Articles | Volume 24, issue 2
Hydrol. Earth Syst. Sci., 24, 535–559, 2020
https://doi.org/10.5194/hess-24-535-2020
Hydrol. Earth Syst. Sci., 24, 535–559, 2020
https://doi.org/10.5194/hess-24-535-2020

Research article 05 Feb 2020

Research article | 05 Feb 2020

Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation

Berit Arheimer et al.

Related authors

Quantifying pluriannual hydrological memory with Catchment Forgetting Curves
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-331,https://doi.org/10.5194/hess-2021-331, 2021
Preprint under review for HESS
Short summary
A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019,https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary
A geostatistical data-assimilation technique for enhancing macro-scale rainfall–runoff simulations
Alessio Pugliese, Simone Persiano, Stefano Bagli, Paolo Mazzoli, Juraj Parajka, Berit Arheimer, René Capell, Alberto Montanari, Günter Blöschl, and Attilio Castellarin
Hydrol. Earth Syst. Sci., 22, 4633–4648, https://doi.org/10.5194/hess-22-4633-2018,https://doi.org/10.5194/hess-22-4633-2018, 2018
Short summary
Wildfire impact on Boreal hydrology: empirical study of the Västmanland fire 2014 (Sweden)
Rafael Pimentel and Berit Arheimer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-387,https://doi.org/10.5194/hess-2018-387, 2018
Revised manuscript not accepted
Short summary
Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018,https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021,https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021,https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Robust historical evapotranspiration trends across climate regimes
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021,https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
Frederik Kratzert, Daniel Klotz, Sepp Hochreiter, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021,https://doi.org/10.5194/hess-25-2685-2021, 2021
Short summary
Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021,https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary

Cited articles

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., and Kløve, B.: A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale swat model, J. Hydrol., 524, 733–752, 2015. 
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013. 
Andersson, J. C. M., Arheimer, B., Traoré, F., Gustafsson, D., and Ali, A.: Process refinements improve a hydrological model concept applied to the Niger River basin, Hydrol. Process., 31, 4540–4554, https://doi.org/10.1002/hyp.11376, 2017a. 
Andersson, J. C. M., Ali, A., Arheimer, B., Gustafsson, D., and Minoungou, B.: Providing peak river flow statistics and forecasting in the Niger River basin, Phys. Chem. Earth A/B/C, 100, 3–12, https://doi.org/10.1016/j.pce.2017.02.010, 2017b. 
Download
Short summary
How far can we reach in predicting river flow globally, using integrated catchment modelling and open global data? For the first time, a catchment model was applied world-wide, covering the entire globe with a relatively high resolution. The results show that stepwise calibration provided better performance than traditional modelling of the globe. The study highlights that open data and models are crucial to advance hydrological sciences by sharing knowledge and enabling transparent evaluation.