Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-1923-2021
https://doi.org/10.5194/hess-25-1923-2021
Research article
 | 
12 Apr 2021
Research article |  | 12 Apr 2021

Impacts of climate change on groundwater flooding and ecohydrology in lowland karst

Patrick Morrissey, Paul Nolan, Ted McCormack, Paul Johnston, Owen Naughton, Saheba Bhatnagar, and Laurence Gill

Related authors

Reviews and Syntheses: Evaluating the Potential Application of Ecohydrological Models for Northern Peatland Restoration: A Scoping Review
Mariana P. Silva, Mark G. Healy, and Laurence Gill
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-167,https://doi.org/10.5194/bg-2023-167, 2023
Revised manuscript under review for BG
Short summary
Variations in land types detected using methane retrieved from space-borne sensor
Saheba Bhatnagar, Mahesh Kumar Sha, Laurence Gill, Bavo Langerock, and Bidisha Ghosh
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-88,https://doi.org/10.5194/bg-2022-88, 2022
Revised manuscript not accepted
Short summary
Assessing the spatial and temporal variability of greenhouse gas emissions from different configurations of on-site wastewater treatment system using discrete and continuous gas flux measurement
Jan Knappe, Celia Somlai, and Laurence W. Gill
Biogeosciences, 19, 1067–1085, https://doi.org/10.5194/bg-19-1067-2022,https://doi.org/10.5194/bg-19-1067-2022, 2022
Short summary
Carbon balance of a restored and cutover raised bog: implications for restoration and comparison to global trends
Michael M. Swenson, Shane Regan, Dirk T. H. Bremmers, Jenna Lawless, Matthew Saunders, and Laurence W. Gill
Biogeosciences, 16, 713–731, https://doi.org/10.5194/bg-16-713-2019,https://doi.org/10.5194/bg-16-713-2019, 2019
Short summary
Monitoring environmental supporting conditions of a raised bog using remote sensing techniques
Saheba Bhatnagar, Bidisha Ghosh, Shane Regan, Owen Naughton, Paul Johnston, and Laurence Gill
Proc. IAHS, 380, 9–15, https://doi.org/10.5194/piahs-380-9-2018,https://doi.org/10.5194/piahs-380-9-2018, 2018

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024,https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Influence of bank slope on sinuosity-driven hyporheic exchange flow and residence time distribution during a dynamic flood event
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024,https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary
Technical note: A model of chemical transport in a wellbore–aquifer system
Yiqun Gan and Quanrong Wang
Hydrol. Earth Syst. Sci., 28, 1317–1323, https://doi.org/10.5194/hess-28-1317-2024,https://doi.org/10.5194/hess-28-1317-2024, 2024
Short summary
Disentangling coastal groundwater level dynamics in a global dataset
Annika Nolte, Ezra Haaf, Benedikt Heudorfer, Steffen Bender, and Jens Hartmann
Hydrol. Earth Syst. Sci., 28, 1215–1249, https://doi.org/10.5194/hess-28-1215-2024,https://doi.org/10.5194/hess-28-1215-2024, 2024
Short summary
Current and future roles of meltwater–groundwater dynamics in a proglacial Alpine outwash plain
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024,https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary

Cited articles

Ahilan, S., O'Sullivan, J. J., and Bruen, M.: Influences on flood frequency distributions in Irish river catchments, Hydrol. Earth Syst. Sci., 16, 1137–1150, https://doi.org/10.5194/hess-16-1137-2012, 2012. 
Bhatnagar, S., Gill, L. W., Waldren, S., Sharkey, N., Naughton, O., Johnston, P., Coxon, C., Morrissey, P., and Ghosh, B.: Ecohydrological metrics for vegetation communities in turloughs (ephemeral karstic wetlands), Ecohydrology, in review, 2021. 
Bieniek, P. A., Bhatt, U. S., Walsh, J. E., Rupp, T. S., Zhang, J., Krieger, J. R., and Lader, R.: Dynamical Downscaling of Era-Interim Temperature and Precipitation for Alaska, J. Appl. Meteorol. Clim., 55, 635–654, 2016. 
Brenner, S., Coxon, G., Howden, N. J. K., Freer, J., and Hartmann, A.: Process-based modelling to evaluate simulated groundwater levels and frequencies in a Chalk catchment in south-western England, Nat. Hazards Earth Syst. Sci., 18, 445–461, https://doi.org/10.5194/nhess-18-445-2018, 2018. 
Download
Short summary
Lowland karst aquifers provide important wetland habitat resulting from seasonal flooding on the land surface. This flooding is controlled by surcharging of the karst system, which is very sensitive to changes in rainfall. This study investigates the predicted impacts of climate change on a lowland karst catchment in Ireland and highlights the relative vulnerability to future changing climate conditions of karst systems and any associated wetland habitats.