Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4357-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4357-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Daily soil temperature modeling improved by integrating observed snow cover and estimated soil moisture in the USA Great Plains
Haidong Zhao
Department of Agronomy, Kansas State University, Manhattan, KS, USA
Gretchen F. Sassenrath
Department of Agronomy, Kansas State University, Manhattan, KS, USA
Southeast Research and Extension Center, Kansas State University, Parsons, KS, USA
Mary Beth Kirkham
Department of Agronomy, Kansas State University, Manhattan, KS, USA
Nenghan Wan
Department of Agronomy, Kansas State University, Manhattan, KS, USA
Xiaomao Lin
CORRESPONDING AUTHOR
Department of Agronomy, Kansas State University, Manhattan, KS, USA
Related authors
Nenghan Wan, Xiaozhen Xiong, Gerard J. Kluitenberg, J. M. Shawn Hutchinson, Robert Aiken, Haidong Zhao, and Xiaomao Lin
Atmos. Chem. Phys., 23, 711–724, https://doi.org/10.5194/acp-23-711-2023, https://doi.org/10.5194/acp-23-711-2023, 2023
Short summary
Short summary
This study used new TROPOMI measurements of NO2 and CO to characterize regional biomass burning characteristics and efficiency. We found that the NO2 / CO emission ratio was consistent with recent studies over temperate forest fires but slightly lower in savanna vegetation fires. Our results can help identify the relative contribution of smoldering and flaming activities as well as their impacts on the regional atmospheric composition and air quality.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024, https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Short summary
Global warming occurs at a rate of 0.21 K per decade, resulting in about 9.5 % K−1 of water vapor response to temperature from 1993 to 2021. Terrestrial areas experienced greater warming than the ocean, with a ratio of 2 : 1. The total precipitable water change in response to surface temperature changes showed a variation around 6 % K−1–8 % K−1 in the 15–55° N latitude band. Further studies are needed to identify the mechanisms leading to different water vapor responses.
Nenghan Wan, Xiaozhen Xiong, Gerard J. Kluitenberg, J. M. Shawn Hutchinson, Robert Aiken, Haidong Zhao, and Xiaomao Lin
Atmos. Chem. Phys., 23, 711–724, https://doi.org/10.5194/acp-23-711-2023, https://doi.org/10.5194/acp-23-711-2023, 2023
Short summary
Short summary
This study used new TROPOMI measurements of NO2 and CO to characterize regional biomass burning characteristics and efficiency. We found that the NO2 / CO emission ratio was consistent with recent studies over temperate forest fires but slightly lower in savanna vegetation fires. Our results can help identify the relative contribution of smoldering and flaming activities as well as their impacts on the regional atmospheric composition and air quality.
Seth Kutikoff, Xiaomao Lin, Steven R. Evett, Prasanna Gowda, David Brauer, Jerry Moorhead, Gary Marek, Paul Colaizzi, Robert Aiken, Liukang Xu, and Clenton Owensby
Atmos. Meas. Tech., 14, 1253–1266, https://doi.org/10.5194/amt-14-1253-2021, https://doi.org/10.5194/amt-14-1253-2021, 2021
Short summary
Short summary
Fast-response infrared gas sensors have been used over 3 decades for long-term monitoring of water vapor fluxes. As optically improved infrared gas sensors are newly employed, we evaluated the performance of water vapor density and water vapor flux from three generations of infrared gas sensors in Bushland, Texas, USA. From our experiments, fluxes from the old sensors were best representative of evapotranspiration based on a world-class lysimeter reference measurement.
Cited articles
Abu-Hamdeh, N. H.: Thermal Properties of Soils as affected by Density and
Water Content, Biosyst. Eng., 86, 97–102, https://doi.org/10.1016/s1537-5110(03)00112-0, 2003.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements-FAO
Irrigation and drainage paper 56, Fao, Rome, available at: http://www.fao.org/docrep/X0490E/X0490E00.HTM (last access: 23 July 2021), 1998.
Araghi, A., Mousavi-Baygi, M., Adamowski, J., Martinez, C., and van der Ploeg, M.: Forecasting soil temperature based on surface air temperature using a wavelet artificial neural network, Meteorol. Appl., 24, 603–611, https://doi.org/10.1002/met.1661, 2017.
Badache, M., Eslami-Nejad, P., Ouzzane, M., Aidoun, Z., and Lamarche, L.: A
new modeling approach for improved ground temperature profile determination,
Renew. Energy, 85, 436–444, https://doi.org/10.1016/j.renene.2015.06.020, 2016.
Badía, D., López-García, S., Martí, C., Ortíz-Perpiñá, O., Girona-García, A., and Casanova-Gascón, J.: Burn effects on soil properties associated to heat
transfer under contrasting moisture content, Sci. Total Environ., 601, 1119–1128, 2017.
Bergjord, A. K., Bonesmo, H., and Skjelvåg, A. O.: Modelling the course
of frost tolerance in winter wheat, Eur. J. Agron., 28, 321–330, https://doi.org/10.1016/j.eja.2007.10.002, 2008.
Bittelli, M., Ventura, F., Campbell, G. S., Snyder, R. L., Gallegati, F., and Pisa, P. R.: Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils, J. Hydrol., 362, 191–205,
https://doi.org/10.1016/j.jhydrol.2008.08.014, 2008.
Brock, F. V. and Crawford, K. C.: The Oklahoma Mesonet_A Technical Overview, J. Atmos. Ocean. Tech., 12, 5–19, https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2, 1995.
Chalhoub, M., Bernier, M., Coquet, Y., and Philippe, M.: A simple heat and
moisture transfer model to predict ground temperature for shallow ground
heat exchangers, Renew. Energy, 103, 295–307, https://doi.org/10.1016/j.renene.2016.11.027, 2017.
Das, N. N., Entekhabi, D., Dunbar, R. S., Chaubell, M. J., Colliander, A.,
Yueh, S., Jagdhuber, T., Chen, F., Crow, W., and O'Neill, P. E.: The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product, Remote Sens. Environ., 233, 111380, https://doi.org/10.1016/j.rse.2019.111380, 2019.
Dhungel, R., Aiken, R., Evett, S. R., Colaizzi, P. D., Marek, G., Moorhead, J. E., Baumhardt, R. L., Brauer, D., Kutikoff, S., and Lin, X.: Energy
Imbalance and Evapotranspiration Hysteresis under an Advective Environment:
Evidence from Lysimeter, Eddy Covariance, and Energy Balance Modelling,
Geophys. Res. Lett., 48, e2020GL091203, https://doi.org/10.1029/2020GL091203, 2021.
Dirmeyer, P. A. and Norton, H. E.: Indications of surface and sub-surface
hydrologic properties from SMAP soil moisture retrievals, Hydrology, 53, 36, https://doi.org/10.3390/hydrology5030036, 2018.
Dolschak, K., Gartner, K., and Berger, T. W.: A new approach to predict soil
temperature under vegetated surfaces, Model. Earth Syst. Environ., 1, 32, https://doi.org/10.1007/s40808-015-0041-2, 2015.
Dutta, B., Grant, B. B., Congreves, K. A., Smith, W. N., Wagner-Riddle, C.,
VanderZaag, A. C., Tenuta, M., and Desjardins, R. L.: Characterising effects
of management practices, snow cover, and soil texture on soil temperature: Model development in DNDC, Biosyst. Eng., 168, 54–72,
https://doi.org/10.1016/j.biosystemseng.2017.02.001, 2018.
Evett, S. R., Colaizzi, P. D., Lamm, F. R., O'Shaughnessy, S. A., Heeren, D.
M., Trout, T. J., Kranz, W. L., and Lin, X.: Past, present, and future of
irrigation on the US Great Plains, T. ASABE, 63, 703–729, 2020.
Goulden, M., Wofsy, S., Harden, J., Trumbore, S. E., Crill, P., Gower, S.,
Fries, T., Daube, B., Fan, S.-M., and Sutton, D.: Sensitivity of boreal
forest carbon balance to soil thaw, Science, 279, 214–217, 1998.
Gupta, S. C., Radke, J. K., Swan, J. B., and Moncrief, J. F.: Predicting soil temperature under a ridge-furrow system in the U.S. Corm Belt, Soil Till. Res., 18, 145–165, 1990.
Haacker, E. M., Cotterman, K. A., Smidt, S. J., Kendall, A. D., and Hyndman,
D. W.: Effects of management areas, drought, and commodity prices on groundwater decline patterns across the High Plains Aquifer, Agr. Water Manage., 218, 259–273, 2019.
Hillel, D.: Environmental soil physics: Fundamentals, applications, and
environmental considerations, Academic Press, San Diego, CA, USA, 1998.
HPRCC: AWDN, available at: https://hprcc.unl.edu/awdn/, last access: 23 July 2021.
Huang, Y., Jiang, J., Ma, S., Ricciuto, D., Hanson, P. J., and Luo, Y.: Soil
thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation, J. Geophys. Res.-Biogeo., 122, 2046–2063, https://doi.org/10.1002/2016jg003725, 2017.
Kang, S., Kim, S., Oh, S., and Lee, D.: Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air
temperature, Forest Ecol. Manage., 136, 173–184, 2000.
Kutikoff, S., Lin, X., Evett, S. R., Gowda, P., Brauer, D., Moorhead, J., Marek, G., Colaizzi, P., Aiken, R., Xu, L., and Owensby, C.: Water vapor density and turbulent fluxes from three generations of infrared gas analyzers, Atmos. Meas. Tech., 14, 1253–1266, https://doi.org/10.5194/amt-14-1253-2021, 2021.
Lakshmi, V., Jackson, T. J., and Zehrfuhs, D.: Soil moisture–temperature
relationships: results from two field experiments, Hydrol. Process., 17, 3041–3057, 2003.
Liang, L. L., Riveros-Iregui, D. A., Emanuel, R. E., and McGlynn, B. L.: A
simple framework to estimate distributed soil temperature from discrete air
temperature measurements in data-scarce regions, J. Geophys. Res.-Atmos., 119, 407–417, https://doi.org/10.1002/2013jd020597, 2014.
Lin, X., Pielke Sr, R. A., Mahmood, R., Fiebrich, C. A., and Aiken, R.:
Observational evidence of temperature trends at two levels in the surface
layer, Atmos. Chem. Phys., 16, 827–841, https://doi.org/10.5194/acp-16-827-2016, 2016.
Lin, X., Harrington, J., Ciampitti, I., Gowda, P., Brown, D., and Kisekka, I.: Kansas trends and changes in temperature, precipitation, drought, and
frost-free days from the 1890s to 2015, J. Contemp. Water Res. Educ., 162, 18–30, 2017.
Lu, Y., Lu, S., Horton, R., and Ren, T.: An Empirical Model for Estimating
Soil Thermal Conductivity from Texture, Water Content, and Bulk Density,
Soil Sci. Soc. Am. J., 78, 1859–1868, https://doi.org/10.2136/sssaj2014.05.0218, 2014.
Menne, M. J., Williams Jr., C. N., and Vose, R. S.: The US Historical Climatology Network monthly temperature data, version 2, B. Am. Meteorol. Soc., 90, 993–1008, 2009.
Mesonet: OK Mesonet, available at: http://www.mesonet.org/, last access: 23 July 2021.
Meyer, N., Welp, G., and Amelung, W.: The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional
scale based on environmental soil classes, Global Biogeochem. Cy., 32, 306–323, 2018.
Mihalakakou, G., Santamouris, M., Lewis, J., and Asimakopoulos, D.: On the
application of the energy balance equation to predict ground temperature
profiles, Solar Energy, 60, 181–190, 1997.
Miller, K., Luck, J., Heeren, D. M., Lo, T., Martin, D., and Barker, J.: A
geospatial variable rate irrigation control scenario evaluation methodology
based on mining root zone available water capacity, Precis. Agricult., 19, 666–683, 2018.
Nagare, R. M., Schincariol, R. A., Quinton, W. L., and Hayashi, M.: Effects of freezing on soil temperature, freezing front propagation and moisture redistribution in peat: laboratory investigations, Hydrol. Earth Syst. Sci., 16, 501–515, https://doi.org/10.5194/hess-16-501-2012, 2012.
Nobel, P. S. and Geller, G. N.: Temperature modelling of wet and dry desert
soils, J. Ecol., 75, 247–258, 1987.
NRCS: Soil Climate Analysis Network (SCAN) Data & Products, available at: https://www.wcc.nrcs.usda.gov/scan/, last access: 23 July 2021.
Onwuka, B. and Mang, B.: Effects of soil temperature on some soil properties
and plant growth, Adv. Plants Agric. Res., 8, 34–37, 2018.
Paulsen, G. M. and Heyne, E. G.: Grain production of winter wheat after
spring freeze injury, Agron. J., 75, 705–707, https://doi.org/10.2134/agronj1983.00021962007500040031x, 1983.
Persson, T. and Wirén, A.: Nitrogen mineralization and potential nitrification at different depths in acid forest soils, in: Nutrient uptake
and cycling in forest ecosystems, Springer, 55–65, 1995.
Persson, T., Bergjord Olsen, A. K., Nkurunziza, L., Sindhöj, E., and Eckersten, H.: Estimation of Crown Temperature of Winter Wheat and the Effect on Simulation of Frost Tolerance, J. Agron. Crop Sci., 203, 161–176, https://doi.org/10.1111/jac.12187, 2017.
Plauborg, F.: Simple model for 10 cm soil temperature in different soilswith
short grass, Eur. J. Agron., 17, 173–179, 2002.
Qi, J., Li, S., Li, Q., Xing, Z., Bourque, C. P.-A., and Meng, F.-R.: A new
soil-temperature module for SWAT application in regions with seasonal snow
cover, J. Hydrol., 538, 863–877, 2016.
Qi, J., Zhang, X., and Cosh, M. H.: Modeling soil temperature in a temperate
region: A comparison between empirical and physically based methods in SWAT,
Ecol. Eng., 129, 134–143, 2019.
Rankinen, K., Karvonen, T., and Butterfield, D.: A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing, Hydrol. Earth Syst. Sci., 8, 706–716, https://doi.org/10.5194/hess-8-706-2004, 2004.
Rosenberg, N. J., Blad, B. L., and Verma, S. B.: Microclimate: the biological environment, John Wiley & Sons, New York, NY, USA, 1983.
Smith, K. A.: Soil and environmental analysis: physical methods, revised, and expanded, Marcel Dekker, New York, 2000.
Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D., and Torn, M. S.:
CMIP5 models predict rapid and deep soil warming over the 21st century, J. Geophys. Res.-Biogeo., 125, e2019JG005266, https://doi.org/10.1029/2019JG005266, 2020.
Stone, P., Sorensen, I., and Jamieson, P.: Effect of soil temperature on
phenology, canopy development, biomass and yield of maize in a cool-temperate climate, Field Crops Res., 63, 169–178, 1999.
Tack, J., Barkley, A., and Nalley, L. L.: Effect of warming temperatures on
US wheat yields, P. Natl. Acad. Sci. USA, 112, 6931–6936, https://doi.org/10.1073/pnas.1415181112, 2015.
Williams, J., Jones, C., and Dyke, P. T.: A modeling approach to determining
the relationship between erosion and soil productivity, T. ASAE, 27, 129–144, 1984.
Williams, J. R., Jones, C. A., Kiniry, J. R., and Spanel, D. A.: The EPIC
Crop Growth Model, T. Am. Soc. Agricul. Eng., 32, 497–511, 1989.
Wu, S. H. and Jansson, P.-E.: Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem, Hydrol. Earth Syst. Sci., 17, 735–749, https://doi.org/10.5194/hess-17-735-2013, 2013.
Yan, Q., Duan, Z., Mao, J., Li, X., and Dong, F.: Effects of root-zone
temperature and N, P, and K supplies on nutrient uptake of cucumber (Cucumis
sativus L.) seedlings in hydroponics, Soil Sci. Plant Nutr., 58, 707–717, https://doi.org/10.1080/00380768.2012.733925, 2012.
Yener, D., Ozgener, O., and Ozgener, L.: Prediction of soil temperatures for
shallow geothermal applications in Turkey, Renew. Sustain. Energ. Rev., 70, 71–77, https://doi.org/10.1016/j.rser.2016.11.065, 2017.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004rg000157, 2005.
Zhang, T., Shen, S., Cheng, C., Song, C., and Ye, S.: Long-Range Correlation
Analysis of Soil Temperature and Moisture on A'rou Hillsides, Babao River
Basin, J. Geophys. Res.-Atmos., 123, 12606–12620, https://doi.org/10.1029/2018jd029094, 2018.
Zhang, Y., Wang, S., Barr, A. G., and Black, T.: Impact of snow cover on soil temperature and its simulation in a boreal aspen forest, Cold Reg. Sci. Technol., 52, 355–370, 2008.
Zheng, D., Hunt Jr., E. R., and Running, S. W.: A daily soil temperature model based on air temperature and precipitation for continental applications, Clim. Res., 2, 183–191, 1993.
Short summary
This study was done to develop an improved soil temperature model for the USA Great Plains by using common weather station variables as inputs. After incorporating knowledge of estimated soil moisture and observed daily snow depth, the improved model showed a near 50 % gain in performance compared to the original model. We conclude that our improved model can better estimate soil temperature at the surface soil layer where most hydrological and biological processes occur.
This study was done to develop an improved soil temperature model for the USA Great Plains by...