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Abstract. A soil moisture retrieval assimilation framework
is implemented across South Asia in an attempt to im-
prove regional soil moisture estimation as well as to pro-
vide a consistent regional soil moisture dataset. This study
aims to improve the spatiotemporal variability of soil mois-
ture estimates by assimilating Soil Moisture Active Passive
(SMAP) near-surface soil moisture retrievals into a land sur-
face model. The Noah-MP (v4.0.1) land surface model is
run within the NASA Land Information System software
framework to model regional land surface processes. NASA
Modern-Era Retrospective Analysis for Research and Appli-
cations (MERRA2) and Global Precipitation Measurement
(GPM) Integrated Multi-satellitE Retrievals (IMERG) pro-
vide the meteorological boundary conditions to the land sur-
face model. Assimilation is carried out using both cumulative
distribution function (CDF)-corrected (DA-CDF) and uncor-
rected SMAP retrievals (DA-NoCDF). CDF matching is ap-
plied to correct the statistical moments of the SMAP soil
moisture retrieval relative to the land surface model. Compar-
ison of assimilated and model-only soil moisture estimates
with publicly available in situ measurements highlights the
relative improvement in soil moisture estimates by assim-
ilating SMAP retrievals. Across the Tibetan Plateau, DA-
NoCDF reduced the mean bias and RMSE by 8.4 % and
9.4 %, even though assimilation only occurred during less
than 10 % of the study period due to frozen (or partially
frozen) soil conditions. The best goodness-of-fit statistics
were achieved for the IMERG DA-NoCDF soil moisture ex-
periment. The general lack of publicly available in situ mea-
surements across irrigated areas limited a domain-wide direct
model validation. However, comparison with regional irriga-
tion patterns suggested correction of biases associated with

an unmodeled hydrologic phenomenon (i.e., anthropogenic
influence via irrigation) as a result of SMAP soil moisture
retrieval assimilation. The greatest sensitivity to assimilation
was observed in cropland areas. Improvements in soil mois-
ture potentially translate into improved spatiotemporal pat-
terns of modeled evapotranspiration, although limited influ-
ence from soil moisture assimilation was observed on mod-
eled processes within the carbon cycle such as gross primary
production. Improvement in fine-scale modeled estimates by
assimilating coarse-scale retrievals highlights the potential of
this approach for soil moisture estimation over data-scarce
regions.

1 Introduction

Soil moisture (SM) is an important variable in geophysical
science. In land surface models, soil moisture primarily in-
fluences the energy cycle by controlling latent heat flux and
soil temperature (Al-Kayssi et al., 1990) and the water cycle
via evapotranspiration, soil infiltration capacity, and runoff
(Penna et al., 2011). Accurate soil moisture estimation is also
a requirement for analyzing the effects of climate change
as soil moisture variability influences terrestrial carbon up-
take (Green et al., 2019). In the context of agriculture, soil
moisture provides a quantitative basis for the development
of sociopolitical policies aimed at regulating and monitoring
crop cultivation, crop selection, water resources distribution,
and irrigation processes (Schneider, 1989; Shani et al., 2004;
Jalilvand et al., 2019). Soil-moisture-based frameworks have
been extensively used for irrigation scheduling and monitor-
ing, particularly in terms of tracking plant growth (Dukes
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and Scholberg, 2005; Soulis et al., 2015). The three main
sources of surface soil moisture are precipitation (Morin and
Benyamini, 1977; Douville et al., 2001; Wei and Dirmeyer,
2012), freshwater flow across the floodplain (Daly and Por-
porato, 2005), and surface irrigation via groundwater pump-
ing. The feedback loop between soil moisture and each of
these sources varies in space and time according to the ge-
ographic and topological features of the locale (Wei and
Dirmeyer, 2012).

Various techniques have been used for soil moisture char-
acterization such as in situ station networks, physical mod-
eling, and remote sensing (Seneviratne et al., 2010; Hauser
et al., 2017; Reichle et al., 2021). While the in situ station
data are considered most representative of the true ground
conditions, they are generally limited by data sparsity and
data availability. In contrast, physical modeling can be lever-
aged to provide estimates at fine spatiotemporal resolutions.
However, contemporary modeling techniques lack compre-
hensive representation of the complex relationships between
all geophysical variables. Remote sensing has also been
widely utilized in soil moisture estimation to translate opti-
cal (Piles et al., 2011), thermal infrared (Zhang et al., 2014),
and microwave (Entekhabi et al., 2010; Panciera et al., 2013)
observations into soil moisture retrievals.

While providing useful information, remote-sensing-
based soil moisture retrievals are limited by the accuracy of
the retrieval algorithm, swath width, field of view, and the or-
bital specifications of the observing instrument on board the
satellite. One effective method for overcoming some of the
limitations posed by physical modeling and remote sensing
sensors is data assimilation. Data assimilation (DA) is a tech-
nique used to merge modeled estimates with observations
while taking into consideration their respective errors and un-
certainties (Kalman, 1960; McLaughlin, 2002). The posterior
estimate obtained through DA combines the strengths of both
models and observations to yield a dataset that is improved
relative to the standalone products (Zhang and Moore, 2015).
Several studies have attempted to improve water budget esti-
mation by assimilating soil moisture information into a land
surface model (LSM). Huang et al. (2008) assimilated in
situ surface soil moisture measurements and low-frequency
passive microwave remote sensing data into the Simple Bio-
sphere Model (SiB2) and produced improvements in surface
soil moisture estimates. Lievens et al. (2015) modeled the hy-
drologic cycle over the Murray–Darling Basin in Australia
and explored the results of assimilating Soil Moisture and
Ocean Salinity (SMOS) soil moisture retrievals into the vari-
able infiltration capacity (VIC) model. They concluded that
improvements in the wetness conditions due to soil moisture
retrieval assimilation translated into improved predictions of
associated water fluxes. Comparison of modeled soil mois-
ture estimates with soil moisture retrievals revealed an inher-
ent bias in the statistical moments of the studied retrievals
(Reichle et al., 2004). A bias correction technique based
on CDF matching suggested by Reichle and Koster (2004)

demonstrated better conformity in the statistical moments
between the LSM soil moisture estimates and the satellite-
based soil moisture retrievals. However, Kumar et al. (2015)
showed that retrieval distribution mapping via CDF match-
ing could result in the removal of information pertaining to
the irrigation signal. Nearing et al. (2018) also attributed loss
of signal information to CDF matching during data assimila-
tion.

According to the current climate change forecasts, se-
vere water stress is predicted in various parts of South Asia
(Sivakumar and Stefanski, 2010). Total groundwater stor-
age in northwestern India has undergone a decline, which
is likely linked to irrigation-induced groundwater pumping
(Rodell et al., 2009; Asoka et al., 2017). Global land sur-
face models, in general, do not include groundwater pump-
ing modules. An inverse technique of estimating the amount
of groundwater pumped could potentially be developed if
accurate soil moisture estimates are available (apart from
the other water-budget-contributing variables). Soil moisture
records may be able to provide much needed information
about the extent and amount of groundwater pumping across
the whole of South Asia. Accurate soil moisture estimation
across South Asia is, therefore, an important need.

In situ soil moisture measurements across South Asia are
sparse at best. To fill this knowledge gap and to evaluate the
utility of leveraging data assimilation as a feasible option in
this region, we demonstrate the utilization of Soil Moisture
Active Passive (SMAP; Entekhabi et al., 2010) retrieval as-
similation to improve soil moisture estimation across South
Asia and the adjoining mountainous areas. Section 2 de-
scribes the prominent features of the study domain, Sect. 3
provides details regarding the various datasets and the data
assimilation framework utilized, Sect. 4 highlights the im-
portant results of the DA experiments, Sect. 5 includes a dis-
cussion of the salient findings of the DA experiments, and
Sect. 6 summarizes the main conclusions of this study.

2 Study domain

The study domain discussed in this paper encompasses the
mountainous region in South Asia and the adjoining areas
(Fig. 1). The Hindu Kush–Himalayan mountain range and
the Tibetan Plateau, represented by grid cells with elevation
> 2000 m in Fig. 1a, constitute High Mountain Asia. Ten ma-
jor rivers (Indus, Ganges, Brahmaputra, Irrawaddy, Salween,
Mekong, Yangtze, Yellow, Tarim, Amu, and Syr) originate in
this region and flow towards the low-elevation areas where
they serve as sources of freshwater for the residing popu-
lace. Agriculture-based irrigation is a primary consumer of
the freshwater transported downstream by the rivers (Wester
et al., 2018).

Figure 1c and Table A1 present the soil texture condi-
tions within the domain. The NCEP/STATSGO+FAO (Na-
tional Center for Atmospheric Research, 2006) soil texture
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Figure 1. The study domain encompasses the mountainous region in South Asia and the adjoining areas. High-elevation and high slope (>
0.2) areas demarcate the Hindu Kush–Himalayan mountain range, whereas the high-elevation and mild-slope (< 0.1) grid cells demarcate the
Tibetan Plateau (a and b). The yellow markers in (a) locate the stations within the Tibetan Plateau used to evaluate the soil moisture estimates
(Sect. 4.1). The domain soil texture was categorized into 11 soil types (c) according to the NCEP/STATSGO+FAO classification. The domain
land cover comprised 10 main types based on the MODIS-derived IGBP classification (d). AFG is Afghanistan, BNG is Bangladesh, BHU
is Bhutan, CHN is China, IND is India, NPL is Nepal, PAK is Pakistan, and TAJ is Tajikistan.

classification is used to categorize the grid cells into 16 in-
dividual classes (note that soil classes that did not have any
grid cell types in the study domain are excluded from the fig-
ure legend). The predominant soil texture type found within
the domain is loam followed by clay loam. Land cover cat-
egorization (see Fig. 1d and Table A1 columns 4 to 6) is
based on the NCEP/MODIS-based International Geosphere–
Biosphere Programme (IGBP) (Friedl et al., 2002) classifica-
tion (note that similar classes are lumped together; for exam-
ple, different forest types are grouped into a singular forest
class). The predominant land cover types present within the
study domain are barren, croplands, and shrublands.

The Food and Agriculture Organization (FAO) of the
United Nations provides a global map of fraction areas
that are equipped for irrigation as part of the Global Map
of Irrigation Areas (GMIA) product, which is provided at
a 5 arcmin (0.0833◦) resolution (Siebert et al., 2005). The
GMIA product was used in this study to represent the total
irrigation-equipped area within each grid cell (see Fig. 6c).
The grid cells with high irrigated percentages correspond
well (spatially) with grid cells belonging to the land cover
type croplands in Fig. 1d.

3 Methodology and datasets

This section describes the methodology developed to imple-
ment the assimilation of SMAP soil moisture retrievals into
the land surface model as well as the various datasets utilized
in the analysis results detailed in Sect. 4.

3.1 NASA Land Information System

The NASA Land Information System (LIS) is a software
framework that facilitates high-performance computing for
land surface modeling and data assimilation purposes (Ku-
mar et al., 2006; Peters-Lidard et al., 2007). The NASA LIS
framework was used to run the Noah-MP land surface model
and to assimilate SMAP soil moisture retrievals (Fig. 2).

3.1.1 Noah-MP land surface model

Noah-MP (version 4.0.1) (Ek et al., 2003; Niu et al., 2011;
Yang et al., 2011) was run within LIS to simulate the rele-
vant land surface processes across the study domain. Noah-
MP was run on an equidistant cylindrical grid with a spatial
resolution of 0.05◦×0.05◦ at a 15 min time step. Table 1 out-
lines the Noah-MP configurations applied in this study.

Noah-MP was selected for this study due to the multilayer
representation of soil, explicit modeling of frozen soil per-
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Table 1. Selection of model components in Noah-MP version 4.0.1 as implemented within LIS (Sect. 3.1.1).

Model components Selected inputs or parameterizations

Elevation, slope, and aspect SRTM30-v2.0 (Farr et al., 2007)
Land cover MODIS (IGBP-NCEP) (Friedl et al., 2002)
Maximum albedo National Centers for Environmental Prediction (Robinson and Kukla, 1985)
Greenness National Centers for Environmental Prediction (Gutman and Ignatov, 1998)
Vegetation Dynamic vegetation option
Canopy stomatal resistance Ball–Berry method (Ball et al., 1987)
Runoff and groundwater Simple groundwater model, SIMGM (Niu et al., 2007)
Supercooled liquid water and frozen soil permeability NY06 (Niu and Yang, 2006)
Surface-layer drag coefficient General Monin–Obukhov similarity theory (Brutsaert, 2013)
Snow surface albedo Biosphere-Atmosphere Transfer Scheme (Yang and Dickinson, 1996)
Partitioning of rain and snowfall Jordan91 (Jordan, 1991)
Snow and soil temperature Semi-implicit option
Lower boundary of soil temperature Noah native option
Meteorological boundary conditions MERRA-2 (Gelaro et al., 2017), IMERG (Huffman et al., 2015)

meability (Niu and Yang, 2006), and representation of snow-
pack and soil interface processes. Noah-MP includes cou-
pled energy, water, and carbon cycle simulation routines.
The soil profile is divided into four layers with thicknesses
of 5, 35, 60, and 100 cm, respectively. Updates in the sur-
face soil moisture information are propagated to the un-
derlying soil layers based on the water diffusivity and hy-
draulic conductivity, maximum moisture threshold of soil
layers, and moisture flux between subsequent layers of the
soil. Noah-MP connects subsequent soil layers such that ex-
cessive water above saturation in a layer is moved to the
next unsaturated layer. A three-layer (maximum) snow struc-
ture is implemented above the surface soil layer to cap-
ture snowpack dynamics and the snowpack–soil interface
fluxes for areas that experience snowfall (Niu et al., 2011).
Noah-MP was forced with meteorological fields from the
Modern-Era Retrospective Analysis for Research and Ap-
plications (MERRA2, Gelaro et al., 2017) and Integrated
Multi-satellitE Retrievals for Global Precipitation Measure-
ment (IMERG; Huffman et al., 2015). The IMERG Final run
was used. It is important to note here that external irriga-
tion and groundwater pumping were not explicitly modeled
in Noah-MP. Thus, there was an information gap regarding
these two water sources in the modeled water cycle.

3.2 Data sets

3.2.1 SMAP Level3 soil moisture for assimilation

Soil Moisture Active Passive (SMAP) is a satellite mission
that follows a near-polar, sun-synchronous, 8 d repeat orbit
(O’Neill et al., 2014). The L3_SM_P Level-3 soil moisture
product is utilized in this study. It consists of daily estimates
of global soil moisture within the top ∼ 5 cm as retrieved by
the SMAP passive microwave L-band radiometer (O’Neill
et al., 2019). The soil moisture data are provided on a global,

cylindrical 36 km Equal-Area Scalable Earth Grid, Version
2.0 (Brodzik et al., 2012) ,beginning from 31 March 2015.

L-band radiometry offers all-weather, diurnal sensing of
the surface dielectric properties. The surface dielectric prop-
erties are a function of the near-surface soil moisture. Several
mitigation features directed at preventing signal contamina-
tion due to radio frequency interference (RFI) are built into
the radiometer electronics and algorithms. Quality flags are
included in the metadata to provide location specific details
such as retrieval error, retrieval uncertainty, frozen ground
conditions, presence of steep topography, and forest cover-
age (O’Neill et al., 2019).

3.2.2 In situ soil moisture measurements for model
evaluation

Ground-based soil moisture measurements were obtained
from the International Soil Moisture Network, an interna-
tional, multi-agency cooperation that provides global, in situ
soil moisture measurements for the validation of model- and
remote-sensing-based products (https://ismn.earth/en/, last
access: 13 March 2021). Station measurements from four
separate networks, (1) Ngari, (2) Naqu, (3) Maqu (Su et al.,
2011; Zeng et al., 2016), and (4) CTP-SMTMN (Yang et al.,
2013), were colocated with the land surface model grid for
evaluation of the modeled estimates. The colocation was
based on a simple arithmetic averaging of stations located
within each grid cell.

The different networks represent varying local climates,
although all networks are located at high elevations and have
relatively cold climates. The Ngari network is located in an
arid region, Naqu and CTP-SMTMN networks are situated
in a semiarid region, and Maqu experiences a relatively hu-
mid climate (Fig. 1a). The total number of stations available
for evaluation is 101. Soil moisture measured at a depth of
5 cm below the surface was compared with model-estimated
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surface soil moisture (soil layer depth= 0 to 5 cm). Measure-
ments across the Tibetan Plateau are the only publicly avail-
able soil moisture measurements within the study domain be-
tween the years 2015 and 2020.

3.2.3 ALEXI evapotranspiration for model evaluation

To study the influence of soil moisture assimilation on re-
lated geophysical fluxes, the Atmosphere-Land Exchange In-
verse (ALEXI) evapotranspiration product was used. ALEXI
estimates evapotranspiration (ET) using multi-sensor ther-
mal infrared observations (Anderson et al., 2007, 2011). A
two-source (soil and canopy) land surface model is coupled
to an atmospheric boundary layer model in order to derive
energy fluxes based on thermal imagery and insolation es-
timates derived from geostationary satellites. The thermal
infrared information-driven surface energy balance model
takes vegetation cover (obtained from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS)-based normalized
difference vegetation index) and the change in radiometric
temperature of the land surface as inputs and estimates sen-
sible, latent, and ground heat fluxes as well as evapotranspi-
ration. ET estimates are provided at 0.05◦×0.05◦ spatial res-
olution at a daily temporal scale.

3.2.4 FluxSat gross primary production for model
evaluation

FluxSat is a satellite-based product that employs machine
learning, reflectance data from MODIS, and eddy covari-
ance measurements to estimate global gross primary produc-
tion (Joiner and Yoshida, 2020). Gross primary production,
or GPP, is an important variable within the carbon cycle. It
represents the rate at which carbon is assimilated into the
plant biomass per unit area per time during photosynthesis
(Gough, 2011). GPP impacts the water cycle as plants tran-
spire water during photosynthesis, thereby acting as mois-
ture sources for the atmosphere and moisture sinks within
the soil (Philander, 2008). FluxSat is developed by train-
ing neural networks using MODIS reflectance data to up-
scale GPP obtained from eddy covariance flux tower mea-
surements (Joiner and Yoshida, 2020). FluxSat GPP was used
here to study the influence of soil moisture assimilation on
the carbon cycle.

3.2.5 GOME-2 fluorescence for model evaluation

In addition to GPP from FluxSat, solar-induced fluorescence
(SIF) retrievals were also utilized to investigate the influ-
ence of soil moisture assimilation on the resulting carbon
flux. Joiner et al. (2013) retrieved chlorophyll fluorescence
using observations near the 740 nm emission peak gathered
by the Global Ozone Monitoring Experiment 2 (GOME-2)
spectrometer aboard the European meteorological (MetOp)
satellites. Satellite-based fluorescence retrievals can be ex-
ploited to infer the functional status of vegetation (Van der

Tol et al., 2014). Chlorophyll excitation induced by solar en-
ergy results in fluorescence being generated during photo-
synthesis. Carbon is then taken in by vegetation during pho-
tosynthesis. Considering the link to photosynthesis, Joiner
et al. (2014) used SIF as an analog for GPP and highlighted
the conformity within their phenologic responses. Joiner
et al. (2014) also examined the seasonal cycles of modeled
GPP in conjunction with GOME-2 fluorescence retrievals
to track seasonal patterns in photosynthesis. The GOME-2
satellite fluorescence data are available at a spatial resolution
of 0.5◦× 0.5◦ at a monthly timescale and include estimated
errors on the order of 0.1–0.4 mW m−2 nm−1 sr−1.

3.3 Experimental framework

Three types of model runs were implemented in LIS (Fig. 2).
Details of each of the three types of model runs are provided
below.

3.3.1 Nominal replicate (NR)

Noah-MP was run for 5 years from 1 January 2010 to 31 De-
cember 2014 using a single, nominal replicate (NR) to pro-
vide initial soil moisture conditions for the open-loop and
data assimilation runs (discussed further below). The NR
simulation was also utilized to develop the model cumulative
distribution functions (CDFs) that were later used for CDF
matching during the assimilation run discussed in Sect. 3.3.3.

3.3.2 Open loop (OL)

The OL run represents a model-only run; i.e., the Noah-MP
model was run in an ensemble configuration without any ex-
ternal observations assimilated. The OL run serves as a base-
line for Noah-MP’s land surface modeling capability across
South Asia for eventual comparison with the DA run detailed
in Sect. 3.3.3.

The NR restart file provided the initial conditions for the
OL run which started on 1 January 2015 and extended to
30 September 2020 (Fig. 2). The NASA Land Data Toolkit
(LDT; Arsenault et al., 2018) was used to upscale to a 20-
replicate ensemble from the single replicate NR restart file.
The number of replicates was selected through an ensem-
ble analysis; the ensemble standard deviation (as a function
of time) was studied as the number of replicates in the en-
semble was increased from 5 to 50. It was found that as
the number of replicates increased beyond 15, the ensemble
standard deviation reached an asymptotic value. Therefore, a
20-replicate ensemble was selected to represent a low-rank
approximation of the probability distribution that reasonably
captures the true uncertainty in the model estimates.

Boundary conditions such as air temperature and radia-
tive fluxes (i.e., incident shortwave and longwave radiation)
were provided by MERRA2. Boundary condition (forcing)
perturbations used by Kwon et al. (2019) were applied while
propagating the ensemble forward in time (see Table B1).
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Figure 2. Overview of the soil moisture assimilation methodology implemented within the NASA Land Information System using the
ensemble Kalman filter.

Two different sets of precipitation datasets were used to drive
Noah-MP: (i) MERRA2 (Gelaro et al., 2017) and (ii) Global
Precipitation Measurement (GPM) IMERG (Huffman et al.,
2015). Usage of two different boundary condition (precipi-
tation) sources was motivated by efforts to differentiate be-
tween the influence of model physics versus boundary con-
ditions on the prognostic variables, e.g., soil moisture. Com-
parison of the results obtained from MERRA2-forced versus
IMERG-forced OL and DA experiments aided in understand-
ing the influence of boundary conditions and the effect of
SMAP retrieval assimilation on model SM estimation.

The OL simulation from 1 January 2015 to 30 Septem-
ber 2015 served as the model ensemble spin-up to achieve
realistic uncertainty in soil moisture estimates. The results
detailed in Sect. 4 are computed from the OL and DA ex-
periments for water years (WYs) 2016 to 2020. The water
year demarcation used in this study starts in October of the
preceding year (e.g., 2015) and ends in September of the rel-
evant year (e.g., 2016).

3.3.3 Data assimilation (DA)

SMAP SM retrievals are available from 31 March 2015
onwards. In accordance with the availability of SMAP re-
trievals, the DA run started on 1 April 2015 and extended
to 30 September 2020. The ensemble Kalman filter (EnKF)

assimilation algorithm was utilized to assimilate the SMAP
SM retrievals into the Noah-MP-modeled estimates.

The EnKF algorithm consists of two main steps: (i) a prop-
agation step and (ii) an update step. Noah-MP is the non-
linear forward model used to propagate the prognostic state
vector (yt ) forward in time as yt (x)= f (yt−1(x),α), where
f (·) is the Noah-MP model, α is a vector of model param-
eters, t is time, and x ∈X defines the spatial domain. Equa-
tion (1) defines the formulation of the update step applied
to the a priori state estimate (for each replicate) based on
the difference between the model estimate and the observed
value:

y+t (x)= y−t (x)+Kt (x)
(
zt (x)+ vt −H

(
y−t (x)

))
, (1)

where Kt (x)= Cyt zt (x)
[
Czt zt (x)+Cvv

]−1 (2)

such that y+t (x) is the a posteriori soil moisture value at time
t , y−t is the a priori soil moisture estimate at time t , Kt (x) is
the Kalman gain at time t , zt (x) is the SMAP soil moisture
retrieval at time t , vt is the SMAP soil moisture retrieval error
at time t such that vt ∼N

(
0,σ 2

vv
)
,H(.) is the linear observa-

tion operator, Cyt zt (x) is the time-varying cross-covariance
matrix between the a priori state errors and the predicted ob-
servation errors, Czt zt (x) is the time-varying predicted obser-
vation error covariance matrix, and Cvv is the time-invariant
SMAP soil moisture retrieval error covariance matrix.
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The difference between the observation (plus observation
error) and the mapped a priori model state estimate is known
as the innovation, Int . The normalized innovation (NI t ) is
an effective diagnostic tool that aids in the diagnosis of the
assimilation framework and the origin of biases (Buehner,
2010). Equation (3) provides the normalized innovation for-
mula for each replicate as

NI t (x)=
zt (x)+ vt −H

(
y−t (x)

)√
Czt zt (x)+Cvv

. (3)

The numerator in Eq. (3) equals Int , which is then nor-
malized by the square root of the sum of Czt zt and Cvv. In
an optimal DA system, the normalized innovations should
exhibit a standard normal distribution (NIt ∼N (0,1)). To
compute Czt zt and Cvv, the prognostic state and observa-
tion error standard deviation was taken equal to 0.04 m3 m−3

(O’Neill et al., 2014). Test simulations were conducted to as-
certain the most suitable model and SMAP soil moisture re-
trieval error values (results not shown). Model error standard
deviation was increased from 0.02 to 0.10 m3 m−3, while the
SMAP error standard deviation was kept fixed at the stan-
dard value used in literature, i.e., 0.04 m3 m−3. Similarly, the
model error was fixed, while the SMAP soil moisture error
standard deviation was increased. Based on the test results,
it was noted that the smallest bias and RMSE values were
achieved for model and SMAP soil moisture retrieval error
standard deviations equal to 0.04 m3 m−3. It is worth noting
here that the EnKF is expected to behave suboptimally given
the nonlinearity of the Noah-MP model in conjunction with
the non-Gaussianity of the SMAP retrieval errors. However,
the exploration of the NIt sequence is a worthwhile exercise
in an effort to better diagnose the behavior of the assimilation
framework used in this study.

As part of the experimental matrix, the DA experiments
were implemented using two different approaches. First, a
cumulative distribution function (CDF) matching technique
(Reichle and Koster, 2004) was used for bias correction of
the SMAP soil moisture retrievals, herein referred to as DA-
CDF. Monthly CDFs of the SMAP soil moisture retrievals
and the Noah-MP-modeled SM were developed using the
NASA Land Data Toolkit. The monthly CDFs were then used
to map the SMAP SM retrievals into the Noah-MP-modeled
soil moisture space prior to assimilation. The second ap-
proach employed no bias correction applied to the SMAP
SM retrievals using CDF matching, and the raw SMAP SM
was assimilated into Noah-MP, herein referred to as DA-
NoCDF. The relative systematic errors between SMAP SM
and modeled Noah-MP SM are ignored during DA-NoCDF
runs. Since the SMAP retrievals being assimilated represent
the top∼5 cm of surface soil, the soil moisture in the topmost
soil layer is the model state variable considered during assim-
ilation. The OL and DA runs were then compared against the
evaluation datasets to analyze the influence of SM assimila-
tion on the modeled states in Sect. 4.

4 Experimental results

Model estimates for water years (October to September)
2016 to 2020 are used to compute the results presented in
this section. Water years were used rather than Julian years
due to the former’s hydrologic suitability for the state vari-
able under consideration, i.e., soil moisture (SM).

4.1 Evaluation using in situ measurements

In situ SM measurements available across the Tibetan
Plateau were used to evaluate the modeled SM estimates.
In situ measurements were collected at the point scale,
whereas the Noah-MP grid size equaled 0.05◦× 0.05◦

(∼5.5 km×∼5 km at midlatitudes). Some grid cells contain
multiple stations located within the 0.05◦× 0.05◦ area. If
more than one station was located within a single grid cell,
an average of the station measurements was used for compar-
ison against the modeled SM estimates. Therefore, the total
number of grid cells suitable for evaluation equaled 78 based
on a total of 101 stations.

4.1.1 Time series evaluation

Figure 3 presents the SM time series estimated by OL, DA-
CDF (i.e., CDF-matched), and DA-NoCDF (i.e., no CDF
matching) and their comparison with the in situ measure-
ments at two grid cells from two different networks. These
example sites were selected because they reflect the perfor-
mance of SM assimilation across two different climate zones.
The Ngari network test site (Fig. 3a and b) represents a cold
and arid climate, while the Maqu network test site (Fig. 3c
and d) is located in a cold and humid climate.

For the Ngari network test site, MERRA2-forced mod-
eled estimates overestimate the SM for all model simula-
tions, Fig. 3a. For MERRA2, the DA-NoCDF run has the
lowest RMSE, while the DA-CDF run shows the highest
RMSE. In addition, DA-NoCDF captures the measured val-
ues within the mean ± standard deviation (µ±σ ) range af-
ter 8 September 2016, while the CDF-matched SMAP re-
trievals move the DA value in the opposite direction to the
in situ measurements. MERRA2-forced simulations exhibit
improved consistency as the SM magnitude decreases with
the approaching winter months. IMERG exhibits much bet-
ter temporal consistency with the measurements throughout
the study period shown in Fig. 3b. For IMERG, the DA-CDF
run has the lowest RMSE, while the DA-NoCDF run has the
highest RMSE. However, even the largest RMSE difference
(DA-CDF versus DA-NoCDF) is less than 0.004 m3 m−3, in-
dicating the limited influence of assimilation at this location.
The modeled values show localized underestimation as well
as overestimation during different periods in the time series.
For the cold and arid test site, IMERG exhibits lower RMSE
as compared to the MERRA2 boundary condition estimates
(Fig. 3a and b).
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Figure 3. Comparative time series of open loop (OL)- and data assimilation (DA)-estimated surface (top 5 cm) soil moisture. The solid
line represents the ensemble mean, whereas the shaded areas represent ±1 standard deviation (σ ) across the full ensemble. DA-CDF is
assimilation with CDF matching, DA-NoCDF is assimilation without CDF matching, TPO is the Tibetan Plateau Observatory measurements,
SMAP-CDF is the SMAP retrieval value after CDF matching, and SMAP-NoCDF is the original SMAP retrieval value.

Figure 3c and d present the Maqu test site time series for
the MERRA2-forced and IMERG-forced simulation runs, re-
spectively. The MERRA2 runs display better temporal con-
sistency with the measurements as compared to the IMERG
runs. In Fig. 3c, the DA-NoCDF run exhibits the lowest
RMSE, while the OL run has the highest RMSE magnitude.
However, the differences between the RMSE magnitudes
for the different MERRA2 runs are minimal (i.e., less than
0.002 m3 m−3). In Fig. 3d, for IMERG the lowest RMSE is
computed for the DA-NoCDF run, while the OL has the high-
est RMSE magnitude. However, the difference in the RMSE
magnitudes is higher than the values in Fig. 3c. There is a

negative bias (underestimation) apparent in all the IMERG
runs after 1 August 2018. For the cold and humid test site,
MERRA2 displays better performance as compared to the
IMERG boundary condition estimates (Fig. 3c and d).

Figure 3 shows the presence of biases in the modeled es-
timates and SMAP SM retrievals with respect to the in situ
measurements. Relative to MERRA2, IMERG-based SM es-
timates have lower RMSE for the sample location in the
Ngari network and higher RMSE for the location in the
Maqu network. This indicates the importance of precipitation
boundary conditions in terms of SM estimation across loca-
tions of varying climatology (i.e., arid versus humid). The
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magnitude of state update for DA-NoCDF is generally larger
than DA-CDF. However, the magnitude of the update incre-
ments is limited by the model parameters (such as wilting
point and maximum SM capacity) and model and retrieval
error assumptions (via ensemble uncertainty).

4.1.2 Statistical analysis

Relevant statistics were computed using all the measure-
ments (from all the networks) available from October 2015
to September 2020 in conjunction with the corresponding
Noah-MP-modeled estimates. Table 2 presents mean bias,
RMSE, unbiased RMSE, and correlation (R) computed for
the OL-, DA-CDF-, and DA-NoCDF-estimated SM. The in-
dividual statistics were calculated for each grid cell sep-
arately and were then averaged to represent the domain-
averaged statistical performance of the modeled SM. The
total number of grid cells used for comparison is equal to
78. A majority of the Ngari, Naqu, and CTP-SMTMN net-
work stations are situated at locations where SMAP L3 re-
trievals have limited availability (Figs. 1a and 6f). These
high-elevation locations are completely frozen or partially
frozen during a considerable part of the year leading to limi-
tations in the applicability of the tau-omega algorithm used to
retrieve soil moisture information from the SMAP-observed
brightness temperatures (O’Neill et al., 2014). Given that lit-
tle or no assimilation occurs over several stations, several
of the statistics computed for the OL-, DA-CDF-, and DA-
NoCDF-estimated soil moisture are quite similar.

MERRA2 and IMERG exhibit similar relative results; i.e.,
the lowest mean bias, RMSE, unbiased RMSE, and relative
RMSE are computed for the DA-NoCDF run. Similarly, the
highest correlation is also observed for the DA-NoCDF run.
For MERRA2, in terms of mean bias, the OL/DA-CDF and
DA-NoCDF intersect at the 95 % confidence interval limit
(0.070± 0.012 versus 0.059± 0.012 m3 m−3). Similar val-
ues are computed for RMSE (0.130± 0.007 versus 0.122±
0.008 m3 m−3) and unbiased RMSE (0.066± 0.004 versus
0.060±0.003 m3 m−3). The IMERG mean bias, RMSE, and
unbiased RMSE, however, overlap within the 95 % confi-
dence interval limits (columns 5–7 in Table 2).

Relative RMSE is calculated as the ratio of the RMSE to
the standard deviation of the state variable (SM). The median
relative RMSE highlights the relative accuracy of the major-
ity of the grid cells. A relative RMSE of less than 0.7 indi-
cates medium or high goodness of fit depending on the state
variable (McCuen, 2016). In terms of comparative values, the
DA-NoCDF runs for both MERRA2 and IMERG show lower
median relative RMSE magnitudes than the OL and DA-CDF
estimates. Overall, it is observed that the IMERG statistical
values are lower than the corresponding MERRA2 values,
thereby indicating better performance of the IMERG-forced
model estimates as compared to MERRA2 across the Tibetan
Plateau.

4.2 Spatial analysis of OL versus DA

Figure 4 shows the difference in spatial patterns of the SM es-
timated by the OL and the DA-CDF/DA-NoCDF simulations
during the summer (April to September) and winter (October
to March) months. This temporal grouping is motivated by
the precipitation climatology (i.e., summer monsoon versus
winter westerlies) of the region (Dhar and Nandargi, 2003),
which also influences the irrigation patterns in the region.
Two main crop seasons are noted across South Asia, i.e., the
summer (Kharif) crop and the winter (Rabi) crop (Biemans
et al., 2016). Precipitation, snowmelt, and groundwater ex-
traction are the main sources of river runoff that provides
water for irrigation (Armstrong et al., 2019).

The magnitudes of DA minus OL values shown in the
summer maps are relatively small compared to the magni-
tudes in the winter maps for all DA experiments. This feature
suggests that there is a relatively higher consistency between
the OL and DA-CDF/DA-NoCDF runs (i.e., smaller DA mi-
nus OL magnitudes) during the summer months when the
bulk of the precipitation occurs, especially in the lower lat-
itudes, as compared to the winter months. A spatial feature
apparent in Fig. 4b, d, f, and h is the occurrence of large dif-
ferences in areas surrounding the major rivers in the lower
latitudes

(
.31◦N

)
. The location of these large differences

indicates the influence of irrigation on the water budget. Fig-
ure 6c shows the map of the total percentage of irrigated area
per grid cell that corresponds well with the cropland land
cover type shown in Fig. 2d. These three maps highlight the
increase in model-estimated SM by the assimilation of raw
(i.e., no CDF matching applied) SMAP retrievals in the irri-
gated cropland grid cells. Further, comparing the MERRA2
maps (Fig. 4a, b, e, and f) with the IMERG maps (Fig. 4c, d,
g, and h), it appears that the influence of the boundary con-
ditions used (MERRA2 versus IMERG) is damped by more
dominant influencing factors such as anthropogenic irriga-
tion and seasonal precipitation. In other words, similar spatial
patterns in DA minus OL are visible in both the MERRA2-
and IMERG-forced model estimates.

The DA-NoCDF simulation exhibits higher differences
with the OL relative to the DA-CDF simulation. There-
fore, Figs. 5 and C1 were generated to further dissect the
spatial patterns in these differences with respect to land
cover and soil texture. Figure 5 presents the OL- and
MERRA2-forced DA-NoCDF joint probability density func-
tions (PDFs) (shown here as fractions of total land cover type
grid cells) for the winter months of the 2016 water year. The
bar graph in Fig. 5h provides the percentage of grid cells for
each land cover type that have at least one instance of SMAP
retrieval assimilation. The highest percentage is observed for
grid cells belonging to the cropland type.

Linear regression coefficients included in all the panels
of Fig. 5 represent the slope between the two axes. If the
slope is > 1, then, in general, the variable on the y axis (here
DA-NoCDF) has greater soil moisture magnitudes than the
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Table 2. Statistics of OL and DA soil moisture estimates (2015 to 2020) computed with respect to the soil moisture measurements across
the Tibetan Plateau. All values are in units of cubic meter per cubic meter (m3 m−3) unless otherwise indicated. Mean refers to the average
of all the stations included within the network. OL is open loop, DA-CDF is CDF-matched SMAP retrieval assimilation, and DA-NoCDF is
data-assimilated estimates without CDF matching.

Tibetan Plateau MERRA2 IMERG

statistic OL DA-CDF DA-NoCDF OL DA-CDF DA-NoCDF

Mean bias 0.070 0.070 0.059 0.031 0.033 0.025
Confidence interval95 % limits – bias 0.012 0.012 0.012 0.011 0.011 0.011
Mean RMSE 0.130 0.130 0.122 0.106 0.106 0.100
Confidence interval95 % limits – RMSE 0.007 0.007 0.008 0.008 0.008 0.008
Mean unbiased RMSE 0.066 0.066 0.060 0.066 0.064 0.061
Confidence interval95 % limits – unbiased RMSE 0.004 0.004 0.003 0.004 0.004 0.004
Median relative RMSE [–] 1.873 1.873 1.794 1.507 1.507 1.480
Mean R 0.295 0.300 0.370 0.327 0.321 0.447

Figure 4. Differences between the mean soil moisture estimated by the OL and DA simulations during the summer (April to September 2016)
versus the winter months (October 2015 to March 2016) highlight (1) the unmodeled irrigation signal across croplands and (2) the relatively
higher influence of assimilation on soil moisture estimates during the winter period as compared to the summer period. DA-CDF is the
assimilation of CDF-matched SMAP retrievals, and DA-NoCDF is assimilation without CDF matching of SMAP retrievals.

x axis (here OL). Forest (Fig. 5a), savannas (Fig. 5c), and
cropland (Fig. 5e) land cover types show > 1 linear regres-
sion coefficients, indicating that, in general, the SMAP as-
similation increases the soil moisture magnitude across grid
cells belonging to these land cover types. Interesting to note
is that the percentage of grid cells with assimilation is quite
different for these three land cover types (forest= 10 %, sa-
vannas= 40 %, and cropland= 80 %). It is difficult to as-
certain the exact cause of the generally higher soil mois-
ture magnitudes for the DA-NoCDF estimates relative to the
OL for pixels included in savannas due to the small sample
size. Approximately 1.4 % of the total grid cells included in
the study domain belong to the land cover type savannas of
which only 40 % of the pixels have SMAP retrievals avail-
able for assimilation. For shrublands (Fig. 5b), grasslands

(Fig. 5d), urban/built-up (Fig. 5f), and barren (Fig. 5g) land
cover types, the linear regression coefficients are < 1, indi-
cating that, in general, the SMAP assimilation decreases the
soil moisture magnitude across grid cells belonging to these
land cover types. The lowest regression coefficient is com-
puted for the urban/built-up land cover type.

The correlation coefficients for savannas, croplands and
urban/built-up categories are ≤0.75 and are lower than for
the other land cover types, which suggests that SMAP SM as-
similation alters the SM estimates across grid cells belonging
to these three land cover types the most (note that if the SM
assimilation caused no change, the OL and DA SM estimates
would be nearly identical, and hence the correlation coeffi-
cient between the two would equal 1.). The lowest correlation
is computed for the urban/built-up land cover type, of which
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Figure 5. Comparison of OL- versus DA-NoCDF-estimated soil moisture according to the dominant land cover types present within the
study domain. The OL and DA-NoCDF joint PDFs (presented here as fractions of grid cells) are computed from the LIS runs with MERRA2
boundary conditions during the winter months of WY 2016.

70 % of the grid cells underwent assimilation; however, this
land cover type only represents 0.4 % of the total domain
grid cells (Table A1). Similar results were observed for the
IMERG-forced simulation as well (results not shown). The
OL- and MERRA2-forced DA-NoCDF joint PDFs catego-
rized with respect to soil texture types did not yield any dis-
tinctive patterns and are included in Appendix C for refer-
ence.

4.3 Irrigation impact

The unavailability of in situ measurements across differ-
ent land cover types limits a direct validation of the DA-
CDF- and DA-NoCDF-estimated soil moisture across the
lower part of the study domain. The influence of irrigation
is analyzed through an indirect approach using the GMIA
maps of irrigated areas. In South Asia, irrigation is imple-
mented through routing of the (i) river runoff (contributed
by snowmelt and precipitation), (ii) discharge from storage
reservoirs such as dams, and (iii) water pumped from sub-
surface aquifers, using a network of canals and tube wells
(Chambers, 1988). The GMIA total irrigation-equipped area
map in Fig. 6e visualizes this practice as high magnitudes are
observed in the areas surrounding the major rivers in Pak-
istan, India, and Bangladesh.

Irrigation is not explicitly modeled in the Noah-MP land
surface modeling environment. Therefore, to investigate the
effect of SM assimilation on irrigated areas in further detail,
the maps of temporal mean normalized innovation (NI) were
compared against the GMIA total irrigation-equipped area
map. NI (detail in Sect. 3.3.3) represents the difference be-
tween the observations (i.e., SMAP SM retrievals) and the
modeled a priori estimates. A positive NI value indicates that

the a priori state estimate is less than the observed value,
while a negative NI value indicates that the a priori state es-
timate is greater than the observed value. For an unbiased,
linear, optimal assimilation framework, the NI sequence ex-
hibits a mean of 0 and a standard deviation equal to 1 over
time. Therefore, high positive or negative NI values reveal
the presence of bias either in the model estimates or the as-
similated retrievals.

A number of distinct features can be observed in the
NI maps presented in Fig. 6. MERRA2 DA-CDF and DA-
NoCDF and IMERG DA-NoCDF spatial patterns show pos-
itive NI values in Pakistan (Indus Basin) and the areas sur-
rounding the Ganges River in India (Fig. 6a, b, and e). Com-
paring the location of these positive NIs with the GMIA to-
tal irrigation-equipped area map (Fig. 6c), it is apparent that
the SMAP retrievals have higher SM magnitudes across ir-
rigated areas. SMAP retrievals implicitly contain the effects
of irrigation and subsequently transfer that information to the
modeled estimates via assimilation. Hence, the water budget
across these locations was corrected as information related
to an unmodeled soil moisture source was effectively incor-
porated into the land surface model. Figure 6g and h show
the general increase in mean NI magnitudes during the win-
ter and summer months, respectively, as the percentage of
irrigation-equipped area increases. NIs computed from the
MERRA2 and IMERG DA-CDF runs, however, do not dis-
play this pattern.

Further comparing the MERRA2 and IMERG DA-
NoCDF NI maps with the water storage trends identified by
Fig. 1 in Girotto et al. (2017) and Fig. 2 in Loomis et al.
(2019), the locations in the northwestern part of India that
show negative water storage trends (resulting from ground-
water pumping for purposes of irrigation) are spatially con-
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Figure 6. The spatial patterns in normalized innovation (NI) maps present the results of assimilating CDF-matched (DA-CDF) versus raw
SMAP SM retrievals (DA-NoCDF) in (a), (b), (d), and (e). Grey areas represent grid cells where no assimilation occurred due to missing
SMAP SM retrievals. The improved spatial correlation with respect to irrigation-equipped area (Rirr) for both of the DA-NoCDF maps (c and
d) highlights the correction of SM biases due to an unmodeled hydrologic process, i.e., irrigation. Panels (g) and (h) underscore the increase
in NI magnitude for both DA-NoCDF (MERRA2 and IMERG) simulations as the total irrigation-equipped area increases for summer and
winter months, respectively. Panel (c) presents the total percentage of irrigated area per grid cell developed from the Global Map of Irrigated
Areas (GMIA) dataset provided by the Food and Agriculture Organization. Panel (f) shows the percentage of total days in the study period
on which SMAP retrievals were assimilated.

sistent with high positive NI values. The additional water in-
troduced into the hydrologic cycle via pumping from subsur-
face aquifers is captured by the SMAP SM retrievals and is
then used to condition the modeled estimates via assimila-
tion.

The spatial patterns in NI show different magnitudes (and
even different signs) at some locations for DA-CDF ver-
sus DA-NoCDF. The visible difference in NI signs is due
to the implementation of CDF matching of the assimilated
retrievals during the DA-CDF simulation. If the model esti-
mates are biased, traditional data assimilation generally does
not result in optimal estimates (Zhang and Moore, 2015).
Mapping the observation CDF to a biased model CDF would
ultimately transfer the model bias into the CDF-matched ob-
servations. Therefore, in cases where the model estimates are
inherently biased, assimilation of CDF-matched retrievals
could update the a priori state estimates in the wrong direc-
tion. This phenomenon is apparent in IMERG DA-CDF ver-
sus IMERG DA-NoCDF NI maps across the irrigated areas
and the Tibetan Plateau.

One interesting pattern to note is the presence of highly
negative NI values across the high-elevation areas (Hindu
Kush mountains) in the western part of the domain in the DA-

NoCDF maps (Fig. 6b and e). Comparing the DA-NoCDF NI
maps with the DA minus OL map in Fig. 4, it is apparent that
the high NI values did not manifest into high DA minus OL
values. A high NI magnitude does not necessarily lead to a
subsequently high update. If the model state error variance
is quite low, the denominator in Eq. (3) will be a small value
that can then result in a large NI if the nominator (innovation)
is relatively large. However, a low model state error variance
results in a reduced Kalman gain (due to Cyt zt ), and hence,
the computed update will be relatively small.

High NI magnitudes are observed in the Indus Basin, even
though assimilation occurred during< 20 % of the total days
(in the study period) at these locations. This suggests that
the quantitative effect of SMAP SM retrieval assimilation is
not primarily based on the assimilation frequency but rather
the large differences between the SMAP and a priori esti-
mates. The DA-CDF versus DA-NoCDF results seen here are
similar to the experiments conducted by Kumar et al. (2015)
to evaluate SM retrievals across irrigated areas. Their study
showed that bias correction of observations via CDF match-
ing can lead to the removal of the information pertaining to
the unmodeled processes from the observations when the es-
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timation bias stems from the absence of such processes in the
model.

4.4 Influence on water and carbon cycle

SM is an important component of the water cycle. It is, there-
fore, expected that changes in the SM estimates would trans-
late into changes in hydrologic variables that are dependent
on SM such as evapotranspiration (ET). ET is composed of
evaporation from the soil and vegetation as well as transpi-
ration from the vegetation. While ET is used to represent the
water cycle in this section, gross primary production (GPP)
and solar-induced chlorophyll fluorescence (SIF) are utilized
as vegetation proxies that represent the carbon cycle.

In order to diagnose the influence of SMAP SM assimi-
lation on ET, the mean annual ET from the MERRA2- and
IMERG-forced OL, DA-CDF, and DA-NoCDF simulations
is analyzed. Figure 7 highlights the improved spatial consis-
tency (relative to ALEXI ET) of the DA-NoCDF estimates
(Fig. 7d and g) compared to the OL (Fig. 7b and e) and DA-
CDF ET (Fig. 7c and f). The spatial correlation of mean an-
nual ET calculated with respect to the ALEXI ET for the
MERRA2 runs increases from 0.54 for the OL to 0.56 for
DA-CDF and 0.64 for the DA-NoCDF estimates. Similarly,
there is an increase in the spatial correlation of the IMERG
runs from 0.68 for the OL to 0.69 and 0.75 for the DA-CDF
and DA-NoCDF estimates, respectively. The DA-NoCDF es-
timates for both sets of boundary conditions show relatively
higher spatial correlation with the ALEXI ET, particularly
in the Indus River basin, where surface irrigation is signif-
icant. All three of the MERRA2 estimates show higher ET
magnitudes across the Tibetan Plateau as compared to the
IMERG runs, which corresponds well with the higher pos-
itive bias computed in the MERRA2-forced SM estimates
(see Table 2). All of the IMERG simulations exhibit bet-
ter overall spatial correlation with ALEXI ET relative to the
MERRA2 runs.

Comparing the spatial patterns in ET magnitudes with the
GMIA irrigation-equipped area map (Fig. 6c), it can be seen
that the mean ET magnitudes across irrigated areas, particu-
larly across the Indus Basin, increased for DA-NoCDF sim-
ulations (Fig. 7d and g) relative to the OL. However, this fea-
ture is absent in the DA-CDF simulations (Fig. 7c and f).
The spatial patterns observed in the DA minus OL SM (see
Fig. 4f and h) are similarly shown in the ET maps (Fig. 7d
and g) in terms of higher ET magnitudes observed for grid
cells belonging to the cropland land cover type.

Further investigation of this feature highlighted the cor-
rection of SM and ET in irrigated areas via SMAP assim-
ilation. It is expected that as the irrigation percentage in-
creases, the surface SM would also increase. The increase
in SM, in general, translates into an increase in ET. Fig-
ure 8 shows the increase in ALEXI ET as the percentage of
irrigated area (Fig. 6c) in each grid cell increases. In con-
trast, the OL and DA-CDF estimates do not capture this be-

havior and, alternatively, show declining ET values for re-
gions with 40 % or more total irrigation-equipped area when
using the MERRA2 boundary conditions. The IMERG OL
and DA-CDF estimates show approximately the same de-
creasing trend. However, the DA-NoCDF estimates corrected
the decreasing magnitudes for grid cells with > 40 % total
irrigation-equipped area for both sets of precipitation bound-
ary conditions.

The ALEXI ET dataset serves as an independent evalua-
tion source for OL, DA-CDF, and DA-NoCDF ET estimates.
The ET magnitudes for all the modeled runs are lower than
the ALEXI ET, which could be attributed to the absence
of relevant processes (e.g., surface irrigation) in Noah-MP,
whereas the ALEXI product implicitly includes this infor-
mation. Although ALEXI is a modeled dataset, it is based on
remote sensing data and has been shown to detect irrigation
(Knipper et al., 2019). These results suggest assimilation of
SMAP SM retrievals in the absence of CDF matching can
help correct for some of the missing physics in the Noah-MP
land surface model.

Figure 9a, b, and c were created to further dissect the in-
fluence of SMAP assimilation on the water and carbon cycle
over irrigated regions. The test site selected contains 88 % to-
tal irrigation-equipped area and belongs to the cropland land
cover type. Noah-MP divides the soil profile into four lay-
ers. Figure 9a shows the monthly temporal variation in near-
surface (first soil layer, L1) and root-zone (second soil layer,
L2) soil moisture at this location. The first (top) soil layer
(L1) is 5 cm deep, while the second layer (L2) extends 35 cm
below that. L1 estimates for all simulations exhibit a seasonal
variation in the surface SM, with the major peak occurring in
Feb and a secondary peak in August. The DA-NoCDF runs
for both sets of boundary conditions depict a higher seasonal
amplitude as compared to the OL. Comparing the L1 val-
ues with the L2 values, the damping of the seasonal variation
amplitude is apparent in L2; i.e., the influence of assimilation
on surface SM is not proportionally translated into the root-
zone SM. However, compared to the OL, the DA-NoCDF
estimates for L2 do exhibit seasonal variation (albeit to a
limited extent). The DA-CDF estimates were quite similar
to the OL L1 and L2 estimates and are thus excluded from
the graph for visual clarity. Figure 9b highlights the transla-
tion of L1 SM temporal patterns into ET estimates. ALEXI
ET displays much higher magnitudes of ET throughout the
year. The DA-NoCDF simulations exhibit better consistency
with ALEXI ET as compared to the OL and DA-CDF ET for
both sets of precipitation boundary conditions.

Figure 9c presents the impact of SM on vegetation in terms
of gross primary production (GPP) and solar-induced fluo-
rescence (SIF). Compared to the FluxSat GPP (Sect. 3.2.4),
the magnitude of OL and DA (Noah-MP) GPP observed at
this location is relatively small. However, similar seasonal
variability (not magnitude) is observed in all the Noah-MP
simulations similar to the FluxSat GPP (peaks in Feb/Mar
and Aug/Sep). The OL, DA-CDF (not shown in figure), and
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Figure 7. Comparative maps of modeled evapotranspiration (ET) with respect to the ALEXI evapotranspiration estimates (Sect. 3.2.3) for
WY 2016. DA-NoCDF maps show relatively higher spatial consistency with ALEXI ET, particularly in areas surrounding the major rivers
in lower latitudes (< 30◦). The correlation values (RET) indicate the spatial consistency between annual mean ET estimated by ALEXI and
the corresponding Noah-MP simulation.

Figure 8. The magnitude of average evapotranspiration (ET) increased as the percentage of irrigated area within the grid cell increased.

DA-NoCDF GPP estimates exhibit high similarity and do not
differ significantly throughout the year. A possible explana-
tion for this behavior is that vegetation transpiration is more
dependent on root-zone SM than surface SM. In Fig. 9b, it
is seen that the change in near-surface (L1) SM is largely
modulated in terms of root-zone (L2) SM. In general, root-
zone SM tends to maintain low variation throughout the year.
Thus, it is expected that assimilation of surface SM retrievals
may not significantly impact the dynamic vegetation.

FluxSat GPP and Noah-MP GPP were compared with re-
spect to dominant land cover types, and it was observed
that the SMAP assimilation did not influence the vegeta-
tion within any of the land cover type grid cells to a high
extent (Fig. 10). Even the highest percent improvement in
the RMSE, computed for savannas (normalized information
content (NIC)= 4.5 %; see Appendix D for formula) during
the summer months, was < 5 %. The correlations between
GOME-SIF and the different Noah-MP-modeled estimates
are similar in magnitude and do not highlight any significant
influence of SMAP assimilation (OL versus DA-NoCDF)

with respect to individual land cover types. Comparing these
results to the vegetation optical depth (VOD) assimilation
implemented by Kumar et al. (2020), it seems that the mod-
eled GPP estimates are more improved by assimilating VOD
than surface SM. In the context of land surface modeling with
Noah-MP, surface SM exhibits a weaker influence on GPP as
compared to VOD. This is because SM has an indirect effect
on GPP, whereas assimilation of VOD has a direct impact
on plant biomass and, hence, on GPP. Kumar et al. (2020)
found that SM had a higher control over ET and GPP during
moisture-limited conditions.

5 Discussion

Statistics included in Table 2 show the relatively better per-
formance of DA-NoCDF estimates as compared to the OL
and DA-CDF estimates via evaluation with in situ soil mois-
ture measurements across the Tibetan Plateau. Direct com-
parison of SMAP soil moisture retrievals with in situ mea-
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Figure 9. Influence of SMAP soil moisture (SM) assimilation on an irrigated location is assessed through soil moisture of successive soil
layers (L1 and L2), evapotranspiration (ET), and the corresponding behavior of the dynamic vegetation. ALEXI ET (Sect. 3.2.3), FluxSat
gross primary production (FS GPP; Sect. 3.2.4), and GOME solar-induced chlorophyll fluorescence (SIF; Sect. 3.2.5) are used as evaluation
datasets. (a) L1 is layer 1 near-surface SM, and L2 is layer 2 root-zone SM. Noah-MP-modeled ET exhibits similar temporal patterns to
the near-surface SM (L1); however, root-zone (L2) SM and GPP are not correspondingly modulated. DA-CDF is assimilation with CDF
matching, and DA-NoCDF is assimilation without CDF matching.

Figure 10. (a) Normalized information content (NIC) with respect to RMSE (RMSEOL versus RMSEDA−NoCDF) is computed through
comparison with FluxSat gross primary production (FS GPP). (b) Correlation with GOME solar-induced chlorophyll fluorescence (SIF)
depicts the spatiotemporal consistency between the Noah-MP-modeled GPP and GOME SIF. Data from the summer months of water years
2016–2019 were used to compute the metrics.
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surements yielded higher relative RMSE than all other es-
timates (Table S1 in the Supplement). SMAP soil moisture
retrievals also had the lowest mean bias and RMSE. How-
ever, only 30 grid cells were available for comparison with in
situ measurements as SMAP data have extensive gaps across
the Tibetan Plateau due to frozen soil conditions. SMAP re-
trievals are provided on a 36 km EASE Grid and contain
frequent data gaps in space and time. The Noah-MP model
was run at a relatively fine resolution of 0.05◦ (∼ 5 km) and
provides continuous data without any spatiotemporal gaps
(along with lower relative RMSE values). Therefore, while
SMAP retrievals contain important information, the Noah-
MP model estimates provide a more consistent dataset with-
out spatiotemporal gaps associated with frozen soil condi-
tions, swath width limitations, or radio frequency interfer-
ence.

The Noah-MP simulation results in Sec. 4 highlight that
CDF matching removes the irrigation signal from the SMAP
soil moisture retrievals, and therefore, better results are ob-
tained across croplands for simulations without any CDF
matching. Optimal data assimilation is based on the assump-
tion that the forward model and the observed data are un-
biased, which is one motivating factor for conducting CDF
matching of retrievals. Considering the current study do-
main, it is apparent that the forward model unbiasedness as-
sumptions are violated across irrigated areas. Hence, map-
ping the retrieval climatology to a biased land surface model
climatology is not a viable bias correction approach for
satellite-based retrievals. The spatial patterns in the DA-
CDF-estimated soil moisture across irrigated areas (Fig. 4)
highlight this issue.

In an effort to comply with the unbiased forward model
assumptions in the EnKF assimilation algorithm, assimila-
tion using an anomaly-based approach (i.e., one that is zero
mean by construct) was also tested. In this approach, the re-
trieval mean was mapped to the land surface model mean,
and updates were computed using the resultant anomalies.
Anomaly-based assimilation results (Fig. S1) showed that for
heavily irrigated areas, assimilation estimates closely mimic
the OL-estimated soil moisture throughout the year, whereas
DA-NoCDF is able to update the soil moisture based on
the information in the SMAP observations, particularly dur-
ing the winter months. In terms of general spatial patterns
(Fig. S2), the anomaly-based assimilation results were sim-
ilar to the DA-CDF soil moisture estimates such that rela-
tively higher soil moisture values were found across some ir-
rigated areas during the winter. Further details regarding the
anomaly-based assimilation experiment are included in the
Supplement (see Sect. S2).

It is important to note that while in the presented study,
estimation accuracy is better for assimilation without CDF
matching, the results might be different for other cases.
That is, the assimilation of retrievals without bias adjustment
may not improve the estimation accuracy as compared to
CDF-matched satellite retrievals. In this particular study, the

SMAP soil moisture retrievals are able to effectively capture
the irrigation signal and, as such, help improve the Noah-MP-
modeled soil moisture estimates via assimilation. However,
there is the possibility that assimilation of a different soil
moisture retrieval product may degrade the accuracy of the
modeled estimates depending on the inherent biases in that
given soil moisture retrieval. It is important that the model
physics be improved as well so that the regional hydrologic
processes are accounted for, resulting in a more representa-
tive model which could then be used for bias correction of
satellite retrievals.

Irrigation is primarily carried out via manually operated
canals, open channels, and ground pumping across South
Asia. The amount of water contributed by irrigation in South
Asian croplands changes in magnitude during different sea-
sons; however, it remains non-negligible over the course of
the entire year (Biemans et al., 2016). Therefore, assump-
tions regarding higher contribution of irrigation to the re-
gional water cycle during winter and negligible contribution
during the summer months are not appropriate. Hence, im-
plementation of CDF matching only during certain months
would have limitations in this region. That is, there is a need
to develop an irrigation module that would be able to repre-
sent the regional irrigation practices and, therefore, properly
account for the contribution of water transported via manu-
ally operated irrigation schemes in the local water balance.

The results in Sect. 3.2.4 highlight the limitations in infor-
mation transfer from updated surface soil moisture to root-
zone soil moisture or to the vegetation. Compared to root-
zone soil moisture, the influence of SMAP soil moisture as-
similation was greater on surface soil moisture. One poten-
tial method of transferring surface soil moisture information
to deeper soil layers could entail the development of a soil
modeling routine that has higher hydrologic coupling be-
tween the individual soil layers. However, an important point
to consider is that with an increase in the hydrologic coupling
between surface and deep soil layers, the complexity of the
land surface model would also increase as new parameters
are required to model the feedback loop between adjacent
soil layers. Similarly, information transfer between the up-
dated surface soil moisture and the vegetation states is also
limited.

6 Conclusions

Soil moisture estimation across South Asia was implemented
in this study by assimilating Soil Moisture Active Passive
(SMAP) soil moisture retrievals into a land surface model.
The Noah-MP land surface model was run within the NASA
Land Information System software framework to simulate
the regional land surface processes. Precipitation boundary
conditions (in different experiments) were provided by the
NASA Modern-Era Retrospective Analysis for Research and
Applications (MERRA2) and GPM Integrated Multi-satellite
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Retrievals (IMERG) products. SMAP retrieval assimilation
was implemented using two approaches: (i) DA-CDF, bias
correction of observations prior to assimilation using CDF
matching, and (ii) DA-NoCDF, SMAP retrieval assimilation
without CDF matching. CDF matching of the observations to
the modeled estimates was applied in an effort to correct the
distribution moments of the SMAP soil moisture retrievals.

Comparison of assimilated and model-only soil moisture
estimates against in situ measurements showed the relative
improvement in soil moisture by assimilating SMAP re-
trievals. The IMERG DA-NoCDF simulation exhibited the
best goodness of fit and reduced the mean bias and RMSE
by 8.4 % and 9.4 % across the Tibetan Plateau. The results
presented in Sect. 4 highlight that SMAP soil moisture as-
similation decreased the magnitude of error (Table 2) and
suggest improvements in the spatiotemporal soil moisture
patterns (Figs. 3 and 6) and associated evapotranspiration
(Fig. 7), particularly over irrigated areas. However, the influ-
ence on evapotranspiration did not proportionally translate
into changes in the carbon flux.

An important feature of SMAP retrieval assimilation ob-
served in this study is the suggested correction of state es-
timation biases resulting from missing physics in the land
surface model (unmodeled hydrologic process), i.e., irriga-
tion. Information about the exact quantity and timing of ir-
rigation practices is generally not publicly available, except
for a few parts of the globe. Simulating the complex regional
irrigation scheme is a difficult task that is further complicated
by the inaccessibility of relevant pumping data, manual op-
eration of reservoirs, and unsystematic canal to field irriga-
tion. The framework described in this paper could potentially
be used to infer information regarding irrigation patterns and
practices using an inverse method. Brocca et al. (2018) used
coarse-scale soil moisture retrievals to quantify the amount
of water used for irrigation. A similar methodology can be
explored that uses the difference between the OL- and DA-
estimated soil moisture across croplands to infer information
regarding the water quantity supplied by irrigation.

Considering the lack of in situ observations available for
use in this study, it is difficult to clearly ascertain the in-
fluence of assimilation without CDF matching in areas that
are not irrigated. Across the Tibetan Plateau, DA-NoCDF es-
timates exhibit the lowest RMSE. However, the evaluation
of DA-NoCDF estimates across non-irrigated areas in the
southern part of the study domain is limited by the scarcity
of ground data. A follow-up study should explore the influ-
ence of including (as well as excluding) CDF matching in
areas that are not irrigated. This experiment could help ex-
plore suitable approaches for incorporating the information
obtained from satellite retrievals to correct the modeled es-
timates without introducing additional bias to the modeled
estimates. In a broader perspective, there is a need to develop
a bias correction technique for satellite retrievals that is in-
dependent of the accuracy or bias of the model climatology.
Using in situ measurements for preprocessing of the satellite

retrievals would be one potential method. Current efforts in
South Asia by various governmental and non-governmental
organizations to measure in situ soil moisture would bene-
fit the development of suitable methods of bias correction of
satellite observations.

The utility of L-band radiometry for soil moisture estima-
tion is limited by the soil emission depth associated with pas-
sive microwave (∼ 5 cm) and the data gaps in the soil mois-
ture retrievals. These data gaps are due to the presence of
snow, ice, frozen soil, dense vegetation, radio frequency in-
terference instances, and swath width limitations. The influ-
ence of SMAP soil moisture retrieval assimilation was pri-
marily limited to surface soil moisture, compared to root-
zone soil moisture, across locations where SMAP soil mois-
ture retrievals were available for assimilation. One method
of transferring surface soil moisture information to deeper
soil layers could entail the development of a soil modeling
routine that has higher hydrologic coupling between the in-
dividual soil layers. While it may improve the information
transfer to deeper soil layers, the complexity of the land sur-
face model would also increase considerably with the addi-
tion of new parameters that would better control the feedback
between adjacent soil layers.

Improvements in the fine-scale spatial and temporal pat-
terns in soil moisture were observed, even though the re-
trievals being assimilated were at a much coarser scale than
the model grid (36 km versus 0.05◦). These results highlight
the potential applicability of the described framework for re-
gions where measured data are scarce as well as where accu-
rate and consistent soil moisture estimates do not currently
exist. A follow-up study to be explored based on the results of
the described experiments is the routing of streamflow using
modeled runoff to analyze the effect of soil moisture assimi-
lation on runoff and river discharge. Antecedent soil moisture
conditions affect the soil permeability and infiltration capac-
ity. Therefore, it is expected that improvements in soil mois-
ture estimation could translate into improved streamflow es-
timates.

Appendix A: Soil texture and land cover across study
domain

Table A1 presents the predominant soil texture and land
cover classes and their respective percentages across the
study domain shown in Fig. 1.
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Table A1. List of soil texture and land cover classes (and their respective percentages) found within the study domain presented in Fig. 1.

Soil texture Land cover

Class No. of Percentage of total Class No. of Percentage of total
grid cells grid cells grid cells grid cells

Sand 12528 4.04 Forest 43669 14.1
Loamy sand 322 0.10 Shrublands 62654 20.2
Sandy loam 18753 6.05 Savannas 4244 1.4
Silt loam 2098 0.68 Grasslands 41306 13.3
Loam 188716 60.91 Croplands 67366 21.7
Sandy clay loam 14132 4.56 Urban/built-up 1269 0.4
Clay loam 28885 9.32 Snow/ice 1027 0.3
Silty clay 35 0.01 Barren/sparsely vegetated 78338 25.3
Clay 23048 7.44 Ocean 9952 3.2
Water 10805 3.49
Other (ice/lakes/water bodies) 10503 3.39

Appendix B: Meteorological forcing perturbations

Table B1 includes the meteorological forcing perturbation
used for the OL and DA simulations (Kwon et al., 2019).

Table B1. Perturbation parameters applied to meteorological forcing fields for both the open-loop and data assimilation simulations. M is
multiplicative, and A is additive.

Perturbed meteorological forcing Perturbation Standard Cross-correlations with perturbations

type deviation P SW LW Tair

Precipitation (P) M 0.5 – −0.8 0.5 −0.1
Shortwave radiation (SW) M 0.3 −0.8 – −0.5 0.3
Longwave radiation (LW) A 50 W m−2 0.5 −0.5 – 0.6
Near-surface air temperature (Tair) A 1 K −0.1 0.3 0.6 –

Appendix C: OL versus DA estimates with respect to
soil texture

Figure C1 displays the OL- and MERRA2-forced DA-
NoCDF joint PDFs (shown here as fractions of total grid
cells), categorized with respect to the soil texture types for
the winter months of the 2016 water year. The bar graph in
Fig. C1h provides the percentage of grid cells belonging to
each soil texture type that have at least one instance of SMAP
retrieval assimilation. The soil types that included sand or
loam exhibited regression coefficients > 1 (except for loamy
sand). Grid cells belonging to loamy sand (Fig. C1b), silty
clay (Fig. C1h), and clay (Fig. C1i) soil types exhibited re-
gression coefficients 1, indicating a general decrease in SM
magnitude after SMAP assimilation. However, the regression
coefficients of all three of these soil texture types are close to
1 and, therefore, do not reinforce any significant influence of
SMAP assimilation on grid cells belonging to these particu-
lar soil texture types.
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Figure C1. Comparison of OL- versus DA-NoCDF-estimated soil moisture according to the dominant soil texture types present within the
study domain. The OL and DA-NoCDF joint PDFs (presented here as fractions of grid cells) are computed from the LIS runs with MERRA2
boundary conditions during the winter months of WY 2016.

Appendix D: Statistical metrics

The following formulas were used to calculate the relevant
statistics described in Sect. 4:

bias=
T∑
t=1
(ys− ym) (D1)

RMSE=

√∑T
t=1(ys− ym)

2

T
(D2)

unbiased RMSE=

√√√√∑T
t=1

((
ys− (ys− ym)

)
− ym

)2

T
(D3)

relative RMSE=
RMSE
σys

(D4)

confidence interval95 % limits=±1.96
σX
√
N
, (D5)

where ys equals the ensemble mean of the OL/DA-CDF/DA-
NoCDF soil moisture estimate, ym is the in situ soil moisture
measurement, σys is the standard deviation of the ensemble
mean soil moisture over time, T is the total number of data
instances in time at a given location in space, X is the array
containing bias/RMSE values computed for each compara-
tive grid cell, and N is the total number of (in situ measure-
ments versus modeled estimates) comparative grid cells. The
overbar represents temporally averaged values. The cross-
correlation, R, between variables x and y was computed as

R=
∑T
t=1(x− x̄)(y− ȳ)√∑T

t=1(x− x̄)
2
∑T
t=1(y− ȳ)

2
. (D6)

The fractional normalized information content, NICRMSE,
improved in terms of RMSE due to assimilation, was com-
puted as

NICRMSE =
RMSEOL−RMSEDA

RMSEOL
, (D7)
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where RMSEOL is the root mean square error (RMSE) for
the open loop, and RMSEDA is the RMSE for the DA-CDF
or DA-NoCDF experiment.

Appendix E: Acronyms and abbreviations

ALEXI Atmosphere-Land Exchange Inverse
CDF Cumulative distribution function
DA Data assimilation
DA-CDF Data assimilation with CDF matching
DA-NoCDF Data assimilation without CDF matching
EnKF Ensemble Kalman filter
ET Evapotranspiration
GMIA Global Map of Irrigation Areas
GOME-2 Global Ozone Monitoring Experiment 2
GPP Gross primary production
IMERG Integrated Multi-satellite Retrievals for

Global Precipitation Measurement
L1 Layer 1 near-surface soil moisture
L2 Layer 2 root-zone soil moisture
LIS Land Information System
MODIS Moderate Resolution Imaging

Spectroradiometer
MERRA2 Modern-Era Retrospective Analysis for

Research and Applications
NI Normalized innovation
SIF Solar-induced fluorescence
SM Soil moisture
SMAP Soil Moisture Active Passive
OL Open loop
VOD Vegetation optical depth

Code and data availability. The NASA Land Information System
source code was downloaded from https://github.com/NASA-LIS/
LISF (Kumar, 2021). SMAP soil moisture retrievals were down-
loaded from https://nsidc.org/data/SPL3SMP/ (O’Neill et al., 2021).
Soil moisture measurements across the Tibetan Plateau are
available at https://www.geo.tuwien.ac.at/insitu/data_viewer/ (Su,
2021). FluxSat gross primary production is available at https://
avdc.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/ (Goddard Space Flight
Center, 2010a), while the ALEXI evapotranspiration dataset can
be accessed at Anderson et al. (2011). The GOME-2 fluores-
cence dataset can be downloaded from https://avdc.gsfc.nasa.gov/
pub/data/satellite/MetOp/GOME_F/ (Goddard Space Flight Center,
2010b). Noah-MP-modeled soil moisture estimates analyzed in the
paper can be accessed at https://doi.org/10.13016/meau-teqa (Ah-
mad et al., 2021).
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