Articles | Volume 26, issue 8
https://doi.org/10.5194/hess-26-2221-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-2221-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
Barton A. Forman
Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
Sujay V. Kumar
Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Related authors
No articles found.
Louise Busschaert, Michel Bechtold, Sara Modanesi, Christian Massari, Dirk Raes, Sujay V. Kumar, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2550, https://doi.org/10.5194/egusphere-2025-2550, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study estimates irrigation in the Po Valley using AquaCrop and Noah-MP models with sprinkler irrigation. Noah-MP shows higher annual rates than AquaCrop due to more water losses. After adjusting, both align with reported irrigation ranges (500–600 mm/yr). Soil moisture estimates from both models match satellite data, though both have limitations in vegetation and evapotranspiration modeling. The study emphasizes the need for observations to improve irrigation estimates.
Cenlin He, Tzu-Shun Lin, David M. Mocko, Ronnie Abolafia-Rosenzweig, Jerry W. Wegiel, and Sujay V. Kumar
EGUsphere, https://doi.org/10.5194/egusphere-2024-4176, https://doi.org/10.5194/egusphere-2024-4176, 2025
Short summary
Short summary
This study integrates the refactored community Noah-MP version 5.0 model with the NASA Land Information System (LIS) version 7.5.2 to streamline the synchronization, development, and maintenance of Noah-MP within LIS and to enhance their interoperability and applicability. The model benchmarking and evaluation results reveal key model strengths and weaknesses in simulating land surface quantities and show implications for future model improvements.
Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
Atmos. Chem. Phys., 25, 1449–1476, https://doi.org/10.5194/acp-25-1449-2025, https://doi.org/10.5194/acp-25-1449-2025, 2025
Short summary
Short summary
We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop.
Peyman Abbaszadeh, Fadji Zaouna Maina, Chen Yang, Dan Rosen, Sujay Kumar, Matthew Rodell, and Reed Maxwell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-280, https://doi.org/10.5194/hess-2024-280, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
To manage Earth's water resources effectively amid climate change, it's crucial to understand both surface and groundwater processes. We developed a new modeling system that combines two advanced tools, ParFlow and LIS/Noah-MP, to better simulate both land surface and groundwater interactions. By testing this integrated model in the Upper Colorado River Basin, we found it improves predictions of hydrologic processes, especially in complex terrains.
Louise Busschaert, Michel Bechtold, Sara Modanesi, Christian Massari, Dirk Raes, Sujay V. Kumar, and Gabrielle J. M. De Lannoy
EGUsphere, https://doi.org/10.2139/ssrn.4974019, https://doi.org/10.2139/ssrn.4974019, 2024
Preprint archived
Short summary
Short summary
This study estimates irrigation in the Po Valley using AquaCrop and Noah-MP models with sprinkler irrigation. Noah-MP shows higher annual rates than AquaCrop due to more water losses. After adjusting, both align with reported irrigation ranges (500–600 mm/yr). Soil moisture estimates from both models match satellite data, though both have limitations in vegetation and evapotranspiration modeling. The study emphasizes the need for observations to improve irrigation estimates.
Justin M. Pflug, Melissa L. Wrzesien, Sujay V. Kumar, Eunsang Cho, Kristi R. Arsenault, Paul R. Houser, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024, https://doi.org/10.5194/hess-28-631-2024, 2024
Short summary
Short summary
Estimates of 250 m of snow water equivalent in the western USA and Canada are improved by assimilating observations representative of a snow-focused satellite mission with a land surface model. Here, by including a gap-filling strategy, snow estimates could be improved in forested regions where remote sensing is challenging. This approach improved estimates of winter maximum snow water volume to within 4 %, on average, with persistent improvements to both spring snow and runoff in many regions.
Eunsang Cho, Yonghwan Kwon, Sujay V. Kumar, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 27, 4039–4056, https://doi.org/10.5194/hess-27-4039-2023, https://doi.org/10.5194/hess-27-4039-2023, 2023
Short summary
Short summary
An airborne gamma-ray remote-sensing technique provides reliable snow water equivalent (SWE) in a forested area where remote-sensing techniques (e.g., passive microwave) typically have large uncertainties. Here, we explore the utility of assimilating the gamma snow data into a land surface model to improve the modeled SWE estimates in the northeastern US. Results provide new insights into utilizing the gamma SWE data for enhanced land surface model simulations in forested environments.
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, and Rhae Sung Kim
The Cryosphere, 17, 3915–3931, https://doi.org/10.5194/tc-17-3915-2023, https://doi.org/10.5194/tc-17-3915-2023, 2023
Short summary
Short summary
As a future snow mission concept, active microwave sensors have the potential to measure snow water equivalent (SWE) in deep snowpack and forested environments. We used a modeling and data assimilation approach (a so-called observing system simulation experiment) to quantify the usefulness of active microwave-based SWE retrievals over western Colorado. We found that active microwave sensors with a mature retrieval algorithm can improve SWE simulations by about 20 % in the mountainous domain.
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, Rhae Sung Kim, and Jennifer M. Jacobs
Hydrol. Earth Syst. Sci., 26, 5721–5735, https://doi.org/10.5194/hess-26-5721-2022, https://doi.org/10.5194/hess-26-5721-2022, 2022
Short summary
Short summary
While land surface models are a common approach for estimating macroscale snow water equivalent (SWE), the SWE accuracy is often limited by uncertainties in model physics and forcing inputs. In this study, we found large underestimations of modeled SWE compared to observations. Precipitation forcings and melting physics limitations dominantly contribute to the SWE underestimations. Results provide insights into prioritizing strategies to improve the SWE simulations for hydrologic applications.
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022, https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
Short summary
The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) global and Central Asia data streams described here generate routine estimates of snow, soil moisture, runoff, and other variables useful for tracking water availability. These data are hosted by NASA and USGS data portals for public use.
Min Huang, James H. Crawford, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Colm Sweeney
Atmos. Chem. Phys., 22, 7461–7487, https://doi.org/10.5194/acp-22-7461-2022, https://doi.org/10.5194/acp-22-7461-2022, 2022
Short summary
Short summary
This study demonstrates that ozone dry-deposition modeling can be improved by revising the model's dry-deposition parameterizations to better represent the effects of environmental conditions including the soil moisture fields. Applying satellite soil moisture data assimilation is shown to also have added value. Such advancements in coupled modeling and data assimilation can benefit the assessments of ozone impacts on human and vegetation health.
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022, https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary
Short summary
The MENA (Middle East and North Africa) region faces significant food and water insecurity and hydrological hazards. Here we investigate the value of assimilating remote sensing data sets into an Earth system model to help build an effective drought monitoring system and support risk mitigation and management by countries in the region. We highlight incorporating satellite-informed vegetation conditions into the model as being one of the key processes for a successful application for the region.
Min Huang, James H. Crawford, Joshua P. DiGangi, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Xiwu Zhan
Atmos. Chem. Phys., 21, 11013–11040, https://doi.org/10.5194/acp-21-11013-2021, https://doi.org/10.5194/acp-21-11013-2021, 2021
Short summary
Short summary
This study evaluates the impact of satellite soil moisture data assimilation on modeled weather and ozone fields at various altitudes above the southeastern US during the summer. It emphasizes the importance of soil moisture in the understanding of surface ozone pollution and upper tropospheric chemistry, as well as air pollutants’ source–receptor relationships between the US and its downwind areas.
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
Yifan Zhou, Benjamin F. Zaitchik, Sujay V. Kumar, Kristi R. Arsenault, Mir A. Matin, Faisal M. Qamer, Ryan A. Zamora, and Kiran Shakya
Hydrol. Earth Syst. Sci., 25, 41–61, https://doi.org/10.5194/hess-25-41-2021, https://doi.org/10.5194/hess-25-41-2021, 2021
Short summary
Short summary
South and Southeast Asia face significant food insecurity and hydrological hazards. Here we introduce a South and Southeast Asia hydrological monitoring and sub-seasonal to seasonal forecasting system (SAHFS-S2S) to help local governments and decision-makers prepare for extreme hydroclimatic events. The monitoring system captures soil moisture variability well in most regions, and the forecasting system offers skillful prediction of soil moisture variability 2–3 months in advance, on average.
Cited articles
Ahmad, J. A., Forman, B. A., and Kumar, S. V.: SMAP soil moisture assimilated Noah-MP model output, DRUM [data set], https://doi.org/10.13016/meau-teqa, 2021. a
Al-Kayssi, A., Al-Karaghouli, A., Hasson, A., and Beker, S.: Influence of soil
moisture content on soil temperature and heat storage under greenhouse
conditions, J. Agr. Eng. Res., 45, 241–252, 1990. a
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas,
W. P.: A climatological study of evapotranspiration and moisture stress
across the continental United States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res.-Atmos., 112, D10117, https://doi.org/10.1029/2006JD007506, 2007. a
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst. Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011. a, b
Armstrong, R. L., Rittger, K., Brodzik, M. J., Racoviteanu, A., Barrett, A. P., Khalsa, S. J. S., Raup, B., Hill, A. F., Khan, A. L., Wilson, A. M., and Kayastha, R. B.: Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow, Reg. Environ. Change, 19, 1249–1261, 2019. a
Arsenault, K. R., Kumar, S. V., Geiger, J. V., Wang, S., Kemp, E., Mocko, D. M., Beaudoing, H. K., Getirana, A., Navari, M., Li, B., Jacob, J., Wegiel, J., and Peters-Lidard, C. D.: The Land surface Data Toolkit (LDT v7.2) – a data fusion environment for land data assimilation systems, Geosci. Model Dev., 11, 3605–3621, https://doi.org/10.5194/gmd-11-3605-2018, 2018. a
Asoka, A., Gleeson, T., Wada, Y., and Mishra, V.: Relative contribution of
monsoon precipitation and pumping to changes in groundwater storage in India, Nat. Geosci., 10, 109–117, 2017. a
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal
conductance and its contribution to the control of photosynthesis under
different environmental conditions, in: Progress in Photosynthesis Research, Springer, 221–224, ISBN 9 024 73453 3, 1987. a
Biemans, H., Siderius, C., Mishra, A., and Ahmad, B.: Crop-specific seasonal estimates of irrigation-water demand in South Asia, Hydrol. Earth Syst. Sci., 20, 1971–1982, https://doi.org/10.5194/hess-20-1971-2016, 2016. a, b
Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F., Gruber,
A., and Fernández-Prieto, D.: How much water is used for irrigation? A
new approach exploiting coarse resolution satellite soil moisture products,
Int. J. Appl. Earth Obs., 73, 752–766, 2018. a
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M. H.:
EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded
data sets, ISPRS Int. J. Geo-Inf., 1, 32–45, 2012. a
Brutsaert, W.: Evaporation into the atmosphere: theory, history and
applications, vol. 1, Springer Science and Business Media, ISBN 978-94-017-1497-6, 2013. a
Buehner, M.: Error statistics in data assimilation: estimation and modelling,
in: Data Assimilation, Springer, 93–112, https://doi.org/10.1007/978-3-540-74703-1, 2010. a
Chambers, R.: Managing canal irrigation: practical analysis from South Asia,
Cambridge University Press, ISBN 0 521 34554 5, 1988. a
Daly, E. and Porporato, A.: A review of soil moisture dynamics: from rainfall
infiltration to ecosystem response, Environ. Eng. Sci., 22,
9–24, 2005. a
Dhar, O. and Nandargi, S.: Hydrometeorological aspects of floods in India,
Nat. Hazards, 28, 1–33, 2003. a
Douville, H., Chauvin, F., and Broqua, H.: Influence of soil moisture on the
Asian and African monsoons. Part I: Mean monsoon and daily precipitation,
J. Climate, 14, 2381–2403, 2001. a
Dukes, M. and Scholberg, J.: Soil moisture controlled subsurface drip
irrigation on sandy soils, Appl. Eng. Agric., 21, 89–101,
2005. a
Ek, M., Mitchell, K., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G.,
and Tarpley, J.: Implementation of Noah land surface model advances in the
National Centers for Environmental Prediction operational mesoscale ETA
model, J. Geophys. Res.-Atmos., 108, 2003. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., and Seal, D.: The shuttle
radar topography mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007. a
Girotto, M., De Lannoy, G. J., Reichle, R. H., Rodell, M., Draper, C., Bhanja,
S. N., and Mukherjee, A.: Benefits and pitfalls of GRACE data assimilation: A
case study of terrestrial water storage depletion in India,
Geophys. Res. Lett., 44, 4107–4115, 2017. a
Goddard Space Flight Center: FluxSAT Gross Primary Production, Aura validation data center NASA [data set], https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/ (last access: 8 March 2021), 2010a. a
Goddard Space Flight Center: GOME-2 Fluorescence, Aura validation data center NASA [data set], https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/ (last access: 9 March 2021), 2010. a
Gough, C. M.: Terrestrial Primary Production: Fuel for Life, Nature Education
Knowledge, 3, 28, 2011. a
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S.,
Lawrence, D. M., and Gentine, P.: Large influence of soil moisture on
long-term terrestrial carbon uptake, Nature, 565, 476–479, 2019. a
Gutman, G. and Ignatov, A.: The derivation of the green vegetation fraction
from NOAA/AVHRR data for use in numerical weather prediction models,
Int. J. Remote Sens., 19, 1533–1543, 1998. a
Hauser, M., Orth, R., and Seneviratne, S. I.: Investigating soil moisture–climate interactions with prescribed soil moisture experiments: an assessment with the Community Earth System Model (version 1.2), Geosci. Model Dev., 10, 1665–1677, https://doi.org/10.5194/gmd-10-1665-2017, 2017. a
Huang, C., Li, X., Lu, L., and Gu, J.: Experiments of one-dimensional soil
moisture assimilation system based on ensemble Kalman filter,
Remote Sens. Environ., 112, 888–900, 2008. a
Jalilvand, E., Tajrishy, M., Hashemi, S. A. G. Z., and Brocca, L.:
Quantification of irrigation water using remote sensing of soil moisture in a
semi-arid region, Remote Sens. Environ., 231, 111226, https://doi.org/10.3389/feart.2019.00235, 2019. a
Joiner, J. and Yoshida, Y.: Satellite-based reflectances capture large fraction of variability in global gross primary production (GPP) at weekly time scales, Agr. Forest Meteorol., 291, 108092, https://doi.org/10.1016/j.agrformet.2020.108092, 2020. a, b
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013. a
Joiner, J., Yoshida, Y., Vasilkov, A., Schaefer, K., Jung, M., Guanter, L.,
Zhang, Y., Garrity, S., Middleton, E., Huemmrich, K., and Gu, L.: The
seasonal cycle of satellite chlorophyll fluorescence observations and its
relationship to vegetation phenology and ecosystem atmosphere carbon
exchange, Remote Sens. Environ., 152, 375–391, 2014. a, b
Jordan, R.: A one-dimensional temperature model for a snow cover: Technical
documentation for SNTHERM. 89., Tech. rep., Cold Regions Research and
Engineering Lab, Hanover, NH, 1991. a
Kalman, R. E.: A new approach to linear filtering and prediction problems,
J. Basic Eng.-T. ASME, 82, 35–45, https://doi.org/10.1115/1.3662552, 1960. a
Knipper, K. R., Kustas, W. P., Anderson, M. C., Alfieri, J. G., Prueger, J. H., Hain, C. R., Gao, F., Yang, Y., McKee, L. G., Nieto, H., and Hipps, L. E.: Evapotranspiration estimates derived using thermal-based satellite remote
sensing and data fusion for irrigation management in California vineyards,
Irrigation Sci., 37, 431–449, 2019. a
Kumar, S.: NASA-LIS/LISF, GitHub [code], https://github.com/NASA-LIS/LISF, last access: 8 March 2021. a
Kumar, S. V., Peters-Lidard, C. D., Santanello, J. A., Reichle, R. H., Draper, C. S., Koster, R. D., Nearing, G., and Jasinski, M. F.: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes, Hydrol. Earth Syst. Sci., 19, 4463–4478, https://doi.org/10.5194/hess-19-4463-2015, 2015. a, b
Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J., Olden,
S., Lighty, L., Eastman, J. L., Doty, B., Dirmeyer, P., and Adams, J.: Land
information system: an interoperable framework for high resolution land
surface modeling, Environ. Modell. Softw., 21, 1402–1415, 2006. a
Kumar, S. V., Holmes, T. R., Bindlish, R., de Jeu, R., and Peters-Lidard, C.: Assimilation of vegetation optical depth retrievals from passive microwave radiometry, Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020, 2020. a, b
Kwon, Y., Forman, B. A., Ahmad, J. A., Kumar, S. V., and Yoon, Y.: Exploring
the Utility of Machine Learning-Based Passive Microwave Brightness
Temperature Data Assimilation over Terrestrial Snow in High Mountain Asia, Remote Sensing, 11, 2265, https://doi.org/10.3390/rs11192265, 2019. a, b
Lievens, H., Tomer, S. K., Al Bitar, A., De Lannoy, G. J., Drusch, M., Dumedah,
G., Franssen, H.-J. H., Kerr, Y. H., Martens, B., Pan, M., and Roundy, J.:
SMOS soil moisture assimilation for improved hydrologic simulation in the
Murray Darling Basin, Australia, Remote Sens. Environ., 168,
146–162, 2015. a
Loomis, B. D., Richey, A. S., Arendt, A. A., Appana, R., Deweese, Y.-J.,
Forman, B. A., Kumar, S. V., Sabaka, T. J., and Shean, D. E.: Water storage
trends in high mountain Asia, Front. Earth Sci., 7, 235, https://doi.org/10.3389/feart.2019.00235, 2019. a
McCuen, R. H.: Modeling hydrologic change: statistical methods, CRC Press,
Boca Raton, 448 pp., ISBN 9780429143175, https://doi.org/10.1201/9781420032192, 2016. a
McLaughlin, D.: An integrated approach to hydrologic data assimilation:
interpolation, smoothing, and filtering, Adv. Water Resour., 25,
1275–1286, 2002. a
Morin, J. and Benyamini, Y.: Rainfall infiltration into bare soils,
Water Resour. Res., 13, 813–817, 1977. a
National Center for Atmospheric Research: Global hybrid STATSGO/FAO soil texture, UCAR/NCAR – Earth Observing Laboratory [data set],
https://doi.org/10.80024/UCAR/NCAR/EOL/DATASET/8.43, 2006. a
Nearing, G., Yatheendradas, S., Crow, W., Zhan, X., Liu, J., and Chen, F.: The
efficiency of data assimilation, Water Resour. Res., 54, 6374–6392,
2018. a
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E., and Su, H.:
Development of a simple groundwater model for use in climate models and
evaluation with Gravity Recovery and Climate Experiment data, J. Geophys. Res.-Atmos., 112, D07103, https://doi.org/10.1029/2006JD007522, 2007. a
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., and Tewari, M.: The community
Noah land surface model with multiparameterization options (Noah-MP): 1.
Model description and evaluation with local-scale measurements, J. Geophys. Res.-Atmos., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011. a, b
O'Neill, P., Chan, S., Njoku, E., Jackson, T., and Bindlish, R.: SMAP L3
Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 6, NSIDC [data set], https://doi.org/10.5067/EVYDQ32FNWTH, 2019. a, b
O'Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., Bindlish, R., and Chaubell, J.: SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 8, NSIDC [data set], https://doi.org/10.5067/OMHVSRGFX38O, 2021. a
Panciera, R., Walker, J. P., Jackson, T. J., Gray, D. A., Tanase, M. A., Ryu, D., Monerris, A., Yardley, H., Rüdiger, C., Wu, X., and Gao, Y.,: The soil moisture active passive experiments (SMAPEx): toward soil moisture retrieval from the SMAP mission, IEEE T. Geosci. Remote, 52, 490–507, 2013. a
Penna, D., Tromp-van Meerveld, H. J., Gobbi, A., Borga, M., and Dalla Fontana, G.: The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment, Hydrol. Earth Syst. Sci., 15, 689–702, https://doi.org/10.5194/hess-15-689-2011, 2011. a
Peters-Lidard, C. D., Houser, P. R., Tian, Y., Kumar, S. V., Geiger, J., Olden,
S., Lighty, L., Doty, B., Dirmeyer, P., Adams, J., and Mitchell, K.:
High-performance Earth system modeling with NASA/GSFC's Land Information
System, Innovations in Systems and Software Engineering, 3, 157–165, 2007. a
Philander, S. G.: Encyclopedia of global warming and climate change: AE,
in: vol. 1, Sage, ISBN 978-1-4129-5878-3, 2008. a
Piles, M., Camps, A., Vall-Llossera, M., Corbella, I., Panciera, R., Rudiger,
C., Kerr, Y. H., and Walker, J.: Downscaling SMOS-derived soil moisture using
MODIS visible/infrared data, IEEE T. Geosci. Remote, 49, 3156–3166, 2011. a
Reichle, R. H. and Koster, R. D.: Bias reduction in short records of satellite soil moisture, Geophys. Res. Lett., 31, L19501, https://doi.org/10.1029/2004GL020938, 2004. a, b
Reichle, R. H., Koster, R. D., Dong, J., and Berg, A. A.: Global soil moisture
from satellite observations, land surface models, and ground data:
Implications for data assimilation, J. Hydrometeorol., 5, 430–442,
2004. a
Reichle, R. H., Liu, Q., Ardizzone, J. V., Crow, W. T., De Lannoy, G. J., Dong,
J., Kimball, J. S., and Koster, R. D.: The contributions of gauge-based
precipitation and SMAP brightness temperature observations to the skill of
the SMAP Level-4 soil moisture product, J. Hydrometeorol., 22,
405–424, 2021. a
Robinson, D. A. and Kukla, G.: Maximum surface albedo of seasonally
snow-covered lands in the Northern Hemisphere,
J. Clim. Appl. Meteorol., 24, 402–411, 1985. a
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates of groundwater depletion in India, Nature, 460, 999–1002, 2009. a
Schneider, S. H.: The greenhouse effect: science and policy, Science, 243,
771–781, 1989. a
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, 2010. a
Shani, U., Tsur, Y., and Zemel, A.: Optimal dynamic irrigation schemes, Optim. Contr. Appl. Met., 25, 91–106, 2004. a
Siebert, S., Döll, P., Hoogeveen, J., Faures, J.-M., Frenken, K., and Feick, S.: Development and validation of the global map of irrigation areas, Hydrol. Earth Syst. Sci., 9, 535–547, https://doi.org/10.5194/hess-9-535-2005, 2005. a
Sivakumar, M. V. and Stefanski, R.: Climate change in South Asia, in:
Climate change and food security in South Asia, Springer, 13–30, 2010. a
Soulis, K. X., Elmaloglou, S., and Dercas, N.: Investigating the effects of
soil moisture sensors positioning and accuracy on soil moisture based drip
irrigation scheduling systems, Agr. Water Manage., 148, 258–268,
2015. a
Su, B.: The observation data of soil temperature and moisture on the Tibetan Plateau (2008–2016), TU Wien [data set], https://www.geo.tuwien.ac.at/insitu/data_viewer/, last access: 13 March 2021. a
Su, Z., Wen, J., Dente, L., van der Velde, R., Wang, L., Ma, Y., Yang, K., and Hu, Z.: The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products, Hydrol. Earth Syst. Sci., 15, 2303–2316, https://doi.org/10.5194/hess-15-2303-2011, 2011. a
Van der Tol, C., Berry, J., Campbell, P., and Rascher, U.: Models of
fluorescence and photosynthesis for interpreting measurements of
solar-induced chlorophyll fluorescence, J. Geophys. Res.-Biogeo., 119, 2312–2327, 2014. a
Wei, J. and Dirmeyer, P. A.: Dissecting soil moisture-precipitation coupling,
Geophys. Res. Lett., 39, L19711, https://doi.org/10.1029/2012GL053038, 2012. a, b
Wester, P., Mishra, A., Mukherji, A., and Shrestha, A. B.: The Hindu Kush
Himalaya Assessment- Mountains, Climate Change, Sustainability and People, Springer Nature Switzerland, https://doi.org/10.1007/978-3-319-92288-1, 2018. a
Yang, K., Qin, J., Zhao, L., Chen, Y., Tang, W., Han, M., Chen, Z., Lv, N.,
Ding, B., Wu, H., and Lin, C.: A multiscale soil moisture and freeze–thaw
monitoring network on the third pole,
B. Am. Meteorol. Soc., 94, 1907–1916, 2013. a
Yang, Z.-L. and Dickinson, R. E.: Description of the Biosphere-Atmosphere
Transfer Scheme (BATS) for the soil moisture workshop and evaluation of
its performance, Global Planet. Change, 13, 117–134, 1996. a
Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 2. Evaluation over global river basins, J. Geophys. Res.-Atmos., 116, D12110, https://doi.org/10.1029/2010JD015140, 2011. a
Zeng, Y., Su, Z., Van der Velde, R., Wang, L., Xu, K., Wang, X., and Wen, J.:
Blending satellite observed, model simulated, and in situ measured soil
moisture over Tibetan Plateau, Remote Sensing, 8, 268, https://doi.org/10.3390/rs8030268, 2016. a
Zhang, D., Tang, R., Zhao, W., Tang, B., Wu, H., Shao, K., and Li, Z.-L.:
Surface soil water content estimation from thermal remote sensing based on
the temporal variation of land surface temperature, Remote Sensing, 6,
3170–3187, 2014. a
Short summary
Assimilation of remotely sensed data into a land surface model to improve the spatiotemporal estimation of soil moisture across South Asia exhibits potential. Satellite retrieval assimilation corrects biases that are generated due to an unmodeled hydrologic phenomenon, i.e., irrigation. The improvements in fine-scale, modeled soil moisture estimates by assimilating coarse-scale retrievals indicates the utility of the described methodology for data-scarce regions.
Assimilation of remotely sensed data into a land surface model to improve the spatiotemporal...