Articles | Volume 25, issue 4
Hydrol. Earth Syst. Sci., 25, 1923–1941, 2021
https://doi.org/10.5194/hess-25-1923-2021
Hydrol. Earth Syst. Sci., 25, 1923–1941, 2021
https://doi.org/10.5194/hess-25-1923-2021
Research article
12 Apr 2021
Research article | 12 Apr 2021

Impacts of climate change on groundwater flooding and ecohydrology in lowland karst

Patrick Morrissey et al.

Related authors

Variations in land types detected using methane retrieved from space-borne sensor
Saheba Bhatnagar, Mahesh Kumar Sha, Laurence Gill, Bavo Langerock, and Bidisha Ghosh
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-88,https://doi.org/10.5194/bg-2022-88, 2022
Preprint under review for BG
Short summary
Assessing the spatial and temporal variability of greenhouse gas emissions from different configurations of on-site wastewater treatment system using discrete and continuous gas flux measurement
Jan Knappe, Celia Somlai, and Laurence W. Gill
Biogeosciences, 19, 1067–1085, https://doi.org/10.5194/bg-19-1067-2022,https://doi.org/10.5194/bg-19-1067-2022, 2022
Short summary
Carbon balance of a restored and cutover raised bog: implications for restoration and comparison to global trends
Michael M. Swenson, Shane Regan, Dirk T. H. Bremmers, Jenna Lawless, Matthew Saunders, and Laurence W. Gill
Biogeosciences, 16, 713–731, https://doi.org/10.5194/bg-16-713-2019,https://doi.org/10.5194/bg-16-713-2019, 2019
Short summary
Monitoring environmental supporting conditions of a raised bog using remote sensing techniques
Saheba Bhatnagar, Bidisha Ghosh, Shane Regan, Owen Naughton, Paul Johnston, and Laurence Gill
Proc. IAHS, 380, 9–15, https://doi.org/10.5194/piahs-380-9-2018,https://doi.org/10.5194/piahs-380-9-2018, 2018
Quantifying the influence of surface water–groundwater interaction on nutrient flux in a lowland karst catchment
T. McCormack, O. Naughton, P. M. Johnston, and L. W. Gill
Hydrol. Earth Syst. Sci., 20, 2119–2133, https://doi.org/10.5194/hess-20-2119-2016,https://doi.org/10.5194/hess-20-2119-2016, 2016
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Karst spring discharge modeling based on deep learning using spatially distributed input data
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022,https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling”
Brian Berkowitz
Hydrol. Earth Syst. Sci., 26, 2161–2180, https://doi.org/10.5194/hess-26-2161-2022,https://doi.org/10.5194/hess-26-2161-2022, 2022
Short summary
Spatiotemporal variations in water sources and mixing spots in a riparian zone
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022,https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data
Jacques Bodin, Gilles Porel, Benoît Nauleau, and Denis Paquet
Hydrol. Earth Syst. Sci., 26, 1713–1726, https://doi.org/10.5194/hess-26-1713-2022,https://doi.org/10.5194/hess-26-1713-2022, 2022
Short summary
Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022,https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary

Cited articles

Ahilan, S., O'Sullivan, J. J., and Bruen, M.: Influences on flood frequency distributions in Irish river catchments, Hydrol. Earth Syst. Sci., 16, 1137–1150, https://doi.org/10.5194/hess-16-1137-2012, 2012. 
Bhatnagar, S., Gill, L. W., Waldren, S., Sharkey, N., Naughton, O., Johnston, P., Coxon, C., Morrissey, P., and Ghosh, B.: Ecohydrological metrics for vegetation communities in turloughs (ephemeral karstic wetlands), Ecohydrology, in review, 2021. 
Bieniek, P. A., Bhatt, U. S., Walsh, J. E., Rupp, T. S., Zhang, J., Krieger, J. R., and Lader, R.: Dynamical Downscaling of Era-Interim Temperature and Precipitation for Alaska, J. Appl. Meteorol. Clim., 55, 635–654, 2016. 
Brenner, S., Coxon, G., Howden, N. J. K., Freer, J., and Hartmann, A.: Process-based modelling to evaluate simulated groundwater levels and frequencies in a Chalk catchment in south-western England, Nat. Hazards Earth Syst. Sci., 18, 445–461, https://doi.org/10.5194/nhess-18-445-2018, 2018. 
Download
Short summary
Lowland karst aquifers provide important wetland habitat resulting from seasonal flooding on the land surface. This flooding is controlled by surcharging of the karst system, which is very sensitive to changes in rainfall. This study investigates the predicted impacts of climate change on a lowland karst catchment in Ireland and highlights the relative vulnerability to future changing climate conditions of karst systems and any associated wetland habitats.