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Abstract. Soil temperature (Ts) plays a critical role in land–
surface hydrological processes and agricultural ecosystems.
However, soil temperature data are limited in both temporal
and spatial scales due to the configuration of early weather
station networks in the USA Great Plains. Here, we examined
an empirical model (EM02) for predicting daily soil temper-
ature (Ts) at the 10 cm depth across Nebraska, Kansas, Ok-
lahoma, and parts of Texas that comprise the USA winter
wheat belt. An improved empirical model (iEM02) was de-
veloped and calibrated using available historical climate data
prior to 2015 from 87 weather stations. The calibrated mod-
els were then evaluated independently, using the latest 5-year
observations from 2015 to 2019. Our results suggested that
the iEM02 had, on average, an improved root mean square
error (RMSE) of 0.6 ◦C for 87 stations when compared to
the original EM02 model. Specifically, after incorporating
the changes in soil moisture and daily snow depth, the im-
proved model was 50 % more accurate, as demonstrated by
the decrease in RMSE. We conclude that, in the USA Great
Plains, the iEM02 model can better estimate soil temperature
at the surface soil layer where most hydrological and biologi-
cal processes occur. Both seasonal and spatial improvements
made in the improved model suggest that it can provide a
daily soil temperature modeling tool that overcomes the de-
ficiencies of soil temperature data used in assessments of cli-
matic changes, hydrological modeling, and winter wheat pro-
duction in the USA Great Plains.

1 Introduction

A reliable estimate of soil temperature (Ts) is useful for
understanding agricultural ecological systems, hydrological
processes, and land–atmosphere interactions (Lembrechts et
al., 2020; Qi et al., 2016; Zhang et al., 2018) due to the
fact that Ts governs physical, chemical, and biological pro-
cesses of the soil and interactions between the atmosphere
and land surface (Smith, 2000; Soong et al., 2020). In partic-
ular, Ts has been widely used for a better understanding of
changes in soil moisture (Lakshmi et al., 2003), the ecosys-
tem carbon balance (Goulden et al., 1998), and the nitrogen
mineralization process (Persson and Wirén, 1995), although
a larger prevalence of air temperature observations are avail-
able as a soil temperature proxy. From a practical perspec-
tive, Ts is critical for agricultural system models, such as the
crop environmental resource synthesis (CERES) models, to
assess the impacts of extreme climate on crop production and
stress tolerance, thereby allowing producers to better prepare
for proactive and reactive field management (Bergjord et al.,
2008; Persson et al., 2017; Williams et al., 1989). Frequent
extreme climate events, such as spring freezes and summer
heat stress, can impact winter wheat (Triticum aestivum L.)
growth and development, reducing grain yields by more than
7 % in the USA winter wheat belt (Tack et al., 2015; Paulsen
and Heyne, 1983). These effects are also modulated through
land–surface interaction processes (Hillel, 1998; Araghi et
al., 2017).

To improve the accuracy of crop management modeling, a
bare soil temperature (Ts) at the 10 cm depth, a standard soil
temperature variable, has commonly been considered as be-
ing a more direct and useful variable than air temperature (Ta)
measured at 1.5 or 2 m height in crop phenology (Onwuka
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and Mang, 2018), plant photosynthesis and soil respiration
(Meyer et al., 2018; Wu and Jansson, 2013), plant nutrient
uptake (Yan et al., 2012), and estimate of crop production
(Araghi et al., 2017; Hillel, 1998). There are many Ts model-
ing techniques, mostly based on the land–surface interaction
process (Qi et al., 2019; Yener et al., 2017). Most Ts models
are rooted in theories of soil heat exchange and surface en-
ergy balance (Rankinen et al., 2004; Nobel and Geller, 1987;
Chalhoub et al., 2017). The theory-based simulation for sur-
face energy balance usually includes solar radiation (in-
coming and outgoing), infrared radiation (absorbed and re-
flected), turbulent flux energy (latent heat and sensible heat),
and net ground heat flux through the ground surface into
soil layers thermodynamically (Mihalakakou et al., 1997;
Chalhoub et al., 2017). Obviously, the energy-balance-based
model usually requires more detailed near-surface and soil
variables, such as turbulent flux quantities (sensible heat flux
and latent heat flux), to make the model reliable and accurate;
however, determining quality turbulent flux quantities is not
a trivial task (Dhungel et al., 2021; Kutikoff et al., 2021).
In addition, seasonal variations in soil thermal conductiv-
ity and underestimates of actual evapotranspiration usually
lead to overestimated surface soil temperatures (Bittelli et al.,
2008). Therefore, simpler empirical models with fewer dy-
namic processes for Ts prediction have been explored (Zheng
et al., 1993; Plauborg, 2002; Liang et al., 2014; Badache
et al., 2016; Kang et al., 2000). However, these empirical
models might result in relatively large estimated errors of
over 2 ◦C due to the lack of details about physical pro-
cesses, such as uncertainties of the soil volumetric heat ca-
pacity and thermal conductivity (Badía et al., 2017). For ex-
ample, the volumetric heat capacity was higher for a clay
soil (1.48–3.54 MJ m−3 ◦C−1) than for a sand soil (1.09–
3.04 MJ m−3 ◦C−1) when the soil moisture content was be-
tween 0 to 0.25 kg kg−1 (Abu-Hamdeh, 2003). Currently, the
USA Department of Agriculture (USDA) provides a high-
resolution Gridded Soil Survey Geographic (gSSURGO)
database product (https://gdg.sc.egov.usda.gov/, last access:
23 July 2021) that includes static soil physical property data
at 10 km resolution. The gSSURGO data facilitate Ts model-
ing, especially for better performance in large-scale Ts mod-
eling due to its spatial variations in soil properties and soil
moisture. These data sets have been widely used in the esti-
mation of root zone soil water content (Miller et al., 2018)
and subsurface hydrologic properties (Dirmeyer and Norton,
2018). The empirical model proposed by Plauborg (2002)
performed better than energy-balance-based models when
applied in the USA Great Plains for the last 5 years. Due
to the lack of information about static soil properties on a
large scale 1 or 2 decades ago, either over- or underestimates
of Ts occurred, which, in turn, leads to large deviations in the
assessment of crop stress and crop production (Gupta et al.,
1990; Stone et al., 1999).

Recent studies have shown that estimated soil temperature
usually deviates from observed soil temperature in the win-

ter due to snow cover, frozen soil, and wide spatial and tem-
poral heterogeneity in frozen soil properties (Nagare et al.,
2012; Zhang et al., 2008; Rankinen et al., 2004). The im-
pact of snow cover on soil temperature has been investigated
(Rankinen et al., 2004) and is partially accounted for by in-
corporating correcting factors in land surface modeling and
ecosystem models (Zhang et al., 2008) and soil and water
assessment tools (SWAT; Qi et al., 2019). For both empiri-
cally and physically based soil temperature modules embed-
ded in SWAT, the predictions of soil temperature in regions
with thick snow cover seldom agree with field measurements
in winter (Qi et al., 2019).

In the USA Great Plains, there has been increasing interest
in improving hydrological process modeling of surface wa-
ter and groundwater due to the Ogallala Aquifer’s depletion
in recent decades (Haacker et al., 2019). However, the auto-
mated weather station networks that observed soil tempera-
ture were not commissioned in this region until the late 1980s
and early 1990s (Brock and Crawford, 1995). Not only were
there few continuous observations for Ts earlier than the
1990s, these automated weather station networks also had
limited stations in each state of the USA Great Plains. Such a
lack of reliable soil temperature data both spatially and tem-
porally makes the long-term assessment of water resources,
crop phenology, and crop production modeling difficult.

The objectives of this study include the following: (1) to
develop a robust Ts model using limited surface climate vari-
ables by integrating soil moisture and snow depth observa-
tions, (2) to demonstrate the error contributions in soil tem-
perature modeling, and (3) to evaluate the performance of an
improved model to predict Ts compared to current models.
The data sets and methods are described in Sect. 2. Section 3
provides modeling results, and conclusions are presented in
Sect. 4.

2 Data sets and methods

2.1 Weather stations and data sets

The spatial domain of this study covers the winter wheat
belt in the USA Great Plains, comprising the states of Ne-
braska (NE), Kansas (KS), Oklahoma (OK), and part of
Texas (TX), where soil texture and bulk density vary (Fig. 1).
In this study, three surface climate data sets were obtained
from (1) the Automated Weather Data Network (AWDN)
(https://hprcc.unl.edu/awdn/, last access: 23 July 2021), com-
missioned in the 1980s for Nebraska and Kansas; (2) the Ok-
lahoma Mesonet (OK Mesonet), a daily climate data source
for Oklahoma, which started in the 1990s (http://www.
mesonet.org/, last access: 23 July 2021); and (3) the Soil
and Climate Analysis Network (SCAN), which gives daily
climate observations (https://www.wcc.nrcs.usda.gov/scan/,
last access: 23 July 2021) that we selected for Texas due to
limited quality data available in its automated weather sta-
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Figure 1. Specific soil textures (a) and soil bulk density (b) at 87 weather stations in the USA winter wheat belt, including the states of
Nebraska (NE), Kansas (KS), Oklahoma (OK), and part of Texas (TX) in the USA Great Plains.

tion network. The number of selected stations was 26 in NE,
8 in KS, 44 in OK, and 9 in TX. The selection of these
87 stations was based on the completeness of climate data
and data length (at least longer than periods of continuous
15 years). In addition to the weather station data sets, soil
data sets providing soil attributes and characteristics were
obtained from the standard USDA-NRCS Soil Survey Ge-
ographic (gSSURGO) database product (https://gdg.sc.egov.
usda.gov/, last access: 23 July 2021) from which soil bulk
density (ρb; grams per cubic centimeter), soil organic matter
(fOM; percent), sand (fsa; percent), clay (fcl; percent), silt
(fsl; percent) contents, soil porosity (Ø; percent), and soil
surface albedo (α; –) were used for all weather stations. Note
that all symbols and corresponding descriptions for variables
used in this study are listed in the Table A1 (see the Ap-
pendix). The snow depth data were taken from the daily
Global Historical Climatology Network (GHCN; Menne et
al., 2009; Lin et al., 2017). Detailed data set sources and data
variables used in each data set are shown in Table A2.

2.2 Soil temperature models

2.2.1 Empirical model

There are two common soil temperature models, i.e., empir-
ical and process based. After examining both types of mod-
els for our study region, the current empirical model was se-
lected because it was more accurate than the process-based
model in this area. Plauborg (2002) developed a statistical
soil temperature (Ts; degrees Celsius) model based on the
current and previous 2 d air temperatures (Ta; degrees Cel-
sius), annual and semi-annual cycles in the soil temperature

fluctuations, and a daily soil temperature offset at a specific
site, as shown in Eq. (1) (called EM02, thereafter) as follows:

Ts,j = γ +α0Ta,j +α1Ta,j−1+α2Ta,j−2+β1 sin(ωj)

+ δ1 cos(ωj)+β2 sin(2ωj)+ δ2 cos(2ωj), (1)

where γ is an offset constant (degrees Celsius), and coeffi-
cients α0, α1, and α2 are dimensionless. The units of the co-
efficients β1, β2, δ1, and δ2 are in degrees Celsius. The j and
ω denote day of the year and annual frequency (2π/365 d or
2π/366 d in leap years) in an annual soil temperature signal.

2.2.2 Improved empirical model

The improved model, based on the EM02, was developed
through the following three steps: (1) prolonging the time
window of Ta to include 1 extra prior day Ta; (2) construct-
ing a new fictive environmental temperature (Tenv; degrees
Celsius), defined as a function of air temperature and sur-
face skin temperature (Tsfc; degrees Celsius; Williams et al.,
1984) by utilizing Tenv to replace the original Ta; and, most
importantly (3), incorporating site-specific daily soil ther-
mal diffusivity and snow depth. This improved empirical
model (iEM02) can be described by Eqs. (2)–(6) as follows:

Ts,j =
(
γ +α0Tenv,j +α1Tenv,j−1+α2Tenv,j−2

+α3Tenv,j−3+β1 sin(ωj)+ δ1 cos(ωj)
+β2 sin(2ωj)+ δ2 cos(2ωj))× f

(
DS,j

)
×DReff,j (2)

https://doi.org/10.5194/hess-25-4357-2021 Hydrol. Earth Syst. Sci., 25, 4357–4372, 2021

https://gdg.sc.egov.usda.gov/
https://gdg.sc.egov.usda.gov/


4360 H. Zhao et al.: Daily soil temperature modeling improved by integrating observed snow cover

Figure 2. Effects of soil moisture on (a) thermal conductivity (λ) and (b) soil thermal diffusivity (k), as obtained by Eqs. (7)–(11).

Tenv,j = βTa,j + (1−β)Tsfc,j (3)

Tsfc,j = (1−α)

(
T a,j +

(
T max,j − T a,j

)√Rs,j

33.5

)
+αTsfc,j−1 (4)

f
(
DS,j

)
= exp

(
−fSDS,j

)
(5)

DReff,j = exp
(
k0

√
−h

π

ks,jp

)
, (6)

where a fictive environmental temperature (Tenv) is assumed
to be the weighted mean of air temperature (Ta) at 2 m and
surface temperature (Tsfc). The β refers to the weighting co-
efficient, which defines the relative weight of the air tem-
perature. This weighted fictive temperature will help weigh
surface cooling and heating due to radiative and convective
process (Dolschak et al., 2015). The Tsfc in Eq. (2) was esti-
mated iteratively from the 3 d running average of daily air
temperature (T a), daily maximum temperature (T max; de-
grees Celsius), and daily solar radiation (Rs; megajoule per
square meter per day, hereafter MJ m−2 d−1). The α denotes
soil surface albedo (–) and initial Tsfc,j−1 was set as annual
mean Ta in Eq. (3). The constant of 33.5 is an empirical con-
stant (MJ m−2 d−1; Williams et al., 1984). The function of
snow cover on the j th day is given as f (DS,j ) and was in-
troduced based on the work of Rankinen et al. (2004). The
fS and DS are empirical soil heat damping parameters (me-
ters) and snow depth (meters). The damping ratio of soil
at the soil depth of h (h= 0.1 m in this study) is DReff,j
(Rosenberg et al., 1983). The weighting coefficient for the
damping ratio (–) is k0. The p represents the period (365 or
366 d in leap years) in an annual cycle. The thermal diffusiv-
ity ks,j (square meters per second) is equivalent to thermal
conductivity (λ; watts per meter per kelvin) divided by volu-
metric heat capacity (C; joule per cubic meter per kelvin) and
reflects both the ability of soil to transfer heat and to change
temperature when the heat is supplied or dissipated (Fig. 2).
The estimate of thermal conductivity (λ) and volumetric heat

capacity (C) can be described by Eqs. (7)–(11) (Lu et al.,
2014) as follows:

λj = λdry+ exp
(
b1− θ

−b2
j

)
(7)

λdry =−0.56∅+ 0.51 (8)
b1 = 1.97fsa+ 1.87ρb− 1.36fsaρb− 0.95 (9)
b2 = 0.67fcl+ 0.24 (10)

Cj = 1.92× 106fm+ 2.51× 106fOM+ 4.18× 106θj , (11)

where λdry is oven-dried soil thermal conductivity derived
from a linear function of soil porosity (Ø; percent). Both
b1 and b2 are the shape factors of the λ curve that are es-
timated by soil texture components. Soil water content is
defined as θj on the j th day (cubic centimeters per cubic
centimeter) and was calculated by the soil water balance
model (Chalhoub et al., 2017). Briefly, the iEM02 operates
on a daily time step as daily soil moisture is a function of
soil moisture storage capacity (θ∗; millimeters), 24 h pre-
cipitation (P ; millimeters), and Penman–Monteith reference
evapotranspiration (ET0; millimeters) and is estimated by
Eqs. (12)–(15) as follows:

θr = 0.026+ 0.005fcl+ 0.0158fOM (12)

βd,j = 1− exp
(
−

6.68θjh
(θs− θr)h

)
(13)

Ej =

{
Pj +βd,j

(
ET0,j −Pj

)
Pj < ET0,j

ET0,j Pj ≥ ET0,j
(14)

θjh=

{
θrh θjh≤ θrh

θj−1h+
(
Pj−1−Ej−1

)
θrh < θjh < θ

∗h
θsh θjh≥ θ

∗h
, (15)

where θr and θs define residual and saturated volumetric soil
water contents (cubic centimeters per cubic centimeter). θs is
assumed to be equal to soil porosity while βd,j is a weighting
coefficient for the difference between ET0 (Allen et al., 1998)
and P on the j th day (–). The initial soil water content (θj−1)
is assumed to be equal half of soil porosity.

Hydrol. Earth Syst. Sci., 25, 4357–4372, 2021 https://doi.org/10.5194/hess-25-4357-2021



H. Zhao et al.: Daily soil temperature modeling improved by integrating observed snow cover 4361

Figure 3. Percentage increments of soil temperature modeling improvement in iEM02, as determined by RMSE changes[
−

100
(
RMSEimproved−RMSEoriginal

)
RMSEoriginal

]
(a) after introducing an air temperature of Ta,j−3, (b) after substituting the air temperature Ta with a

fictive environmental temperature (Tenv), and (c) after integrating the impacts of soil thermal diffusivity and snow cover. The color bar was
coded by the improved percentage of iEM02 against the EM02 model.

Figure 4. Spatial variations in the improved empirical model (iEM) coefficients are as follows: (a–d) for α0, α1, α2, and α3; and (e–h) for
β1, δ1, β2, and δ2. Panel (i) shows the snow damping ratio (fs) and (j) the soil damping ratio coefficients (k0). The color bar defines the
values of the model’s coefficients.
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Figure 5. The 1 : 1 plots of absolute mean errors between the complete model and reduced model, where one independent variable term
was removed in the improved empirical model (iEM02). Panels (a–d) compare results with vs. without α0 in Nebraska (NE), Kansas (KS),
Oklahoma (OK), and Texas (TX), respectively; panels (e–h) compare results with vs. without β1 in NE, KS, OK, and TX, respectively; and
panels (i–l) compare results with vs. without δ1 in NE, KS, OK, and TX, respectively. The ratio of the root mean square error (RMSE) shown
includes both RMSE values calculated from complete and reduced models, respectively. The color bar indicates the number of observed data
points.

Climate observation data prior to the year 2015 were se-
lected to calibrate the iEM02 for each station. For NE, KS,
and OK, daily soil temperature observations at each station
had at least 10 years of daily time series for calibrations. Data
sets from TX had at least 4 years available for calibrations.
Climate variables used for calibration included air tempera-
ture, precipitation, snow depth, solar radiation daily observa-
tions, and the site’s static soil property. The optimal param-
eter values for each weather station were estimated when a
minimum root mean square error (RMSE) between estimated
and observed soil temperature was achieved. These parame-
ters, for all 87 stations, are listed in Table A3.

2.3 iEM02 evaluation

In the data sets selected, all 87 station observations were
longer than 15 years, except for the stations located in Texas.
The last 5-year observations (2015 to 2019) were used to
independently conduct model validation for all 87 stations.
The metrics used to evaluate model performance were RMSE
and mean absolute error (MAE). Soil temperature model-
ing improvement was evaluated by relative RMSE changes[
−

100(RMSEimproved−RMSEoriginal)
RMSEoriginal

]
and by intercomparison be-

tween the fully complete model and the reduced model.
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Figure 6. Spatial distribution of the mean absolute er-
ror (MAE) (a, c) and RMSE (b, d) for an empirical model
(EM02; a, b) and improved modelEM02 (iEM02; c, d). The color
bar defines values of MAE (in degrees Celsius) and RMSE (in
degrees Celsius).

3 Results and discussion

3.1 Improved empirical model (iEM02)

The iEM02 was evaluated from 2015 to 2019 for 87 weather
stations. Soil temperature modeling, using different soil tex-
tures, was improved in different ways in the iEM02 model
(Fig. 3). The improvement in soil temperature modeling
was indicated by relative RMSE changes that were different
across sites. The weather stations located in NE and KS, as
well as TX, showed less improvement after introducing the
air temperature of Ta,j−3 compared to OK (Fig. 3a). The soil
types in OK are more clay and silt compared to NE and KS
(Fig. 1). However, the improvement, when using the fictive
environmental temperature, was significant in northern ar-
eas of NE and KS (sandy soil) but not in the southern area
of OK and part of TX (clay and silt soil; Fig. 3b). Overall,
latitude-dominated air temperature should play a role in im-
proving estimated soil temperature. Most of the 87 stations

Figure 7. Seasonal comparison between the estimated and observed
soil temperatures. (a–d) The empirical model (EM). (e–h) The im-
proved empirical model (iEM02). RMSE was calculated as the root
mean square error between estimated and observed soil tempera-
ture. N refers to the sample size, and the gray line represents the
1 : 1 line. The color bar describes the number of data points.

achieved a 15 % to 40 % improvement in simulated soil tem-
perature by introducing air temperature Ta,j−3 and replac-
ing Ta with Tenv. This improvement was in agreement with
a previous study (Dolschak et al., 2015). By incorporating
changes in soil moisture and daily snow depth, additional
improvements in soil temperature simulation of up to 50 %
could be achieved (Fig. 3c) compared to the original model
(EM02). It should be noted that there were fewer stations
available in KS and TX compared to NE and OK. Over-
all, integrating snow cover and soil moisture data in iEM02
improved the simulated soil temperature (Fig. 3). The daily
soil temperature modeling could be further improved if high-
resolution (e.g., 30 m and daily), satellite-based soil moisture
and/or snow cover products become available, for example,
products based on the Soil Moisture Active Passive (SMAP)
or Sentinel satellites (Das et al., 2019).

3.2 iEM02’s parameters

The parameters described in iEM02 for each weather sta-
tion are indicative of soil temperature sensitivities for each
independent variable in Eq. (1), although, strictly speaking,

https://doi.org/10.5194/hess-25-4357-2021 Hydrol. Earth Syst. Sci., 25, 4357–4372, 2021
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Figure 8. Daily soil temperature comparison between the observed (gray line), original model (EM02; green line), and improved model
(iEM02; blue line) in western (> 100◦W), central (between 97 and 100◦W), and eastern (< 97◦W) Nebraska (a–c) and Kansas (d–f) during
the winter wheat growing seasons from 2015 to 2019. RMSE is the root mean square error (degrees Celsius). The values in brackets refer
to both the RMSE values of the original model (green numbers) and the improved model (blue numbers) during the periods of October–
November, December–February, and March–June, respectively. Shaded areas highlight the winter season (December–February).

they are not mathematical sensitivities (Fig. 4 and Table A2).
For Tenv, the current day Tenv was the most weighted, as ex-
pected (Fig. 4a). The parameters of Tenv for the prior day 1
to day 3 were relatively weak in terms of absolute magni-
tudes due to autoregression properties in the soil temper-
ature (Fig. 4b–d). Interestingly, in the iEM02 model, the
prior day 2 was negatively associated with soil temperature
(Fig. 4c), which cannot be interpreted by soil physical pro-
cesses but rather in a more autoregressive sense in which
the soil temperature signals are superimposed. The periodic
property embedded in iEM02 was two low-frequency com-
ponents (i.e., semi-annual and annual signals). Obviously, the
annual signal strength indicated by β1 and δ1 was 1 order of
magnitude stronger than the semi-annual signal strengths in

soil temperature (Fig. 4e–h). The result also suggested that
the strong β1 and δ1 spatial contexts of the northern region
(e.g., in Nebraska and Kansas) were differently weighted
from those in the southern region (e.g., in Oklahoma and
Texas). For the snow damping factor, the snow cover had
a larger impact on soil temperature in the northern region
when compared to the southern region (Fig. 4i). However,
the soil damping ratio factor was relatively evenly distributed
(Fig. 4j).

RMSE performance is shown in Fig. 5, when the iEM02
was a complete model vs. the reduced iEM02 model, where
one independent variable term from the complete model was
removed. When removing any one independent variable, the
modeled soil temperature RMSE increased from 110 % to

Hydrol. Earth Syst. Sci., 25, 4357–4372, 2021 https://doi.org/10.5194/hess-25-4357-2021
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Figure 9. The same as Fig. 8 but for western, central, and eastern Oklahoma (a–c) and Texas (d–f).

130 % (Fig. 5), indicating a 20 % rise in RMSE. Specifi-
cally, the iEM02 model performance decreased (i.e., RMSE
increased from 0.1 to 0.4 ◦C) when the α0 term was removed
(Fig. 5a–d). Unlike α0, removing the β1 term was not as sen-
sitive and gave an increase of 0.1–0.2 ◦C RMSE, on average,
for all states in the region (Fig. 5e–h). However, it is clear
that the iEM02 model was the most sensitive to δ1. With the
removal of δ1 from the complete iEM02 model, the RMSE
increased 0.3–0.4 ◦C for all four states (Fig. 5i–l). Due to the
location dependency of the above coefficients, further spa-
tial interpolation of the iEM02 model would be beneficial to
predict soil temperature for irrigated agricultural areas with-
out weather stations in the USA Great Plains and to improve
water and crop management modeling.

3.3 Spatial and temporal modeling performance

A graphical summary of how closely the modeled soil tem-
perature agreed with the observed soil temperature for each
weather station is shown in Fig. 6. Daily Ts estimated in
the iEM02 model outperformed that in the original EM02
model for all 87 weather stations. For example, both MAE
and RMSE were decreased, on average, by 0.6 ◦C when the
iEM02 model was used to estimate Ts. Individually, the im-
proved model showed a less than 1.6 ◦C RMSE for any indi-
vidual station, but 16 % of the stations had a larger than 2 ◦C
RMSE in the original EM02. In addition, we compared the
performance of iEM02 against a recent energy balance model
(Chalhoub et al., 2017). Our prediction of Ts was improved
by 1.2 ◦C RMSE compared to the energy balance model (not
shown).

Spatial distributions of RMSE showed that the majority of
weather stations had better performance in Oklahoma, with

https://doi.org/10.5194/hess-25-4357-2021 Hydrol. Earth Syst. Sci., 25, 4357–4372, 2021
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a mean RMSE of 1.9 and 1.1 ◦C for EM02 and iEM02, re-
spectively, whereas Nebraska had a RMSE of 2.1 and 1.3 ◦C
for EM02 and iEM02, respectively. The different modeling
performance was associated with the soil heat transport pro-
cess and how frequent snowfall could be observed in Ne-
braska and Oklahoma. Similar results were presented in a
recent study by Huang et al. (2017). On the other hand, the
high quality of weather data from the Oklahoma Mesonet is
considered to be the gold standard for the statewide weather
network (Lin et al., 2016), thus ensuring the quality of both
model calibrations and observed soil temperature in Okla-
homa.

Seasonal Ts indicated that iEM02 modeling was mostly
improved in the spring season, from 2 to 1.3 ◦C RMSE
(Fig. 7a), but the original model (EM02) showed that the
uncertainty was in good agreement with the performance
achieved in Plauborg (2002). All other seasons were im-
proved in similar ways, from 1.8 to 1.2 or 1.3 ◦C RMSE. The
improvement for all seasons could be attributed to introduc-
ing soil diffusivity, which changed with daily soil moisture
and snow cover, and this affected the soil thermal conduc-
tivity (Rankinen et al., 2004; Zhang, 2005). Moreover, al-
though modeling wintertime soil temperature improved from
1.8 to 1.3 ◦C RMSE, which was the same as in the summer
(Fig. 7), the soil temperature located in more frequent snow-
covered states (e.g., Nebraska and Kansas), was better im-
proved when Tenv and snow depth were introduced into the
model. Our findings confirmed those reported by Rankinen
et al. (2004) and Dutta et al. (2018).

Since precipitation gradients exist in the USA Great Plains
from western to eastern regions (Evett et al., 2020), three sub-
regions were classified for each state as western (100◦W; to-
wards the west), central (between 97 and 100◦W), and east-
ern (97◦W; towards the east). Figure 8 displays the time se-
ries of EM02 modeled, iEM02 modeled, and observed soil
temperatures only covering winter wheat growing seasons
(1 October to 30 June) for four growing seasons from 2015
to 2019 (validation periods) in Nebraska and Kansas. All
subregions in Nebraska and Kansas showed improvement
when using the iEM02 model (Fig. 8). Similarly, the iEM02
improved the RMSE during four growing seasons in Okla-
homa and Texas (Fig. 9). The EM02 model had the best per-
formance in Oklahoma, with a mean RMSE of 1.0 ◦C, while
the mean RMSE in Kansas was 1.4 ◦C in EM02. Soil temper-
atures estimated by iEM02 had approximately a 0.3 to 1.4 ◦C
RMSE (Figs. 8 and 9). In addition, larger improvements by
iEM02 were observed in most subregions during wintertime,
which would be beneficial for modeling winter wheat yields
and potential yields (Persson et al., 2017).

4 Conclusion

The primary intention of this work was to develop an
improved soil temperature model for the USA Great
Plains that can predict soil temperature by using common
weather station variables as inputs. The improved empiri-
cal model (iEM02) integrated soil thermal diffusivity and
snow cover factors, and these significantly improved the es-
timate of soil temperature for the 87 weather stations in the
USA Great Plains that were studied. Specifically, after in-
corporating changes in soil moisture and daily snow depth,
the improved model showed a near 50 % gain in perfor-
mance in terms of RMSE decrease when compared to the
original model. The value of RMSE across 87 stations was
0.6 ◦C lower, on average, than the original model from 2015
to 2019. We concluded that the iEM02 model can better esti-
mate soil temperature at the surface soil layer where most hy-
drological and biological processes occur. Both seasonal and
spatial improvements made in the improved model demon-
strated the robustness of the iEM02 model, suggesting that
this improved model can provide a reliable simulation of soil
temperature to use in modeling hydrological processes and
crop production in the USA Great Plains.
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Appendix A

Table A1. Table of symbols and corresponding descriptions used in this paper.

Symbols Descriptions Units

α Soil surface albedo (–)
α0, α1, α2, α3 Empirical parameters of air temperature to estimate soil temperature (–)
β Empirical parameters of air temperature to calculate environmental temperature (–)
β1, β2 Empirical parameters of sine wave to estimate soil temperature (◦C)
βd Empirical parameters of evapotranspiration for actual evapotranspiration (–)
δ1, δ2 Empirical parameters of cosine wave to estimate soil temperature (◦C)
γ Offset constant (◦C)
λ Soil thermal conductivity (W m−1 K−1)
λdry Oven-dried soil thermal conductivity (W m−1 K−1)
∅ Soil porosity (%)
ω Annual frequency (2π/365 d or 2π/366 d in leap years) (–)
θ , θr, θs Actual, residual, and saturated soil water content (m3 m−3)
ρb Soil bulk density (g cm−3)
b1, b2 Shape factors of soil thermal conductivity curve (–)
C Soil volumetric heat capacity (J m−3 K−1)
Ds Snow depth (m)
DReff Effective soil damping ratio (–)
E, ET0 Actual and reference evapotranspiration (mm)
fcl, fm, fOM, fsa Clay, mineral, organic matter, and sand content in the soil profile (%)
fS Empirical parameters of snow depth (m−1)
h Soil depth (m)
j Day of year (d)
k0 Empirical parameter of soil damping ratio (–)
ks Soil thermal diffusivity (m2 s−1)
p Period of year (365 or 366 d in leap years) d
P Precipitation mm
Rs Solar radiation (MJ m−2 d−1)
Ta, Tmax Mean and maximum air temperature at 2 m height (◦C)
Tenv Fictive environmental temperature (◦C)
Ts Bared soil temperature at 0.1 m depth (◦C)
Tsfc Surface skin temperature (◦C)
RMSE and MAE Root mean square error and mean absolute error (◦C)

Table A2. List of data sets used in this study, including the data source (Networks), state names (Coverage states), and specific data vari-
ables (Variables). Data sources include the Gridded Soil Survey Geographic (gSSURGO), the Automated Weather Data Network (AWDN)
– High Plains Regional Climate Center (HPRCC), the Oklahoma Mesonet (OK Mesonet), the Soil Climate Analysis Network (SCAN), and
the daily Global History Climatology Network (dGHCN). Weather stations from four states were located in the USA Great Plains, includ-
ing Nebraska (NE), Kansas (KS), Oklahoma (OK), and Texas (TX). Climate data report the daily maximum (Tmax; degrees Celsius) and
minimum air temperature (Tmin; degrees Celsius) at 2 m height, relative humidity (RH; percent), rainfall (prcp; millimeters), solar radiation
(Rs; MJ m−2 d−1), wind speed at 2 m (WS; meters per second), and snow depth (Ds; millimeters). Soil data consist of the daily bare soil
temperature at 10 cm depth (Ts; degrees Celsius), albedo of soil surface (α; –), organic matter content (fOM; percent), bulk density (ρb; grams
per cubic meter), porosity (Ø; percent), sand (fsa), silt (fsl), and clay (fcl) content (percent).

Networks Coverage states Variables

gSSURGO NE, KS, OK, and TX α, fOM, ρb, Ø, fsa, fsl, and fcl
AWDN NE and KS Tmax, Tmin, RH, prcp, Rs, WS, and Ts
OK Mesonet OK Tmax, Tmin, RH, prcp, Rs, WS, and Ts
SCAN TX Tmax, Tmin, RH, prcp, Rs, WS, and Ts
dGHCN NE, KS, OK, and TX Ds
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Table A3. List of model parameters for each weather station in the USA Great Plains. The location consists of latitude (Lat) and longi-
tude (Long). There are 12 parameters in the improved EM model, including parameters of air temperature (β; –); parameters for current day
to the previous 3 d of Tenv, including α0 (–), α1 (–), α2 (–), α3 (–), and constant offset γ (degrees Celsius); annual and semi-annual waves of
sine and cosine functions parameters are β1, β2, δ1, and δ2 (degrees Celsius); and parameters for the snow depth damping factor (fS; meters)
and the soil damping factor (k0; –). The bold font indicates that estimated coefficients are not statistically significant at 95 % confidence
intervals.

Location Parameters in iEM02

Lat Long β α0 α1 α2 α3 γ β1 δ1 β2 δ2 fS k0

26.52 −98.06 0.2 0.402 0.132 −0.18 0.237 7.684 −0.895 −2.212 −0.233 −0.171 −0.05 −0.001
29.33 −103.2 0.3 0.517 0.162 −0.22 0.174 6.221 −0.717 −3.852 0.037 −0.398 −0.106 −0.001
30.27 −97.74 0.8 0.247 0.191 0.017 0.1 8.416 −1.373 −3.454 0.03 −0.269 −0.079 −0.001
31.62 −102.8 0.3 0.369 0.193 −0.13 0.165 6.647 −1.195 −4.451 0.127 −0.365 0.093 −0.001
32.75 −97 0.8 0.216 0.217 0.015 0.088 9.768 −1.338 −2.746 −0.048 −0.167 0.001 0.002
33.59 −102.4 0.3 0.359 0.186 −0.161 0.163 5.656 −1.153 −4.435 0.335 −0.314 0.696 −0.064
33.63 −102.8 0.1 0.421 0.087 −0.175 0.228 4.153 −1.366 −4.637 0.201 −0.077 −0.27 −0.047
33.89 −97.27 0.7 0.415 0.196 −0.01 0.054 4.712 −0.732 −4.197 0.18 0.019 1.187 −0.034
33.96 −102.8 0.3 0.411 0.14 −0.13 0.134 4.949 −1.002 −4.61 0.456 −0.256 0.695 0.001
34.03 −95.54 0.8 0.535 0.136 −0.003 0.058 4.076 −1.164 −2.726 0.306 0.065 −2.045 −0.049
34.04 −96.94 0.6 0.475 0.143 −0.054 0.064 5.196 −1.152 −4.172 0.199 0.054 2.23 −0.066
34.17 −97.99 0.7 0.39 0.103 −0.02 0.056 5.867 −1.032 −3.753 0.136 −0.173 0.232 −0.156
34.19 −97.59 0.8 0.407 0.099 0.009 0.043 4.471 −0.809 −3.197 0.085 −0.091 −1.257 −0.194
34.22 −95.25 0.8 0.408 0.154 0.018 0.049 5.564 −1.358 −3.863 0.104 0.168 −4.133 −0.053
34.31 −96 0.8 0.476 0.097 0.001 0.048 5.499 −1.161 −3.493 0.06 0.015 0.133 −0.108
34.31 −94.82 0.9 0.408 0.139 0.025 0.062 5.947 −0.934 −3.235 0.066 0.006 6.601 −0.065
34.57 −96.95 0.5 0.451 0.142 −0.083 0.091 6.331 −1.225 −4.095 0.016 0.075 −1.584 −0.079
34.59 −99.34 0.9 0.266 0.158 0.032 0.071 6.781 −1.68 −4.029 0.345 −0.198 3.081 −0.094
34.61 −96.33 0.5 0.502 0.176 −0.081 0.099 4.733 −1.073 −4.454 0.103 −0.234 −4.241 −0.015
34.66 −95.33 0.9 0.466 0.165 0.021 0.06 5.079 −0.917 −3.484 0.13 0.183 −14.03 −0.029
34.69 −99.83 0.7 0.49 0.153 −0.029 0.056 5.682 −1.341 −4.035 0.139 0.121 –0.068 −0.048
34.73 −98.57 0.9 0.338 0.134 0.019 0.055 4.763 −1.015 −3.158 0.18 0.003 1.937 −0.179
34.8 −96.67 0.7 0.454 0.105 −0.02 0.065 5.742 −1.185 −3.628 0.088 –0.056 −1.26 −0.102
34.81 −98.02 0.8 0.328 0.138 0.008 0.053 5.727 −1.1 −3.811 0.124 –0.05 0.761 −0.129
34.88 −95.78 0.8 0.404 0.111 0.005 0.052 4.723 −1.099 −3.134 0.179 0.018 –0.012 −0.2
35.03 −97.91 0.7 0.52 0.141 −0.028 0.052 5.008 −1.008 −3.33 0.136 0.163 0.845 −0.065
35.19 −102.1 0.6 0.239 0.139 −0.014 0.088 5.715 −1.807 −4.526 0.267 −0.208 −0.129 −0.131
35.27 −97.96 0.8 0.381 0.176 0.011 0.055 5.053 −1.161 −3.341 0.22 −0.093 −0.502 −0.101
35.51 −98.78 0.8 0.39 0.17 0.006 0.05 3.781 −0.779 −2.908 0.078 −0.321 4.582 −0.16
35.55 −99.73 0.5 0.533 0.124 −0.09 0.116 4.372 −1.198 −3.711 0.291 –0.041 0.086 −0.062
35.58 −95.91 0.7 0.391 0.152 –0.015 0.05 5.284 −1.013 −4.053 0.128 0.114 1.057 −0.113
35.59 −99.27 0.8 0.467 0.136 0.011 0.056 5.461 −1.244 −3.594 0.182 0.143 1.237 −0.042
35.68 −94.85 0.6 0.446 0.148 −0.049 0.076 4.758 −1.353 −4.102 0.187 0.248 −3.491 −0.059
35.84 −96 0.6 0.341 0.178 −0.026 0.097 6.618 −1.783 −4.72 0.358 −0.191 –1.872 −0.023
35.85 −97.48 0.9 0.333 0.174 0.021 0.066 5.67 −1.493 −3.899 0.143 0.083 0.914 −0.092
35.97 −94.99 0.7 0.45 0.136 –0.016 0.05 5.637 −1.502 −3.517 0.233 0.094 0.225 −0.047
36 −97.05 0.7 0.414 0.114 –0.007 0.038 4.93 −0.909 −3.849 0.154 –0.037 3.355 −0.156
36.03 −96.5 0.7 0.385 0.149 –0.012 0.053 5.87 −1.13 −4.099 0.093 –0.006 2.131 −0.088
36.07 −99.9 0.7 0.354 0.176 –0.002 0.055 5.608 −1.196 −4.61 0.169 −0.252 1.315 −0.075
36.12 −97.1 0.7 0.377 0.172 –0.009 0.056 5.897 −1.314 −4.027 0.162 0.031 2.05 −0.062
36.26 −98.5 0.7 0.429 0.15 −0.021 0.055 4.908 −1.27 −4.183 0.25 0.265 0.169 −0.067
36.41 −97.69 0.6 0.397 0.175 −0.038 0.079 5.029 −1.188 −4.643 0.089 −0.276 1.137 −0.062
36.42 −96.04 0.9 0.36 0.144 0.017 0.048 5.533 −1.159 −3.882 0.118 0.069 3.667 −0.104
36.52 −96.34 0.7 0.308 0.157 –0.005 0.063 5.684 −1.494 −4.43 0.29 0.149 0.563 −0.13
36.6 −101.6 0.7 0.453 0.173 –0.015 0.078 5.052 −1.21 −3.919 0.261 –0.057 1.796 −0.03
36.63 −96.81 0.6 0.545 0.151 −0.08 0.067 4.993 −0.829 −3.553 0.061 0.031 0.66 −0.061
36.69 −102.5 0.7 0.223 0.16 0.008 0.057 5.711 −1.795 −5.263 0.235 −0.155 1.458 −0.125
36.75 −98.36 0.5 0.474 0.152 −0.083 0.082 4.968 −1.198 −4.11 0.191 –0.011 3.696 −0.072
36.75 −97.25 0.7 0.383 0.167 −0.02 0.056 5.197 −1.086 −4.062 0.005 0.001 4.13 −0.083
36.83 −99.64 0.7 0.354 0.189 –0.004 0.074 5.242 −1.28 −4.03 0.204 0.047 0.367 −0.054
36.84 −96.43 0.6 0.382 0.209 −0.028 0.066 5.279 −1.386 −4.9 0.418 −0.258 −7.259 −0.014
36.9 −96.91 0.6 0.374 0.16 −0.031 0.06 5.007 −1.266 −4.123 0.152 0.021 4.473 −0.103
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Table A3. Continued.

Location Parameters in iEM02

Lat Long β α0 α1 α2 α3 γ β1 δ1 β2 δ2 fS k0

36.91 −95.89 0.6 0.415 0.169 −0.045 0.053 5.844 −1.22 −4.352 0.235 −0.255 6.361 −0.063
37.37 −95.3 0.7 0.373 0.173 –0.016 0.076 4.535 −1.64 −4.396 0.047 –0.009 –0.77 −0.021
37.98 −100.8 0.7 0.346 0.185 0.001 0.077 4.153 −1.319 −4.886 0.084 −0.441 1.602 −0.074
38.45 −101.8 0.4 0.297 0.142 −0.073 0.124 5.091 −2.004 −6.426 0.18 −0.585 1.573 −0.038
38.53 −95.25 0.6 0.46 0.176 −0.053 0.071 3.971 −1.302 −3.761 0.128 −0.075 1.529 −0.054
39.07 −95.78 0.6 0.387 0.162 −0.033 0.089 4.229 −1.715 −4.991 0.019 0.126 0.279 −0.048
39.2 −96.6 0.5 0.4 0.163 −0.077 0.107 4.461 −1.724 −4.951 –0.021 0.081 1.77 −0.025
39.38 −101.1 1 0.252 0.188 0.055 0.075 4.641 −1.501 −5.624 0.062 −0.369 1.507 −0.078
39.82 −97.85 0.8 0.437 0.182 0.008 0.058 3.385 −1.482 −4.33 –0.004 −0.109 –0.429 −0.068
40.08 −98.28 0.5 0.44 0.151 −0.076 0.076 4.164 −1.339 −4.958 –0.017 −0.093 7.636 −0.046
40.3 −96.93 0.7 0.381 0.205 –0.014 0.072 3.293 −1.615 −4.407 0.204 0.088 0.342 −0.064
40.32 −99.38 0.6 0.319 0.199 −0.027 0.055 4.414 −1.593 −5.523 0.25 –0.063 6.898 −0.1
40.4 −101.7 0.6 0.364 0.145 −0.031 0.079 3.559 −1.151 −5.266 0.402 −0.162 8.794 −0.12
40.5 −99.37 0.6 0.337 0.202 −0.029 0.08 4.765 −1.676 −5.194 0.307 0.153 2.688 −0.029
40.52 −99.05 0.6 0.379 0.172 −0.031 0.068 3.676 −1.45 −4.852 0.281 –0.026 5.941 −0.086
40.57 −99.7 0.5 0.329 0.18 −0.051 0.085 3.856 −1.901 −5.549 0.302 0.214 9.566 −0.085
40.57 −98.15 0.8 0.28 0.158 0.013 0.056 4.244 −1.671 −4.596 0.205 0.072 0.708 −0.245
40.63 −100.5 0.7 0.36 0.199 –0.015 0.064 3.888 −1.484 −5.794 0.089 −0.136 3.376 −0.054
40.72 −99.02 0.6 0.406 0.195 −0.034 0.076 3.572 −1.456 −5.1 0.205 0.043 0.756 −0.032
40.75 −98.77 0.5 0.437 0.158 −0.075 0.081 3.778 −1.502 −5.411 0.35 0.097 2.179 −0.078
40.82 −96.67 0.6 0.384 0.193 −0.048 0.066 4.302 −1.619 −4.854 0.111 0.079 3.63 −0.102
40.85 −96.62 0.2 0.588 0.032 −0.209 0.173 3.744 −1.616 −4.753 0.141 0.275 11.447 −0.048
40.86 −98.47 0.5 0.521 0.151 −0.089 0.074 2.731 −1.53 −4.791 0.114 0.309 7.99 −0.067
41.15 −96.5 0.7 0.354 0.169 –0.011 0.065 4.615 −1.819 −4.679 0.124 0.05 4.403 −0.07
41.15 −96.42 0.6 0.42 0.172 −0.055 0.071 3.925 −1.883 −5.022 0.105 0.102 3.669 −0.053
41.22 −103 0.7 0.323 0.188 –0.001 0.054 3.392 −1.118 −5.154 0.263 −0.119 10.875 −0.072
41.4 −97.53 0.5 0.489 0.131 −0.082 0.082 3.624 −1.5 −4.763 0.389 0.074 5.878 −0.057
41.62 −98.95 0.6 0.403 0.164 −0.039 0.077 3.52 −1.649 −5.573 0.136 0.093 2.696 −0.074
41.85 −96.75 0.7 0.336 0.201 −0.025 0.076 4.125 −1.82 −5.053 0.296 0.099 11.111 −0.057
41.88 −103.7 0.7 0.346 0.2 –0.007 0.07 3.58 −1.41 −5.435 0.44 −0.079 4.335 −0.061
41.9 −100.2 0.3 0.548 0.125 −0.195 0.144 2.915 −1.653 −4.817 0.187 0.146 1.078 −0.043
41.93 −98.2 0.5 0.417 0.159 −0.073 0.074 3.353 −1.279 −4.421 0.243 −0.076 10.447 −0.078
42.47 −98.77 0.5 0.509 0.13 −0.104 0.091 3.542 −1.505 −4.489 0.129 0.231 2.505 −0.056
42.57 −99.83 0.3 0.54 0.074 −0.182 0.156 3.049 −1.454 −5.465 0.202 0.286 1.976 −0.077
42.75 −102.2 0.7 0.43 0.144 −0.024 0.068 2.82 −1.142 −5.151 0.141 0.249 3.492 −0.089
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