Articles | Volume 24, issue 7
Hydrol. Earth Syst. Sci., 24, 3775–3788, 2020
https://doi.org/10.5194/hess-24-3775-2020
Hydrol. Earth Syst. Sci., 24, 3775–3788, 2020
https://doi.org/10.5194/hess-24-3775-2020

Research article 24 Jul 2020

Research article | 24 Jul 2020

The influence of assimilating leaf area index in a land surface model on global water fluxes and storages

Xinxuan Zhang et al.

Related authors

SMAP retrieval assimilation improves soil moisture estimation across irrigated areas in South Asia
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-460,https://doi.org/10.5194/hess-2021-460, 2021
Revised manuscript under review for HESS
Short summary
Satellite soil moisture data assimilation impacts on modeling weather variables and ozone in the southeastern US – Part 1: An overview
Min Huang, James H. Crawford, Joshua P. DiGangi, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Xiwu Zhan
Atmos. Chem. Phys., 21, 11013–11040, https://doi.org/10.5194/acp-21-11013-2021,https://doi.org/10.5194/acp-21-11013-2021, 2021
Short summary
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021,https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Towards Effective Drought Monitoring in the Middle East and North Africa (MENA) Region: Implications from Assimilating Leaf Area Index and Soil Moisture into the Noah-MP Land Surface Model for Morocco
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-263,https://doi.org/10.5194/hess-2021-263, 2021
Preprint under review for HESS
Short summary
Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021,https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021,https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021,https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174, https://doi.org/10.5194/hess-25-5153-2021,https://doi.org/10.5194/hess-25-5153-2021, 2021
Short summary
Bright and blind spots of water research in Latin America and the Caribbean
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650, https://doi.org/10.5194/hess-25-4631-2021,https://doi.org/10.5194/hess-25-4631-2021, 2021
Short summary
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021,https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary

Cited articles

Adegoke, J. O. and Carleton, A. M.: Relations between soil moisture and satellite vegetation indices in the US Corn Belt, J. Hydrometeorol., 3, 395–405, https://doi.org/10.1175/1525-7541(2002)003<0395:RBSMAS>2.0.CO;2, 2002. 
Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., Gelati, E., Dorigo, W., Faroux, S., Meurey, C., Le Moigne, P., Decharme, B., Mahfouf, J.-F., and Calvet, J.-C.: Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area, Geosci. Model Dev., 10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, 2017. 
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006. 
Arora, V.: Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models, Rev. Geophys., 40, 3–1, https://doi.org/10.1029/2001RG000103, 2002. 
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in: Progress in photosynthesis research, Springer, Dordrecht, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48, 1987. 
Download
Short summary
This study assesses the extent to which a land surface model can be optimized via the assimilation of leaf area index (LAI) observations at the global scale. The model performance is evaluated by the model-estimated LAI and five water flux/storage variables. Results show the LAI assimilation reduces errors in the model-estimated LAI. The LAI assimilation also improves the five water variables under wet conditions, but some of the model-estimated variables tend to be worse under dry conditions.