Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6087-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6087-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Response of water fluxes and biomass production to climate change in permanent grassland soil ecosystems
Veronika Forstner
CORRESPONDING AUTHOR
Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Graz 8010, Austria
Jannis Groh
CORRESPONDING AUTHOR
Working Group “Hydropedology”, Research Area 1 “Landscape
Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF),
Müncheberg 15374, Germany
Institute of Bio- and Geoscience IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
Matevz Vremec
Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Graz 8010, Austria
Markus Herndl
Institute of Plant Production and Cultural Landscape, Agricultural
Research and Education Centre, Irdning-Donnersbachtal 8952, Austria
Harry Vereecken
Institute of Bio- and Geoscience IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
Horst H. Gerke
Working Group “Hydropedology”, Research Area 1 “Landscape
Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF),
Müncheberg 15374, Germany
Steffen Birk
Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Graz 8010, Austria
Thomas Pütz
Institute of Bio- and Geoscience IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
Related authors
No articles found.
Shiao Feng, Wenhong Wang, Yonggen Zhang, Zhongwang Wei, Jianzhi Dong, Lutz Weihermüller, and Harry Vereecken
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-410, https://doi.org/10.5194/essd-2025-410, 2025
Preprint under review for ESSD
Short summary
Short summary
Soil moisture is key for weather, farming, and ecosystems, but global datasets have gaps and biases. We compared three products against 1,615 stations with more than 1.9 million measured moisture, finding ERA5-Land highly correlated but biased high, and SMAP-L4 accurate but short-term. Fusing them created an enhanced dataset, improving correlation by 5%, reducing errors by 20%, and enhancing overall fit by 15%. This seamless resource aids drought tracking, water planning, and climate adaptation.
Jordan Bates, Carsten Montzka, Harry Vereecken, and François Jonard
EGUsphere, https://doi.org/10.5194/egusphere-2025-3919, https://doi.org/10.5194/egusphere-2025-3919, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We used unmanned aerial vehicles (UAVs) with advanced cameras and laser scanning to measure crop water use and detect early signs of plant stress. By combining 3D views of crop structure with surface temperature and reflectance data, we improved estimates of water loss, especially in dense crops like wheat. This approach can help farmers use water more efficiently, respond quickly to stress, and support sustainable agriculture in a changing climate.
Heye Reemt Bogena, Frank Herrmann, Andreas Lücke, Thomas Pütz, and Harry Vereecken
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-185, https://doi.org/10.5194/essd-2025-185, 2025
Preprint under review for ESSD
Short summary
Short summary
The Wüstebach catchment in Germany’s TERENO network underwent partial deforestation in 2013 to support natural regrowth in Eifel National Park. This data paper presents 16 years (2010–2024) of estimated hourly stream-water flux data for nine macro- and micronutrients, dissolved ionic aluminum, and dissolved organic carbon, along with measured solute concentrations and discharge rates from two stations—one affected by clear-cutting and one unaffected.
Belén Martí, Jannis Groh, Guylaine Canut, and Aaron Boone
EGUsphere, https://doi.org/10.5194/egusphere-2025-1783, https://doi.org/10.5194/egusphere-2025-1783, 2025
Short summary
Short summary
The characterization of vegetation at two sites proved insufficient to simulate adequately the evapotranspiration. A dry surface layer was implemented in the land surface model SURFEX-ISBA v9.0. It is compared to simulations without a soil resistance. The application to an alfalfa site and a natural grass site in semiarid conditions results in an improvement in the estimation of the latent heat flux. The surface energy budget and the soil and vegetation characteristics are explored in detail.
Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, and Lutz Weihermüller
SOIL, 11, 267–285, https://doi.org/10.5194/soil-11-267-2025, https://doi.org/10.5194/soil-11-267-2025, 2025
Short summary
Short summary
To use fertilizers more effectively, non-invasive geophysical methods can be used to understand nutrient distributions in the soil. We utilize, in a long-term field study, geophysical techniques to study soil properties and conditions under different fertilizer treatments. We compared the geophysical response with soil samples and soil sensor data. In particular, electromagnetic induction and electrical resistivity tomography were effective in monitoring changes in nitrate levels over time.
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025, https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Short summary
We studied how soil and weather data affect land model simulations over Africa. By combining soil data processed in different ways with weather data of varying time intervals, we found that weather inputs had a greater impact on water processes than soil data type. However, the way soil data were processed became crucial when paired with high-frequency weather inputs, showing that detailed weather data can improve local and regional predictions of how water moves and interacts with the land.
Salar Saeed Dogar, Cosimo Brogi, Dave O'Leary, Ixchel Hernández-Ochoa, Marco Donat, Harry Vereecken, and Johan Alexander Huisman
EGUsphere, https://doi.org/10.5194/egusphere-2025-827, https://doi.org/10.5194/egusphere-2025-827, 2025
Short summary
Short summary
Farmers need precise information about their fields to use water, fertilizers, and other resources efficiently. This study combines underground soil data and satellite images to create detailed field maps using advanced machine learning. By testing different ways of processing data, we ensured a balanced and accurate approach. The results help farmers manage their land more effectively, leading to better harvests and more sustainable farming practices.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie A. Fisher, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 18, 287–317, https://doi.org/10.5194/gmd-18-287-2025, https://doi.org/10.5194/gmd-18-287-2025, 2025
Short summary
Short summary
Carbon and water exchanges between the atmosphere and the land surface contribute to water resource availability and climate change mitigation. Land surface models, like the Community Land Model version 5 (CLM5), simulate these. This study finds that CLM5 and other data sets underestimate the magnitudes of and variability in carbon and water exchanges for the most abundant plant functional types compared to observations. It provides essential insights for further research into these processes.
Annelie Ehrhardt, Jannis Groh, and Horst H. Gerke
Hydrol. Earth Syst. Sci., 29, 313–334, https://doi.org/10.5194/hess-29-313-2025, https://doi.org/10.5194/hess-29-313-2025, 2025
Short summary
Short summary
Soil water storage (SWS) describes the amount of water in the root zone of plants accessible for crop growth. SWS underlies annual cycles with maximum values in winter and minimum values in summer. For a soil that was transferred from a drier to a more humid climate we found that the maximum peak of SWS occurs earlier every year. This can be explained by an earlier start of the vegetation period. It is a first indication that the ability of soils to store water is affected by different climate.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024, https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Short summary
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental studies, which can be prone to errors and sensitive to climate change. PyEt, a tested and open-source Python package, simplifies the application of 20 PET methods for both time series and gridded data, ensuring accurate and consistent PET estimations suitable for a wide range of environmental applications.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Joschka Neumann, Nicolas Brüggemann, Patrick Chaumet, Normen Hermes, Jan Huwer, Peter Kirchner, Werner Lesmeister, Wilhelm August Mertens, Thomas Pütz, Jörg Wolters, Harry Vereecken, and Ghaleb Natour
EGUsphere, https://doi.org/10.5194/egusphere-2024-1598, https://doi.org/10.5194/egusphere-2024-1598, 2024
Short summary
Short summary
Climate change in combination with a steadily growing world population and a simultaneous decrease in agricultural land is one of the greatest global challenges facing mankind. In this context, Forschungszentrum Jülich established an "agricultural simulator" (AgraSim), which enables research into the effects of climate change on agricultural ecosystems and the optimization of agricultural cultivation and management strategies with the aid of combined experimental and numerical simulation.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024, https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
Short summary
We present results from using soil water content measurements from 13 European forest sites in a state-of-the-art land surface model. We use data assimilation to perform a combination of observed and modeled soil water content and show the improvements in the representation of soil water content. However, we also look at the impact on evapotranspiration and see no corresponding improvements.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Tobias Schnepper, Jannis Groh, Horst H. Gerke, Barbara Reichert, and Thomas Pütz
Hydrol. Earth Syst. Sci., 27, 3265–3292, https://doi.org/10.5194/hess-27-3265-2023, https://doi.org/10.5194/hess-27-3265-2023, 2023
Short summary
Short summary
We compared hourly data from precipitation gauges with lysimeter reference data at three sites under different climatic conditions. Our results show that precipitation gauges recorded 33–96 % of the reference precipitation data for the period under consideration (2015–2018). Correction algorithms increased the registered precipitation by 9–14 %. It follows that when using point precipitation data, regardless of the precipitation measurement method used, relevant uncertainties must be considered.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-417, https://doi.org/10.5194/hess-2022-417, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper introduced PyEt, a Python package for the estimation of daily potential evapotranspiration (PET). The package enables the inclusion of model uncertainty and climate change into the estimation of PET in a consistent, tested, and reproducible environment. With PyEt, users can estimate PET using 20 different methods for both 1D and 3D data, allowing a more sophisticated and comprehensive consideration of PET in hydrological studies, particularly those related to climate change.
Jordan Bates, Francois Jonard, Rajina Bajracharya, Harry Vereecken, and Carsten Montzka
AGILE GIScience Ser., 3, 23, https://doi.org/10.5194/agile-giss-3-23-2022, https://doi.org/10.5194/agile-giss-3-23-2022, 2022
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Wei Qu, Heye Bogena, Christoph Schüth, Harry Vereecken, Zongmei Li, and Stephan Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-131, https://doi.org/10.5194/gmd-2022-131, 2022
Publication in GMD not foreseen
Short summary
Short summary
We applied the global sensitivity analysis LH-OAT to the integrated hydrology model ParFlow-CLM to investigate the sensitivity of the 12 parameters for different scenarios. And we found that the general patterns of the parameter sensitivities were consistent, however, for some parameters a significantly larger span of the sensitivities was observed, especially for the higher slope and in subarctic climatic scenarios.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Lukas Strebel, Heye R. Bogena, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 15, 395–411, https://doi.org/10.5194/gmd-15-395-2022, https://doi.org/10.5194/gmd-15-395-2022, 2022
Short summary
Short summary
We present the technical coupling between a land surface model (CLM5) and the Parallel Data Assimilation Framework (PDAF). This coupling enables measurement data to update simulated model states and parameters in a statistically optimal way. We demonstrate the viability of the model framework using an application in a forested catchment where the inclusion of soil water measurements significantly improved the simulation quality.
Yafei Huang, Jonas Weis, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-569, https://doi.org/10.5194/hess-2021-569, 2021
Manuscript not accepted for further review
Short summary
Short summary
Trends in agricultural droughts cannot be easily deduced from measurements. Here trends in agricultural droughts over 31 German and Dutch sites were calculated with model simulations and long-term observed meteorological data as input. We found that agricultural droughts are increasing although precipitation hardly decreases. The increase is driven by increase in evapotranspiration. The year 2018 was for half of the sites the year with the most extreme agricultural drought in the last 55 years.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk
Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, https://doi.org/10.5194/hess-25-2931-2021, 2021
Short summary
Short summary
This study explores the use of nonlinear transfer function noise (TFN) models to simulate groundwater levels and estimate groundwater recharge from observed groundwater levels. A nonlinear recharge model is implemented in a TFN model to compute the recharge. The estimated recharge rates are shown to be in good agreement with the recharge observed with a lysimeter present at the case study site in Austria. The method can be used to obtain groundwater recharge rates at
sub-yearly timescales.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Cited articles
Abbott, B. W., Bishop, K., Zarnetske, J. P., Hannah, D. M., Frei, R. J.,
Minaudo, C., Chapin III, F. S., Krause, S., Conner, L., Ellison, D., Godsey,
S. E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Hampton, T., Gu,
S., Buhman, M., Sayedi, S. S., Ursache, O., Chapin, M., Henderson, K. D.,
and Pinay, G.: A water cycle for the Anthropocene, Hydrol. Process.,
33, 3046–3052, https://doi.org/10.1002/hyp.13544, 2019.
Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and
stomatal conductance to rising [CO2]: mechanisms and environmental
interactions, Plant Cell Environ,, 30, 258–270,
https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007.
Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F.,
Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., Yrisarry, J. B.,
Smith, M., Pereira, L. S., Raes, D., Perrier, A., Alves, I., Walter, I., and
Elliott, R.: A recommendation on standardized surface resistance for hourly
calculation of reference ETo by the FAO56 Penman-Monteith method,
Agric. Water Manage., 81, 1–22, https://doi.org/10.1016/j.agwat.2005.03.007, 2006.
Amthor, J. S.: Effects of atmospheric CO2 concentration on wheat yield:
review of results from experiments using various approaches to control CO2
concentration, Field Crops Res., 73, 1–34,
https://doi.org/10.1016/S0378-4290(01)00179-4, 2001.
Anghileri, D., Botter, M., Castelletti, A., Weigt, H., and Burlando, P.: A
Comparative Assessment of the Impact of Climate Change and Energy Policies
on Alpine Hydropower, Water Resour. Res., 54, 9144–9161,
https://doi.org/10.1029/2017wr022289, 2018.
Atashi, N., Rahimi, D., Goortani, B. M., Duplissy, J., Vuollekoski, H.,
Kulmala, M., Vesala, T., and Hussein, T.: Spatial and Temporal Investigation
of Dew Potential based on Long-Term Model Simulations in Iran, Water, 11,
2463, https://doi.org/10.3390/w11122463, 2019.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R.,
Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P.,
Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre,
O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V.,
Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar,
T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and
Nieplova, E.: HISTALP – historical instrumental climatological surface time
series of the Greater Alpine Region, Int. J. Climatol.,
27, 17–46, https://doi.org/10.1002/joc.1377, 2007.
Beillouin, D., Schauberger, B., Bastos, A., Ciais, P., and Makowski, D.:
Impact of extreme weather conditions on European crop production in 2018,
Philos. T. Roy. Soc. B, 375,
20190510, https://doi.org/10.1098/rstb.2019.0510, 2020.
Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O'Connor,
T., O'Farrell, P. J., Smith, H. G., and Lindborg, R.: Grasslands – more
important for ecosystem services than you might think, Ecosphere, 10,
e02582, https://doi.org/10.1002/ecs2.2582, 2019.
Berghuijs, W. R., Gnann, S. J., and Woods, R. A.: Unanswered questions on
the Budyko framework, Hydrol. Process., 34, 5699–5703, https://doi.org/10.1002/hyp.13958, 2020.
Bernhardt-Römermann, M., Römermann, C., Sperlich, S., and Schmidt,
W.: Explaining grassland biomass – the contribution of climate, species and
functional diversity depends on fertilization and mowing frequency, J. Appl. Ecol., 48, 1088–1097, https://doi.org/10.1111/j.1365-2664.2011.01968.x, 2011.
Berry, Z. C., Emery, N. C., Gotsch, S. G., and Goldsmith, G. R.: Foliar
water uptake: Processes, pathways, and integration into plant water budgets,
Plant Cell Environ., 42, 410–423, https://doi.org/10.1111/pce.13439, 2019.
Blair, J., Nippert, J., and Briggs, J.: Grassland Ecology, in: Ecology and
the Environment, edited by: Monson, R. K., Springer New York, New York, NY,
389–423, 2014.
Bradford, J. B., Lauenroth, W. K., Burke, I. C., and Paruelo, J. M.: The
Influence of Climate, Soils, Weather, and Land Use on Primary Production and
Biomass Seasonality in the US Great Plains, Ecosystems, 9, 934–950,
https://doi.org/10.1007/s10021-004-0164-1, 2006.
Budyko, M. I. and Miller, D. H.: Climate and life, International geophysics
series, Academic Press, New York, xvii, 508 pp., 1974.
Chen, L., Liu, C., Li, Y., and Wang, G.: Impacts of climatic factors on
runoff coefficients in source regions of the Huanghe River, Chinese
Geogr. Sci., 17, 047–055, https://doi.org/10.1007/s11769-007-0047-4, 2007.
Dawson, T. E. and Goldsmith, G. R.: The value of wet leaves, New
Phytologist, 219, 1156–1169, https://doi.org/10.1111/nph.15307, 2018.
De Boeck, H. J., Lemmens, C. M. H. M., Bossuyt, H., Malchair, S., Carnol,
M., Merckx, R., Nijs, I., and Ceulemans, R.: How do climate warming and
plant species richness affect water use in experimental grasslands?, Plant
Soil, 288, 249–261, https://doi.org/10.1007/s11104-006-9112-5, 2006.
Degener, J.: Atmospheric CO2 fertilization effects on biomass yields of 10
crops in northern Germany, Front. Environ. Sci., 3, 1–14,
https://doi.org/10.3389/fenvs.2015.00048, 2015.
Eitzinger, J., Kersebaum, K. C., and Formayer, H.: Landwirtschaft im
Klimawandel. Auswirkungen und Anpassungsstrategien für die land- und
forstwirtschaftlichen Betriebe in Mitteleuropa, Agrimedia, Clenze, ISBN 978-3-86037-378-1, 320 pp., 2009.
Ernst, P. and Loeper, E. G.: Temperaturentwicklung und Vegetationsbeginn
auf dem Grünland, Das Wirtschaftseigene Futter, 22, 5–11, 1976.
Fank, J. and Unold, G.: High-precision weighable field Lysimeter – a tool
to measure water and solute balance parameters, Int. Water
Irrig., 27, 28–32, 2007.
Feng, T., Zhang, L., Chen, Q., Ma, Z., Wang, H., Shangguan, Z., Wang, L.,
and He, J.-S.: Dew formation reduction in global warming experiments and the
potential consequences, J. Hydrol., 593, 125819,
https://doi.org/10.1016/j.jhydrol.2020.125819, 2021.
Fennell, J., Geris, J., Wilkinson, M. E., Daalmans, R., and Soulsby, C.:
Lessons from the 2018 drought for management of local water supplies in
upland areas: A tracer-based assessment, Hydrol. Process., 34,
4190–4210, https://doi.org/10.1002/hyp.13867, 2020.
Fu, Y., Yu, G., Wang, Y., Li, Z., and Hao, Y.: Effect of water stress on
ecosystem photosynthesis and respiration of a Leymus chinensis steppe in
Inner Mongolia, Sci. China Ser. D, 49, 196–206,
https://doi.org/10.1007/s11430-006-8196-3, 2006.
Gerlein-Safdi, C., Gauthier, P. P. G., and Caylor, K. K.: Dew-induced
transpiration suppression impacts the water and isotope balances of
Colocasia leaves, Oecologia, 187, 1041–1051, https://doi.org/10.1007/s00442-018-4199-y,
2018.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and
Stoffel, M.: 21st century climate change in the European Alps – A review,
Sci. Total Environ., 493, 1138–1151,
https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.
Graf, A., Klosterhalfen, A., Arriga, N., Bernhofer, C., Bogena, H., Bornet,
F., Brüggemann, N., Brümmer, C., Buchmann, N., Chi, J., Chipeaux,
C., Cremonese, E., Cuntz, M., Dušek, J., El-Madany, T. S., Fares, S.,
Fischer, M., Foltýnová, L., Gharun, M., Ghiasi, S., Gielen, B.,
Gottschalk, P., Grünwald, T., Heinemann, G., Heinesch, B., Heliasz, M.,
Holst, J., Hörtnagl, L., Ibrom, A., Ingwersen, J., Jurasinski, G.,
Klatt, J., Knohl, A., Koebsch, F., Konopka, J., Korkiakoski, M., Kowalska,
N., Kremer, P., Kruijt, B., Lafont, S., Léonard, J., Ligne, A. D.,
Longdoz, B., Loustau, D., Magliulo, V., Mammarella, I., Manca, G., Mauder,
M., Migliavacca, M., Mölder, M., Neirynck, J., Ney, P., Nilsson, M.,
Paul-Limoges, E., Peichl, M., Pitacco, A., Poyda, A., Rebmann, C., Roland,
M., Sachs, T., Schmidt, M., Schrader, F., Siebicke, L., Šigut, L.,
Tuittila, E.-S., Varlagin, A., Vendrame, N., Vincke, C., Völksch, I.,
Weber, S., Wille, C., Wizemann, H.-D., Zeeman, M., and Vereecken, H.:
Altered energy partitioning across terrestrial ecosystems in the European
drought year 2018, Philos. T. Roy. Soc. B, 375, 20190524, https://doi.org/10.1098/rstb.2019.0524, 2020.
Groh, J., Slawitsch, V., Herndl, M., Graf, A., Vereecken, H., and Pütz,
T.: Determining dew and hoar frost formation for a low mountain range and
alpine grassland site by weighable lysimeter, J. Hydrol., 563,
372–381, https://doi.org/10.1016/j.jhydrol.2018.06.009, 2018.
Groh, J., Pütz, T., Gerke, H. H., Vanderborght, J., and Vereecken, H.:
Quantification and Prediction of Nighttime Evapotranspiration for Two
Distinct Grassland Ecosystems, Water Resour. Res., 55, 2961–2975,
https://doi.org/10.1029/2018wr024072, 2019.
Groh, J., Vanderborght, J., Pütz, T., Vogel, H.-J., Gründling, R., Rupp, H., Rahmati, M., Sommer, M., Vereecken, H., and Gerke, H. H.: Responses of soil water storage and crop water use efficiency to changing climatic conditions: a lysimeter-based space-for-time approach, Hydrol. Earth Syst. Sci., 24, 1211–1225, https://doi.org/10.5194/hess-24-1211-2020, 2020.
Habermann, E., San Martin, J. A. B., Contin, D. R., Bossan, V. P., Barboza,
A., Braga, M. R., Groppo, M., and Martinez, C. A.: Increasing atmospheric
CO2 and canopy temperature induces anatomical and physiological changes in
leaves of the C4 forage species Panicum maximum, PloS one, 14,
e0212506–e0212506, https://doi.org/10.1371/journal.pone.0212506, 2019.
Hanson, P. J. and Walker, A. P.: Advancing global change biology through
experimental manipulations: Where have we been and where might we go?,
Global Change Biol., 26, 287–299, https://doi.org/10.1111/gcb.14894, 2020.
Hatfield, J. L. and Dold, C.: Water-Use Efficiency: Advances and Challenges
in a Changing Climate, Front. Plant Sci., 10, 1–14,
https://doi.org/10.3389/fpls.2019.00103, 2019.
Herndl, M., Pötsch, E., Kandolf, M., Bohner, A., Schaumberger, A.,
Resch, R., Graiss, W., Krautzer, B., and Buchgraber, K.: “Lysi-T-FACE” an
experiment to simulate global warming impact on, EGU General Assembly,
Vienna, 2010.
Herndl, M., Pötsch, E., Bohner, A., and Kandolf, M.: Lysimeter als
Bestandteil eines technischen Versuchskonzeptes zur Simulation der
Erderwärmung im Grünland, in: Bericht LFZ Raumberg-Gumpenstein, 14.
Gumpensteiner Lysimetertagung “Lysimeter in der Klimafolgenforschung und
Wasserwirtschaft”, Raumberg-Gumpenstein, Austria, 119–126, 2011 (in German, with English abstract).
Herndl, M., Slawitsch, V., Pötsch, E., Schink, M., and Kandolf, M.:
Auswirkungen von erhöhter Temperatur und CO2-Konzentration im
Dauergrünland auf den im Sickerwasser gelösten organischen
Kohlenstoff und Stickstof (In German, with English abstract.), 18.
Gumpensteiner Lysimetertagung 2019, HBLFA Raumberg-Gumpenstein, 41–48, 2019.
Hofer, D., Suter, M., Buchmann, N., and Lüscher, A.: Nitrogen status of
functionally different forage species explains resistance to severe drought
and post-drought overcompensation, Agric. Ecosyst. Environ.,
236, 312–322, https://doi.org/10.1016/j.agee.2016.11.022, 2017.
Hossain, M. L. and Beierkuhnlein, C.: Enhanced aboveground biomass by
increased precipitation in a central European grassland, Ecol.
Process., 7, 37, https://doi.org/10.1186/s13717-018-0149-1, 2018.
Hovenden, M. J., Newton, P. C. D., and Porter, M.: Elevated CO2 and warming
effects on grassland plant mortality are determined by the timing of
rainfall, Ann. Botany, 119, 1225–1233, https://doi.org/10.1093/aob/mcx006, 2017.
Inauen, N., Körner, C., and Hiltbrunner, E.: Hydrological consequences
of declining land use and elevated CO2 in alpine grassland, J.
Ecol., 101, 86–96, https://doi.org/10.1111/1365-2745.12029, 2013.
Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
IPCC: Global Warming of 1.5 ∘C: An IPCC Special Report on the
Impacts of Global Warming of 1.5 ∘C Above Pre-Industrial Levels
and Related Global Greenhouse Gas Emission Pathways, in the Context of
Strengthening the Global Response to the Threat of Climate Change,
Sustainable Development, and Efforts to Eradicate Poverty, World
Meteorological Organization, Geneva, 2018.
Jarvis, N., Groh, J., Lewan, E., Meurer, K., Durka, W., Baessler, C., Pütz, T., Rufullayev, E., and Vereecken, H.: Coupled modelling of hydrological processes and grassland production in two contrasting climates, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2021-316, in review, 2021.
Jia, X., Xie, B., Shao, M. A., and Zhao, C.: Primary Productivity and
Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of
China, PLOS ONE, 10, e0135490, https://doi.org/10.1371/journal.pone.0135490, 2015.
Kimball, B. A., Conley, M. M., Wang, S., Lin, X., Luo, C., Morgan, J., and
Smith, D.: Infrared heater arrays for warming ecosystem field plots, Global
Change Biol., 14, 309–320, https://doi.org/10.1111/j.1365-2486.2007.01486.x, 2008.
Kirschbaum, M. U. F.: Direct and Indirect Climate Change Effects on
Photosynthesis and Transpiration, Plant Biol., 6, 242–253,
https://doi.org/10.1055/s-2004-820883, 2004.
Kirschbaum, M. U. F. and McMillan, A. M. S.: Warming and Elevated CO2 Have
Opposing Influences on Transpiration. Which is more Important?, Curr.
Forestry Rep., 4, 51–71, https://doi.org/10.1007/s40725-018-0073-8, 2018.
Knapp, A. K., Carroll, C. J. W., Griffin-Nolan, R. J., Slette, I. J.,
Chaves, F. A., Baur, L. E., Felton, A. J., Gray, J. E., Hoffman, A. M.,
Lemoine, N. P., Mao, W., Post, A. K., and Smith, M. D.: A reality check for
climate change experiments: Do they reflect the real world?, Ecology, 99,
2145–2151, https://doi.org/10.1002/ecy.2474, 2018.
Kohfahl, C., Molano-Leno, L., Martínez, G., Vanderlinden, K.,
Guardiola-Albert, C., and Moreno, L.: Determining groundwater recharge and
vapor flow in dune sediments using a weighable precision meteo lysimeter,
Sci. Total Environ., 656, 550–557,
https://doi.org/10.1016/j.scitotenv.2018.11.415, 2019.
Konrad, W., Katul, G., and Roth-Nebelsick, A.: Leaf temperature and its
dependence on atmospheric CO2 and leaf size, Geol. J., 56,
866–885, https://doi.org/10.1002/gj.3757, 2021.
Kreyling, J. and Beier, C.: Complexity in Climate Change Manipulation
Experiments, BioScience, 63, 763–767, https://doi.org/10.1525/bio.2013.63.9.12, 2013.
Kruijt, B., Witte, J.-P. M., Jacobs, C. M. J., and Kroon, T.: Effects of
rising atmospheric CO2 on evapotranspiration and soil moisture: A practical
approach for the Netherlands, J. Hydrol., 349, 257–267,
https://doi.org/10.1016/j.jhydrol.2007.10.052, 2008.
Kunkel, R., Sorg, J., Eckardt, R., Kolditz, O., Rink, K., and Vereecken, H.:
TEODOOR: a distributed geodata infrastructure for terrestrial observation
data, Environ. Earth Sci., 69, 507–521, https://doi.org/10.1007/s12665-013-2370-7,
2013 (data available at: https://teodoor.icg.kfa-juelich.de/ddp/index.jsp (last access: 9 February 2021).
Lammertsma, E. I., Boer, H. J. D., Dekker, S. C., Dilcher, D. L., Lotter, A.
F., and Wagner-Cremer, F.: Global CO2 rise leads to reduced maximum stomatal
conductance in Florida vegetation, P. Natl. Acad.
Sci. USA, 108, 4035–4040, https://doi.org/10.1073/pnas.1100371108, 2011.
Le Houérou, H. N., Bingham, R. L., and Skerbek, W.: Relationship between
the variability of primary production and the variability of annual
precipitation in world arid lands, J. Arid Environ., 15, 1–18,
https://doi.org/10.1016/S0140-1963(18)31001-2, 1988.
Lenka, N. K., Lenka, S., Thakur, J. K., Yashona, D. S., Shukla, A. K.,
Elanchezhian, R., Singh, K. K., Biswas, A. K., and Patra, A. K.: Carbon
dioxide and temperature elevation effects on crop evapotranspiration and
water use efficiency in soybean as affected by different nitrogen levels,
Agric. Water Manage., 230, 105936, https://doi.org/10.1016/j.agwat.2019.105936,
2020.
Mastrotheodoros, T., Pappas, C., Molnar, P., Burlando, P., Manoli, G.,
Parajka, J., Rigon, R., Szeles, B., Bottazzi, M., Hadjidoukas, P., and
Fatichi, S.: More green and less blue water in the Alps during warmer
summers, Nat. Clim. Change, 10, 155–161, https://doi.org/10.1038/s41558-019-0676-5,
2020.
Miglietta, F., Peressotti, A., Vaccari, F. P., Zaldei, A., DeAngelis, P.,
and Scarascia-Mugnozza, G.: Free-air CO2 enrichment (FACE) of a poplar
plantation: the POPFACE fumigation system, New Phytol., 150, 465–476,
https://doi.org/10.1046/j.1469-8137.2001.00115.x, 2001.
Morgan, J. A., Pataki, D. E., Körner, C., Clark, H., Del Grosso, S. J.,
Grünzweig, J. M., Knapp, A. K., Mosier, A. R., Newton, P. C. D.,
Niklaus, P. A., Nippert, J. B., Nowak, R. S., Parton, W. J., Polley, H. W.,
and Shaw, M. R.: Water relations in grassland and desert ecosystems exposed
to elevated atmospheric CO2, Oecologia, 140, 11–25,
https://doi.org/10.1007/s00442-004-1550-2, 2004.
Nendel, C., Kersebaum, K. C., Mirschel, W., Manderscheid, R., Weigel, H. J.,
and Wenkel, K. O.: Testing different CO2 response algorithms against a FACE
crop rotation experiment, NJAS – Wageningen Journal of Life Sciences, 57,
17–25, https://doi.org/10.1016/j.njas.2009.07.005, 2009.
Nosalewicz, A., Siecińska, J., Kondracka, K., and Nosalewicz, M.: The
functioning of Festuca arundinacea and Lolium perenne under drought is
improved to a different extend by the previous exposure to water deficit,
Environ. Exp. Bot., 156, 271–278,
https://doi.org/10.1016/j.envexpbot.2018.09.016, 2018.
Obermeier, W. A., Lehnert, L. W., Ivanov, M. A., Luterbacher, J., and
Bendix, J.: Reduced Summer Aboveground Productivity in Temperate C3
Grasslands Under Future Climate Regimes, Earth's Future, 6, 716–729,
https://doi.org/10.1029/2018ef000833, 2018.
Padilla, F. M., Aarts, B. H. J., Roijendijk, Y. O. A., de Caluwe, H.,
Mommer, L., Visser, E. J. W., and de Kroon, H.: Root plasticity maintains
growth of temperate grassland species under pulsed water supply, Plant
Soil, 369, 377–386, https://doi.org/10.1007/s11104-012-1584-x, 2013.
Paschalis, A., Fatichi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen,
L., Chang, J., De Kauwe, M., Estiarte, M., Goll, D., Hanson, P. J., Harper,
A. B., Hou, E., Kigel, J., Knapp, A. K., Larsen, K. S., Li, W., Lienert, S.,
Luo, Y., Meir, P., Nabel, J. E. M. S., Ogaya, R., Parolari, A. J., Peng, C.,
Peñuelas, J., Pongratz, J., Rambal, S., Schmidt, I. K., Shi, H.,
Sternberg, M., Tian, H., Tschumi, E., Ukkola, A., Vicca, S., Viovy, N.,
Wang, Y.-P., Wang, Z., Williams, K., Wu, D., and Zhu, Q.: Rainfall
manipulation experiments as simulated by terrestrial biosphere models: Where
do we stand?, Global Change Biol., 26, 3336–3355, https://doi.org/10.1111/gcb.15024, 2020.
Peters, A., Groh, J., Schrader, F., Durner, W., Vereecken, H., and Pütz,
T.: Towards an unbiased filter routine to determine precipitation and
evapotranspiration from high precision lysimeter measurements, J.
Hydrol., 549, 731–740, https://doi.org/10.1016/j.jhydrol.2017.04.015, 2017.
Peters, W., Bastos, A., Ciais, P., and Vermeulen, A.: A historical,
geographical and ecological perspective on the 2018 European summer drought,
Philos. T. Roy. Soc. B, 375,
20190505, https://doi.org/10.1098/rstb.2019.0505, 2020.
Piepho, H.-P., Herndl, M., Pötsch, E. M., and Bahn, M.: Designing an
experiment with quantitative treatment factors to study the effects of
climate change, J. Agron. Crop Sci., 203, 584–592,
https://doi.org/10.1111/jac.12225, 2017.
Pütz, T., Kiese, R., Wollschläger, U., Groh, J., Rupp, H.,
Zacharias, S., Priesack, E., Gerke, H. H., Gasche, R., Bens, O., Borg, E.,
Baessler, C., Kaiser, K., Herbrich, M., Munch, J.-C., Sommer, M., Vogel,
H.-J., Vanderborght, J., and Vereecken, H.: TERENO-SOILCan: a
lysimeter-network in Germany observing soil processes and plant diversity
influenced by climate change, Environ. Earth Sci., 75, 1–14,
https://doi.org/10.1007/s12665-016-6031-5, 2016.
Pütz, T., Kiese, R., Groh, J., Vogel, H.-J., Rupp, H., Zacharias, S.,
Priesack, E., Gerke, H., Gasche, R., Borg, E., Kaiser, K., Sommer, M.,
Vanderborght, J., and Vereecken, H.: Studying the effects of climate and
land use on ecosystems: The lysimeter network TERENO-SOILCAN, in: Novel
Methods and Results of Landscape Research in Europe, Central Asia and
Siberia (in five volumes). Vol. 1. Landscapes in the 21th Century: Status
Analyses, Basic Processes and Research Concepts, edited by: Sychev, V. G.,
and Mueller, L., Publishing House FSBSI Pryanishnikov Institute of
Agrochemistry, Moscow, 504, 2018.
Rahmati, M., Groh, J., Graf, A., Pütz, T., Vanderborght, J., and
Vereecken, H.: On the impact of increasing drought on the relationship
between soil water content and evapotranspiration of a grassland, Vadose
Zone J., 19, e20029, https://doi.org/10.1002/vzj2.20029, 2020.
R Core Team: R: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, 2016.
Riedel, T. and Weber, T. K. D.: Review: The influence of global change on
Europe's water cycle and groundwater recharge, Hydrogeology J., 28, 1939–1959,
https://doi.org/10.1007/s10040-020-02165-3, 2020.
Roy, J., Picon-Cochard, C., Augusti, A., Benot, M.-L., Thiery, L.,
Darsonville, O., Landais, D., Piel, C., Defossez, M., Devidal, S., Escape,
C., Ravel, O., Fromin, N., Volaire, F., Milcu, A., Bahn, M., and Soussana,
J.-F.: Elevated CO2 maintains grassland net carbon uptake under a future
heat and drought extreme, P. Natl. Acad. Sci. USA, 113, 6224–6229,
https://doi.org/10.1073/pnas.1524527113, 2016.
Schaumberger, A.: Räumliche Modelle zur Vegetations- und Ertragsdynamik
im Wirtschaftsgrünland, PhD, Institut für Geoinformation,
Technische Universität Graz, Graz, 264 pp., 2011.
Schirpke, U., Kohler, M., Leitinger, G., Fontana, V., Tasser, E., and
Tappeiner, U.: Future impacts of changing land-use and climate on ecosystem
services of mountain grassland and their resilience, Ecosystem Services, 26,
79–94, https://doi.org/10.1016/j.ecoser.2017.06.008, 2017.
Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., Ciais,
P., Hovenden, M. J., Leuzinger, S., Beier, C., Kardol, P., Xia, J., Liu, Q.,
Ru, J., Zhou, Z., Luo, Y., Guo, D., Adam Langley, J., Zscheischler, J.,
Dukes, J. S., Tang, J., Chen, J., Hofmockel, K. S., Kueppers, L. M., Rustad,
L., Liu, L., Smith, M. D., Templer, P. H., Quinn Thomas, R., Norby, R. J.,
Phillips, R. P., Niu, S., Fatichi, S., Wang, Y., Shao, P., Han, H., Wang,
D., Lei, L., Wang, J., Li, X., Zhang, Q., Li, X., Su, F., Liu, B., Yang, F.,
Ma, G., Li, G., Liu, Y., Liu, Y., Yang, Z., Zhang, K., Miao, Y., Hu, M.,
Yan, C., Zhang, A., Zhong, M., Hui, Y., Li, Y., and Zheng, M.: A
meta-analysis of 1,119 manipulative experiments on terrestrial
carbon-cycling responses to global change, Nat. Ecol. Evol., 3,
1309–1320, https://doi.org/10.1038/s41559-019-0958-3, 2019.
Sorokin, Y., Zelikova, T. J., Blumenthal, D., Williams, D. G., and Pendall,
E.: Seasonally contrasting responses of evapotranspiration to warming and
elevated CO2 in a semiarid grassland, Ecohydrology, 10, e1880,
https://doi.org/10.1002/eco.1880, 2017.
Tello-García, E., Huber, L., Leitinger, G., Peters, A., Newesely, C.,
Ringler, M.-E., and Tasser, E.: Drought- and heat-induced shifts in
vegetation composition impact biomass production and water use of alpine
grasslands, Environ. Exp. Bot., 169, 103921,
https://doi.org/10.1016/j.envexpbot.2019.103921, 2020.
Thornton, P. K., Ericksen, P. J., Herrero, M., and Challinor, A. J.: Climate
variability and vulnerability to climate change: a review, Global Change
Biol., 20, 3313–3328, https://doi.org/10.1111/gcb.12581, 2014.
Tomaszkiewicz, M., Abou Najm, M., Beysens, D., Alameddine, I., Bou Zeid, E.,
and El-Fadel, M.: Projected climate change impacts upon dew yield in the
Mediterranean basin, Sci. Total Environ., 566, 1339–1348,
https://doi.org/10.1016/j.scitotenv.2016.05.195, 2016.
Trosseille, J., Mongruel, A., Royon, L., and Beysens, D.: Radiative cooling
for dew condensation, Int. J. Heat Mass T., 172,
121160, https://doi.org/10.1016/j.ijheatmasstransfer.2021.121160, 2021.
Wang, Y., Sun, J., Liu, M., Zeng, T., Tsunekawa, A., Mubarak, A. A., and
Zhou, H.: Precipitation-use efficiency may explain net primary productivity
allocation under different precipitation conditions across global grassland
ecosystems, Global Ecol. Conserv., 20, e00713,
https://doi.org/10.1016/j.gecco.2019.e00713, 2019.
Wieser, G., Hammerle, A., and Wohlfahrt, G.: The Water Balance of Grassland
Ecosystems in the Austrian Alps, Arctic Antarct. Alpine Res., 40,
439–445, https://doi.org/10.1657/1523-0430(07-039)[WIESER]2.0.CO;2, 2008.
Yuan, Z. Y., Jiao, F., Shi, X. R., Sardans, J., Maestre, F. T.,
Delgado-Baquerizo, M., Reich, P. B., and Peñuelas, J.: Experimental and
observational studies find contrasting responses of soil nutrients to
climate change, eLife, 6, e23255, https://doi.org/10.7554/eLife.23255, 2017.
Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions
for comparison of simulated and observed hydrological time series,
R package version 0.3-10, available at: http://hzambran.github.io/hydroGOF/ (last access: 22 October 2021), 2017.
Zhang, J., Zuo, X., Zhao, X., Ma, J., and Medina-Roldán, E.: Effects of
rainfall manipulation and nitrogen addition on plant biomass allocation in a
semiarid sandy grassland, Sci. Rep.-UK, 10, 9026,
https://doi.org/10.1038/s41598-020-65922-0, 2020.
Zhang, Q., Wang, S., Yue, P., and Wang, S.: Variation characteristics of
non-rainfall water and its contribution to crop water requirements in
China's summer monsoon transition zone, J. Hydrol., 578, 124039,
https://doi.org/10.1016/j.jhydrol.2019.124039, 2019.
Zheng, Y., Li, F., Hao, L., Shedayi, A. A., Guo, L., Ma, C., Huang, B., and
Xu, M.: The optimal CO2 concentrations for the growth of three perennial
grass species, BMC Plant Biol., 18, 27–27, https://doi.org/10.1186/s12870-018-1243-3, 2018.
Zhou, T., Liu, M., Sun, J., Li, Y., Shi, P., Tsunekawa, A., Zhou, H., Yi,
S., and Xue, X.: The patterns and mechanisms of precipitation use efficiency
in alpine grasslands on the Tibetan Plateau, Agric. Ecosyst.
Environ., 292, 106833, https://doi.org/10.1016/j.agee.2020.106833, 2020.
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
Lysimeter-based manipulative and observational experiments were used to identify responses of...