundwater recharge in semi-arid regions
Impact of Runoff Schemes on Global Flow Discharge: A Comprehensive Analysis Using the Noah-MP and CaMa-Flood Models
Merging modelled and reported flood impacts in Europe in a combined flood event catalogue for 1950–2020
Can large-scale tree cover change negate climate change impacts on future water availability?
Global-scale evaluation of precipitation datasets for hydrological modelling
Influence of irrigation on root zone storage capacity estimation
River flow in the near future: a global perspective in the context of a high-emission climate change scenario
A high-resolution perspective of extreme rainfall and river flow under extreme climate change in Southeast Asia
Mapping groundwater dependent ecosystems using a high-resolution global groundwater model
Unveiling hydrological dynamics in data-scarce regions: experiences from the Ethiopian Rift Valley Lakes Basin
Technical note: Comparing three different methods for allocating river points to coarse-resolution hydrological modelling grid cells
Representing farmer irrigated crop area adaptation in a large-scale hydrological model
Combined impacts of climate and land-use change on future water resources in Africa
Deep learning for quality control of surface physiographic fields using satellite Earth observations
Global dryland aridity changes indicated by atmospheric, hydrological, and vegetation observations at meteorological stations
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy
Assessment of pluri-annual and decadal changes in terrestrial water storage predicted by global hydrological models in comparison with the GRACE satellite gravity mission
Improving the quantification of climate change hazards by hydrological models: a simple ensemble approach for considering the uncertain effect of vegetation response to climate change on potential evapotranspiration
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Point-scale multi-objective calibration of the Community Land Model (version 5.0) using in situ observations of water and energy fluxes and variables
Methodology for constructing a flood-hazard map for a future climate
Diagnosing modeling errors in global terrestrial water storage interannual variability
Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent
Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Accuracy of five ground heat flux empirical simulation methods in the surface-energy-balance-based remote-sensing evapotranspiration models
Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff
Revisiting large-scale interception patterns constrained by a synthesis of global experimental data
Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh
Quantifying overlapping and differing information of global precipitation for GCM forecasts and El Niño–Southern Oscillation
Globally widespread and increasing violations of environmental flow envelopes
Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan
Towards hybrid modeling of the global hydrological cycle
The importance of vegetation in understanding terrestrial water storage variations
Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods
Bright and blind spots of water research in Latin America and the Caribbean
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management
Robust historical evapotranspiration trends across climate regimes
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling
Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
Ubiquitous increases in flood magnitude in the Columbia River basin under climate change
Howlader Mohammad Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
Hydrol. Earth Syst. Sci., 29, 567–596, https://doi.org/10.5194/hess-29-567-2025, https://doi.org/10.5194/hess-29-567-2025, 2025
Short summary
Short summary
We calibrate a global hydrological model using multiple observations to analyse the benefits and trade-offs of multi-variable calibration. We found such an approach to be very important for understanding the real-world system. However, some observations are very essential to the system, in particular, streamflow. We also showed uncertainties in the calibration results, which are often useful for making informed decisions. We emphasize considering observation uncertainty in model calibration.
Vivek K. Arora, Aranildo Lima, and Rajesh Shrestha
Hydrol. Earth Syst. Sci., 29, 291–312, https://doi.org/10.5194/hess-29-291-2025, https://doi.org/10.5194/hess-29-291-2025, 2025
Short summary
Short summary
This study presents a Canada-wide assessment of climate change impacts on the hydro-climatology of the region's major river basins. We find that precipitation, runoff, and temperature are all expected to increase over Canada in the future. The northerly Mackenzie and Yukon rivers are relatively less affected by climate change compared to the southerly Fraser and Columbia rivers, which are located in the milder northwestern Pacific region.
Sophie Wagner, Fabian Stenzel, Tobias Krueger, and Jana de Wiljes
Hydrol. Earth Syst. Sci., 28, 5049–5068, https://doi.org/10.5194/hess-28-5049-2024, https://doi.org/10.5194/hess-28-5049-2024, 2024
Short summary
Short summary
Statistical models that explain global irrigation rely on location-referenced data. Traditionally, a system based on longitude and latitude lines is chosen. However, this introduces bias to the analysis due to the Earth's curvature. We propose using a system based on hexagonal grid cells that allows for distortion-free representation of the data. We show that this increases the model's accuracy by 28 % and identify biophysical and socioeconomic drivers of historical global irrigation expansion.
Tuvia Turkeltaub and Golan Bel
Hydrol. Earth Syst. Sci., 28, 4263–4274, https://doi.org/10.5194/hess-28-4263-2024, https://doi.org/10.5194/hess-28-4263-2024, 2024
Short summary
Short summary
Future climate projections suggest that climate change will impact groundwater recharge, with its exact effects being uncertain due to incomplete understanding of rainfall, evapotranspiration, and recharge relations. We studied the effects of changes in the average, spread, and frequency of extreme events of rainfall and evapotranspiration on groundwater recharge. We found that increasing or decreasing the potential evaporation has the most dominant effect on groundwater recharge.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-264, https://doi.org/10.5194/hess-2024-264, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-MP land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modeling to better prepare for climate-related challenges.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Freek Engel, Anne J. Hoek van Dijke, Caspar T. J. Roebroek, and Imme Benedict
EGUsphere, https://doi.org/10.5194/egusphere-2024-2015, https://doi.org/10.5194/egusphere-2024-2015, 2024
Short summary
Short summary
A warming climate alters the freshwater availability over land, and due to related tree cover change and potential forestation this availability can be further enhanced or negated. We find that large-scale change in tree cover counteracts climate-driven changes on a global scale, whereas regionally the climate and tree cover impacts can differ extensively. Current ecosystem restoration projects should account for the effects of (re)forestation on (non-)local water availability.
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024, https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
Fransje van Oorschot, Ruud J. van der Ent, Andrea Alessandri, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 2313–2328, https://doi.org/10.5194/hess-28-2313-2024, https://doi.org/10.5194/hess-28-2313-2024, 2024
Short summary
Short summary
Vegetation plays a crucial role in regulating the water cycle by transporting water from the subsurface to the atmosphere via roots; this transport depends on the extent of the root system. In this study, we quantified the effect of irrigation on roots at a global scale. Our results emphasize the importance of accounting for irrigation in estimating the vegetation root extent, which is essential to adequately represent the water cycle in hydrological and climate models.
Omar V. Müller, Patrick C. McGuire, Pier Luigi Vidale, and Ed Hawkins
Hydrol. Earth Syst. Sci., 28, 2179–2201, https://doi.org/10.5194/hess-28-2179-2024, https://doi.org/10.5194/hess-28-2179-2024, 2024
Short summary
Short summary
This work evaluates how rivers are projected to change in the near future compared to the recent past in the context of a warming world. We show that important rivers of the world will notably change their flows, mainly during peaks, exceeding the variations that rivers used to exhibit. Such large changes may produce more frequent floods, alter hydropower generation, and potentially affect the ocean's circulation.
Mugni Hadi Hariadi, Gerard van der Schrier, Gert-Jan Steeneveld, Samuel J. Sutanto, Edwin Sutanudjaja, Dian Nur Ratri, Ardhasena Sopaheluwakan, and Albert Klein Tank
Hydrol. Earth Syst. Sci., 28, 1935–1956, https://doi.org/10.5194/hess-28-1935-2024, https://doi.org/10.5194/hess-28-1935-2024, 2024
Short summary
Short summary
We utilize the high-resolution CMIP6 for extreme rainfall and streamflow projection over Southeast Asia. This region will experience an increase in both dry and wet extremes in the near future. We found a more extreme low flow and high flow, along with an increasing probability of low-flow and high-flow events. We reveal that the changes in low-flow events and their probabilities are not only influenced by extremely dry climates but also by the catchment characteristics.
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-112, https://doi.org/10.5194/hess-2024-112, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The contribution of groundwater to groundwater dependent ecosystems (GDEs) is declining as a result of an increase in groundwater abstractions and climate change. This may lead to loss of habitat and biodiversity. This proposed framework enables the mapping and understanding of the temporal and spatial dynamics of GDEs on a large scale. The next step is to assess the global impacts of climate change and water use on GDEs' extent and health.
Ayenew D. Ayalew, Paul D. Wagner, Dejene Sahlu, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 28, 1853–1872, https://doi.org/10.5194/hess-28-1853-2024, https://doi.org/10.5194/hess-28-1853-2024, 2024
Short summary
Short summary
The study presents a pioneering comprehensive integrated approach to unravel hydrological complexities in data-scarce regions. By integrating diverse data sources and advanced analytics, we offer a holistic understanding of water systems, unveiling hidden patterns and driving factors. This innovative method holds immense promise for informed decision-making and sustainable water resource management, addressing a critical need in hydrological science.
Juliette Godet, Eric Gaume, Pierre Javelle, Pierre Nicolle, and Olivier Payrastre
Hydrol. Earth Syst. Sci., 28, 1403–1413, https://doi.org/10.5194/hess-28-1403-2024, https://doi.org/10.5194/hess-28-1403-2024, 2024
Short summary
Short summary
This work was performed in order to precisely address a point that is often neglected by hydrologists: the allocation of points located on a river network to grid cells, which is often a mandatory step for hydrological modelling.
Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024, https://doi.org/10.5194/hess-28-899-2024, 2024
Short summary
Short summary
Global and regional models used to evaluate water shortages typically neglect the possibility that irrigated crop areas may change in response to future hydrological conditions, such as the fallowing of crops in response to drought. Here, we enhance a model used for water shortage analysis with farmer agents that dynamically adapt their irrigated crop areas based on simulated hydrological conditions. Results indicate that such cropping adaptation can strongly alter simulated water shortages.
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci., 28, 117–138, https://doi.org/10.5194/hess-28-117-2024, https://doi.org/10.5194/hess-28-117-2024, 2024
Short summary
Short summary
Africa's water resources are being negatively impacted by climate change and land-use change. The SWAT+ hydrological model was used to simulate the hydrological cycle in Africa, and results show likely decreases in river flows in the Zambezi and Congo rivers and highest flows in the Niger River basins due to climate change. Land cover change had the biggest impact in the Congo River basin, emphasizing the importance of including land-use change in studies.
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023, https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
Short summary
Lakes play an important role when we try to explain and predict the weather. More accurate and up-to-date description of lakes all around the world for numerical models is a continuous task. However, it is difficult to assess the impact of updated lake description within a weather prediction system. In this work, we develop a method to quickly and automatically define how, where, and when updated lake description affects weather prediction.
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023, https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary
Short summary
This research scrutinized predicted changes in root zone soil moisture dynamics across different climate scenarios and different climate regions globally between 2021 and 2100. The Mediterranean and most of South America stood out as regions that will likely experience permanently drier conditions, with greater severity observed in the no-climate-policy scenarios. These findings underscore the impact that possible future climates can have on green water resources.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci., 27, 3663–3686, https://doi.org/10.5194/hess-27-3663-2023, https://doi.org/10.5194/hess-27-3663-2023, 2023
Short summary
Short summary
Hydrological models often overlook vegetation's response to CO2 and climate, impairing their ability to forecast impacts on evapotranspiration and water resources. To address this, we suggest involving two model variants: (1) the standard method and (2) a modified approach (proposed here) based on the Priestley–Taylor equation (PT-MA). While not universally applicable, a dual approach helps consider uncertainties related to vegetation responses to climate change, enhancing model representation.
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023, https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Yuki Kimura, Yukiko Hirabayashi, Yuki Kita, Xudong Zhou, and Dai Yamazaki
Hydrol. Earth Syst. Sci., 27, 1627–1644, https://doi.org/10.5194/hess-27-1627-2023, https://doi.org/10.5194/hess-27-1627-2023, 2023
Short summary
Short summary
Since both the frequency and magnitude of flood will increase by climate change, information on spatial distributions of potential inundation depths (i.e., flood-hazard map) is required. We developed a method for constructing realistic future flood-hazard maps which addresses issues due to biases in climate models. A larger population is estimated to face risk in the future flood-hazard map, suggesting that only focusing on flood-frequency change could cause underestimation of future risk.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Zhaofei Liu
Hydrol. Earth Syst. Sci., 26, 6207–6226, https://doi.org/10.5194/hess-26-6207-2022, https://doi.org/10.5194/hess-26-6207-2022, 2022
Short summary
Short summary
Ground heat flux (G) accounts for a significant fraction of the surface energy balance (SEB), but there is insufficient research on these models compared with other flux. The accuracy of G simulation methods in the SEB-based remote sensing evapotranspiration models is evaluated. Results show that the accuracy of each method varied significantly at different sites and at half-hour intervals. Further improvement of G simulations is recommended for the remote sensing evapotranspiration modelers.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022, https://doi.org/10.5194/hess-26-5647-2022, 2022
Short summary
Short summary
A synthesis of rainfall interception data from past field campaigns is performed, including 166 forests and 17 agricultural plots distributed worldwide. These site data are used to constrain and validate an interception model that considers sub-grid heterogeneity and vegetation dynamics. A global, 40-year (1980–2019) interception dataset is generated at a daily temporal and 0.1° spatial resolution. This dataset will serve as a benchmark for future investigations of the global hydrological cycle.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022, https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
Short summary
Assimilation of remotely sensed data into a land surface model to improve the spatiotemporal estimation of soil moisture across South Asia exhibits potential. Satellite retrieval assimilation corrects biases that are generated due to an unmodeled hydrologic phenomenon, i.e., irrigation. The improvements in fine-scale, modeled soil moisture estimates by assimilating coarse-scale retrievals indicates the utility of the described methodology for data-scarce regions.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.
Tina Trautmann, Sujan Koirala, Nuno Carvalhais, Andreas Güntner, and Martin Jung
Hydrol. Earth Syst. Sci., 26, 1089–1109, https://doi.org/10.5194/hess-26-1089-2022, https://doi.org/10.5194/hess-26-1089-2022, 2022
Short summary
Short summary
We assess the effect of how vegetation is defined in a global hydrological model on the composition of total water storage (TWS). We compare two experiments, one with globally uniform and one with vegetation parameters that vary in space and time. While both experiments are constrained against observational data, we found a drastic change in the partitioning of TWS, highlighting the important role of the interaction between groundwater–soil moisture–vegetation in understanding TWS variations.
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174, https://doi.org/10.5194/hess-25-5153-2021, https://doi.org/10.5194/hess-25-5153-2021, 2021
Short summary
Short summary
Episodes of extreme rainfall events happening in close temporal succession can lead to floods with dramatic impacts. We developed a novel method to individually identify those episodes and deduced the regions where they occur frequently and where their impact is substantial. Those regions are the east and northeast of the Asian continent, central Canada and the south of California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, and north of Argentina and south of Bolivia.
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650, https://doi.org/10.5194/hess-25-4631-2021, https://doi.org/10.5194/hess-25-4631-2021, 2021
Short summary
Short summary
Latin America and the Caribbean face many water-related stresses which are expected to worsen with climate change. To assess the vulnerability, we reviewed over 20 000 multilingual research articles using machine learning and an understanding of the regional landscape. Results reveal that the region’s inherent vulnerability is compounded by research blind spots in niche topics (reservoirs and risk assessment) and subregions (Caribbean nations), as well as by its reliance on one country (Brazil).
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates are key to understand droughts and flooding. We develop a new ET dataset, DOLCE V3, by merging multiple global ET datasets, and we show that it matches ET observations better and hence is more reliable than its parent datasets. Next, we use DOLCE V3 to examine recent changes in ET and find that ET has increased over most of the land, decreased in some regions, and has not changed in some other regions
Frederik Kratzert, Daniel Klotz, Sepp Hochreiter, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021, https://doi.org/10.5194/hess-25-2685-2021, 2021
Short summary
Short summary
We investigate how deep learning models use different meteorological data sets in the task of (regional) rainfall–runoff modeling. We show that performance can be significantly improved when using different data products as input and further show how the model learns to combine those meteorological input differently across time and space. The results are carefully benchmarked against classical approaches, showing the supremacy of the presented approach.
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021, https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Charles Rougé, Patrick M. Reed, Danielle S. Grogan, Shan Zuidema, Alexander Prusevich, Stanley Glidden, Jonathan R. Lamontagne, and Richard B. Lammers
Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, https://doi.org/10.5194/hess-25-1365-2021, 2021
Short summary
Short summary
Amid growing interest in using large-scale hydrological models for flood and drought monitoring and forecasting, it is important to evaluate common assumptions these models make. We investigated the representation of reservoirs as separate (non-coordinated) infrastructure. We found that not appropriately representing coordination and control processes can lead a hydrological model to simulate flood and drought events that would not occur given the coordinated emergency response in the basin.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Cited articles
Adnan, R. M., Zounemat-Kermani, M., Kuriqi, A., and Kisi, O.: Machine learning method in prediction streamflow considering periodicity component, in: Intelligent data analytics for decision-support systems in hazard mitigation, Springer, 383–403, https://doi.org/10.1007/978-981-15-5772-9_18, 2021. a
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model:
procedures, data sources and analysis, Technical Memorandum NESDIS NGDC-24,
NOAA, https://doi.org/10.7289/V5C8276M, 2009. a
Bennett, A. and Nijssen, B.: Deep learned process parameterizations provide
better representations of turbulent heat fluxes in hydrologic models, Water
Resour. Res., 57, e2020WR029328, https://doi.org/10.1029/2020WR029328, 2021. a
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, ISBN 978-0-470-71459-1, 2011. a
Booker, D. and Woods, R.: Comparing and combining physically-based and
empirically-based approaches for estimating the hydrology of ungauged
catchments, J. Hydrol., 508, 227–239, 2014. a
Boucher, M.-A., Quilty, J., and Adamowski, J.: Data Assimilation for Streamflow Forecasting Using Extreme Learning Machines and Multilayer Perceptrons, Water Resour. Res., 56, e2019WR026226, https://doi.org/10.1029/2019WR026226, 2019. a
Chadalawada, J., Herath, H., and Babovic, V.: Hydrologically informed machine
learning for rainfall-runoff modeling: A genetic programming-based toolkit
for automatic model induction, Water Resour. Res., 56, e2019WR026933,
https://doi.org/10.1029/2019WR026933, 2020. a
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor,
G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping
of climatological temperature and precipitation across the conterminous
United States, Int. J. Climatol., 28, 2031–2064, 2008. a
de Melo, G. A., Sugimoto, D. N., Tasinaffo, P. M., Santos, A. H. M., Cunha,
A. M., and Dias, L. A. V.: A new approach to river flow forecasting: LSTM
and GRU multivariate models, IEEE Lat. Am. Trans., 17, 1978–1986, 2019. a
Ding, Y., Zhu, Y., Wu, Y., Jun, F., and Cheng, Z.: Spatio-temporal attention
LSTM model for flood forecasting, in: IEEE 2019 International Conference on
Internet of Things (IThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), 14–17 July 2019, Atlanta, GA, USA, 458–465, https://doi.org/10.1109/iThings/GreenCom/CPSCom/, 2019. a, b, c
Düben, P., Modigliani, U., Geer, A., Siemen, S., Pappenberger, F., Bauer,
P., Brown, A., Palkovic, M., Raoult, B., Wedi, N., and Baousis, V.: Machine
learning at ECMWF: A roadmap for the next 10 years, ECMWF, https://doi.org/10.21957/ge7ckgm, 2021. a
ECMWF: Archive of operational forecast data, https://apps.ecmwf.int/archive-catalogue/?class=od, last access: 1 August 2022. a
Feng, J., Wang, Z., Wu, Y., and Xi, Y.: Spatial and Temporal Aware Graph
Convolutional Network for Flood Forecasting, in: IEEE 2021 International Joint Conference on Neural Networks (IJCNN), 18–22 July 2021, Shenzhen, China, 1–8, https://doi.org/10.1109/IJCNN52387.2021.9533694, 2021. a
Frame, J. M., Kratzert, F., Raney, A., Rahman, M., Salas, F. R., and Nearing,
G. S.: Post-Processing the National Water Model with Long Short-Term Memory
Networks for Streamflow Predictions and Model Diagnostics, J. Am. Water Resour. Assoc., 57, 885–905, 2021. a
Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon, O., Qualls, L. M., Gupta, H. V., and Nearing, G. S.: Deep learning rainfall–runoff predictions of extreme events, Hydrol. Earth Syst. Sci., 26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022, 2022. a, b
Freeze, R. A. and Harlan, R. L.: Blueprint for a physically-based,
digitally-simulated hydrologic response model, J. Hydrol., 9, 237–258, 1969. a
Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., and Hochreiter, S.: Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network, Hydrol. Earth Syst. Sci., 25, 2045–2062, https://doi.org/10.5194/hess-25-2045-2021, 2021a. a, b
Gauch, M., Mai, J., and Lin, J.: The proper care and feeding of CAMELS: How
limited training data affects streamflow prediction, Environ. Model. Softw., 135, 104926, https://doi.org/10.1016/j.envsoft.2020.104926, 2021b. a, b
Gers, F. A., Schmidhuber, J., and Cummins, F.: Learning to forget: Continual
prediction with LSTM, Neural Comput., 12, 2451–2471, 2000. a
Graves, A., Mohamed, A.-R., and Hinton, G.: Speech recognition with deep
recurrent neural networks, in: 2013 IEEE international conference on
acoustics, speech and signal processing, 26–31 May 2013, Vancouver, BC, Canada, 6645–6649, https://doi.org/10.1109/ICASSP.2013.6638947, 2013. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, 2009. a
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020. a, b
He, Q., Barajas-Solano, D., Tartakovsky, G., and Tartakovsky, A. M.:
Physics-informed neural networks for multiphysics data assimilation with
application to subsurface transport, Adv. Water Resour., 141, 103610, https://doi.org/10.1016/j.advwatres.2020.103610, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, A., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, 2020. a
Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural Comput., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997. a, b
Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M., Nearing,
G. S., Hochreiter, S., and Klambauer, G.: Mc-lstm: Mass-conserving lstm, in:
International Conference on Machine Learning, 18–24 July 2021, PMLR, 4275–4286, http://proceedings.mlr.press/v139/hoedt21a/hoedt21a.pdf (last access: 26 October 2022), 2021. a
Höge, M., Scheidegger, A., Baity-Jesi, M., Albert, C., and Fenicia, F.: Improving hydrologic models for predictions and process understanding using neural ODEs, Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, 2022. a, b
Horton, R. E.: The role of infiltration in the hydrologic cycle, EOS Trans. Am. Geophys.Union, 14, 446–460, 1933. a
Hu, Y., Yan, L., Hang, T., and Feng, J.: Stream-flow forecasting of small
rivers based on LSTM, arXiv preprint: arXiv:2001.05681, https://doi.org/10.48550/arXiv.2001.05681, 2020. a
Huffman, G. J., Adler, R. F., Rudolf, B., Schneider, U., and Keehn, P. R.:
Global precipitation estimates based on a technique for combining
satellite-based estimates, rain gauge analysis, and NWP model precipitation
information, J. Climate, 8, 1284–1295,
https://doi.org/10.1175/1520-0442(1995)008<1284:GPEBOA>2.0.CO;2, 1995. a
Hunt, K. M. R. and Matthews, G. R.: Code for building, testing, and training the models of US LSTM/GloFAS streamflow paper, Zenodo [code],
https://doi.org/10.5281/zenodo.7260860, 2022. a
Imbeaux, E.: Annales des Ponts et Chaussées, Mémoires et Documents, edited by: Dunod, V. C. and Vicq, P., Éditeurs, Paris, 1892. a
Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A.,
Ganguly, A., Shekhar, S., Samatova, N., and Kumar, V.: Theory-guided data
science: A new paradigm for scientific discovery from data, IEEE T.
Knowl. Data Eng., 29, 2318–2331, 2017. a
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol., 424, 264–277, 2012. a
Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S., and Nearing, G.: Uncertainty estimation with deep learning for rainfall–runoff modeling, Hydrol. Earth Syst. Sci., 26, 1673–1693, https://doi.org/10.5194/hess-26-1673-2022, 2022. a
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019. a
Kolen, J. and Pollack, J.: Back propagation is sensitive to initial conditions, Adv. Nneural Inf. Proc. Syst., 3, 860-7, https://doi.org/10.5555/118850.119960, 1990. a
Kollet, S. J., Maxwell, R. M., Woodward, C. S., Smith, S., Vanderborght, J.,
Vereecken, H., and Simmer, C.: Proof of concept of regional scale hydrologic
simulations at hydrologic resolution utilizing massively parallel computer
resources, Water Resour. Res., 46, WR008730, https://doi.org/10.1029/2009WR008730, 2010. a
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019b. a, b
Le, X.-H., Ho, H. V., Lee, G., and Jung, S.: Application of long short-term
memory (LSTM) neural network for flood forecasting, Water, 11, 1387, https://doi.org/10.3390/w11071387, 2019. a, b, c
Lee, D.-G. and Ahn, K.-H.: A stacking ensemble model for hydrological
post-processing to improve streamflow forecasts at medium-range timescales
over South Korea, J. Hydrol., 600, 126681, https://doi.org/10.1016/j.jhydrol.2021.126681, 2021. a
Li, W., Kiaghadi, A., and Dawson, C.: High temporal resolution rainfall–runoff modeling using long-short-term-memory (LSTM) networks, Neural Comput. Appl., 33, 1261–1278, 2021. a
Liang, Z., Tang, T., Li, B., Liu, T., Wang, J., and Hu, Y.: Long-term
streamflow forecasting using SWAT through the integration of the random
forests precipitation generator: case study of Danjiangkou Reservoir,
Hydrol. Res., 49, 1513–1527, 2018. a
Linsley, R. K., Kohler, M. A., and Paulhus, J. L. H.: Applied Hydrology,
McGraw-Hill Book Company, ISBN 9780071001748, 1949. a
Liu, D., Mishra, A. K., Yu, Z., Lü, H., and Li, Y.: Support vector machine and data assimilation framework for Groundwater Level Forecasting using GRACE satellite data, J. Hydrol., 603, 126929, https://doi.org/10.1016/j.jhydrol.2021.126929, 2021. a
Liu, S., Wang, J., Wang, H., and Wu, Y.: Post-processing of hydrological model simulations using the convolutional neural network and support vector
regression, Hydrol. Res., 53, 605–621, https://doi.org/10.2166/nh.2022.004, 2022. a
Meng, C., Zhou, J., Tayyab, M., Zhu, S., and Zhang, H.: Integrating artificial neural networks into the VIC model for rainfall-runoff modeling, Water, 8, 407, https://doi.org/10.3390/w8090407, 2016. a
Mulvaney, T. J.: On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment, Proc. Inst. Civ. Eng. Ireland, 4, 19–31, 1851. a
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970. a
Nearing, G. S., Sampson, A. K., Kratzert, F., and Frame, J.: Post-processing a Conceptual Rainfall-runoff Model with an LSTM, eartharxiv,
https://doi.org/10.31223/osf.io/53te4, 2020. a
Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance, Hydrol. Earth Syst. Sci., 19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015. a
Nocedal, J. and Wright, S.: Numerical optimization, Springer Science & Business Media, https://doi.org/10.1007/0-387-22742-3_18, 2006. a
Noori, N. and Kalin, L.: Coupling SWAT and ANN models for enhanced daily
streamflow prediction, J. Hydrol., 533, 141–151, https://doi.org/10.1016/j.jhydrol.2015.11.050, 2016. a
Okkan, U., Ersoy, Z. B., Kumanlioglu, A. A., and Fistikoglu, O.: Embedding
machine learning techniques into a conceptual model to improve monthly runoff
simulation: A nested hybrid rainfall-runoff modeling, J. Hydrol., 598, 126433, https://doi.org/10.1016/j.jhydrol.2021.126433, 2021. a
Pappenberger, F., Ramos, M.-H., Cloke, H. L., Wetterhall, F., Alfieri, L.,
Bogner, K., Mueller, A., and Salamon, P.: How do I know if my forecasts are
better? Using benchmarks in hydrological ensemble prediction, J. Hydrol., 522, 697–713, https://doi.org/10.1016/j.jhydrol.2015.01.024, 2015. a
Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R.,
Skinner, D., Ramadhan, A., and Edelman, A.: Universal differential equations
for scientific machine learning, arXiv preprint: arXiv:2001.04385, https://doi.org/10.48550/arXiv.2001.04385, 2020. a, b
Raissi, M., Perdikaris, P., and Karniadakis, G.: Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, J. Comput. Phys., 378, 686–707, https://doi.org/10.1016/j.jcp.2018.10.045, 2019. a
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, 2019. a
Robock, A., Vinnikov, K. Y., Srinivasan, G., Entin, J. K., Hollinger, S. E.,
Speranskaya, N. A., Liu, S., and Namkhai, A.: The global soil moisture data
bank, B. Am. Meteorol. Soc., 81, 1281–1300, 2000. a
Ross, C. N.: The calculation of flood discharge by the use of time contour plan isochrones, T. Inst. Eng. Aust., 2, 85–92, 1921. a
Sahoo, B. B., Jha, R., Singh, A., and Kumar, D.: Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting, Acta Geophys,, 67, 1471–1481, 2019. a
Schiemann, R., Vidale, P. L., Shaffrey, L. C., Johnson, S. J., Roberts, M. J., Demory, M.-E., Mizielinski, M. S., and Strachan, J.: Mean and extreme precipitation over European river basins better simulated in a 25 km AGCM, Hydrol. Earth Syst. Sci., 22, 3933–3950, https://doi.org/10.5194/hess-22-3933-2018, 2018. a
Sha, Y., Gagne II, D. J., West, G., and Stull, R.: Deep-learning-based
precipitation observation quality control, J. Atmos. Ocean. Tech., 38, 1075–1091, 2021. a
Sharma, S., Ghimire, G. R., and Siddique, R.: Machine learning for
postprocessing ensemble streamflow forecasts, arXiv preprint: arXiv:2106.09547, https://doi.org/10.48550/arXiv.2106.09547, 2021. a
Shen, C. and Lawson, K.: Applications of Deep Learning in Hydrology, in: Deep
Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing,
Climate Science, and Geosciences, Wiley Online Library, 283–297, https://doi.org/10.1002/9781119646181.ch19, 2021. a
Silva, D. F. C., Galvão Filho, A. R., Carvalho, R. V., d. Ribeiro, F.
S. L., and Coelho, C. J.: Water Flow Forecasting Based on River Tributaries
Using Long Short-Term Memory Ensemble Model, Energies, 14, 7707,
https://doi.org/10.3390/en14227707, 2021. a, b
Slater, L. J., Anderson, B., Buechel, M., Dadson, S., Han, S., Harrigan, S., Kelder, T., Kowal, K., Lees, T., Matthews, T., Murphy, C., and Wilby, R. L.: Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management, Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, 2021. a
Sudriani, Y., Ridwansyah, I., and Rustini, H. A.: Long short term memory (LSTM) recurrent neural network (RNN) for discharge level prediction and forecast in Cimandiri river, Indonesia, in: IOP Conference Series: Earth
and Environmental Science, IOP Publishing, 299, 012037, https://doi.org/10.1088/1755-1315/299/1/012037, 2019. a
Teweldebrhan, A. T., Schuler, T. V., Burkhart, J. F., and Hjorth-Jensen, M.: Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model, Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020, 2020.
a
Thrasher, B., Maurer, E. P., McKellar, C., and Duffy, P. B.: Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping, Hydrol. Earth Syst. Sci., 16, 3309–3314, https://doi.org/10.5194/hess-16-3309-2012, 2012. a
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., and Polosukhin, I.: Attention is all you need, Advances in
neural information processing systems, 30, https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
(last access: 28 October 2022), 2017. a
Wagena, M. B., Goering, D., Collick, A. S., Bock, E., Fuka, D. R., Buda, A.,
and Easton, Z. M.: Comparison of short-term streamflow forecasting using
stochastic time series, neural networks, process-based, and Bayesian models,
Environ. Model. Softw., 126, 104669, https://doi.org/10.1016/j.envsoft.2020.104669, 2020. a
Wood, E. F., Roundy, J. K., Troy, T. J., Van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water, Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090, 2011. a
Xu, R., Zhang, D., Rong, M., and Wang, N.: Weak form theory-guided neural
network (TgNN-wf) for deep learning of subsurface single- and two-phase flow,
J. Comput. Phys., 436, 110318, https://doi.org/10.1016/j.jcp.2021.110318, 2021. a
Zhu, S., Luo, X., Yuan, X., and Xu, Z.: An improved long short-term memory
network for streamflow forecasting in the upper Yangtze River, Stoch. Environ. Res. Risk A., 34, 1313–1329, 2020. a
Zsoter, E., Harrigan, S., Wetterhall, G., Salamon, P., and Prudhomme, C.: River discharge and related forecasted data from the Global Flood Awareness
System, v2.1, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.ff1aef77, 2019a. a, b
Zsoter, E., Harrigan, S., Wetterhall, G., Salamon, P., and Prudhomme, C.: River discharge and related forecasted data from the Global Flood Awareness
System, v2.1, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.a4fdd6b9, 2019b. a
Zsoter, E., Prudhomme, C., Stephens, E., Pappenberger, F., and Cloke, H.: Using ensemble reforecasts to generate flood thresholds for improved global flood forecasting, J. Flood Risk Manage., 13, e12658, https://doi.org/10.1111/jfr3.12658, 2020. a
Zsoter, E., Harrigan, S., Barnard, C., Wetterhall, G., Ferrario, I., Mazzetti, C., Alfieri, L., Salamon, P., and Prudhomme, C.: River discharge and related forecasted data from the Global Flood Awareness System, v3.1,
Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.ff1aef77, 2021. a, b
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
In this study, we use three models to forecast river streamflow operationally for 13 months...