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Abstract. Vegetation plays a fundamental role not only in the
energy and carbon cycles but also in the global water balance
by controlling surface evapotranspiration (ET). Thus, accu-
rately estimating vegetation-related variables has the poten-
tial to improve our understanding and estimation of the dy-
namic interactions between the water, energy, and carbon cy-
cles. This study aims to assess the extent to which a land sur-
face model (LSM) can be optimized through the assimilation
of leaf area index (LAI) observations at the global scale. Two
observing system simulation experiments (OSSEs) are per-
formed to evaluate the efficiency of assimilating LAI into an
LSM through an ensemble Kalman filter (EnKF) to estimate
LAI, ET, canopy-interception evaporation (CIE), canopy wa-
ter storage (CWS), surface soil moisture (SSM), and terres-
trial water storage (TWS). Results show that the LAI data
assimilation framework not only effectively reduces errors
in LAI model simulations but also improves all the modeled
water flux and storage variables considered in this study (ET,
CIE, CWS, SSM, and TWS), even when the forcing pre-
cipitation is strongly positively biased (extremely wet con-
ditions). However, it tends to worsen some of the modeled
water-related variables (SSM and TWS) when the forcing
precipitation is affected by a dry bias. This is attributed to
the fact that the amount of water in the LSM is conservative,
and the LAI assimilation introduces more vegetation, which
requires more water than what is available within the soil.

1 Introduction

Terrestrial vegetation plays a vital role in the global water
cycle, as it controls the surface evapotranspiration (ET) and
the state of the carbon cycle. As shown in past literature,
a strong relationship exists among vegetation, precipitation,
and soil moisture (Di et al., 1994; Farrar et al., 1994; Richard
and Poccard, 1998; Adegoke and Carleton, 2002). Neverthe-
less, the role that vegetation and its dynamics play in the
water cycle (for instance in the variability of precipitation)
is extremely complex (Wang and Eltahir, 2000; Wang et al.,
2011). Over the past 50 years, these land surface processes
and feedbacks have been examined through numerical mod-
eling experiments (Foley et al., 1996; Kim and Wang, 2007;
Druel et al., 2019). In early generation land surface models
(LSMs), the development stage of vegetation was prescribed
by regularly updating vegetation variables, based on fixed
lookup tables to simplify the model computation (Foley et
al., 1996). This approach uses constant vegetation indices,
e.g., the leaf area index (LAI), while in reality the growth of
vegetation continuously changes in response to weather and
climate conditions. To overcome this deficiency, new genera-
tion LSMs are coupled with dynamic vegetation modules that
comprehensively simulate several biogeochemical processes
(Woodward and Lomas, 2004; Gibelin et al., 2006; Fisher
et al., 2018) and that are able to capture more detailed varia-
tions in plant productivity than traditional methods (Kucharik
et al., 2000; Arora, 2002; Krinner et al., 2005).

The LAI can also be estimated through observations from
satellite sensors, such as the Moderate Resolution Imaging
Spectroradiometer (MODIS, Pagano and Durham, 1993; Jus-
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tice et al., 2002), the Système Probatoire d’Observation de
la Terre VEGETATION (SPOT-VGT, Baret et al., 2007),
and the National Oceanic and Atmospheric Administra-
tion (NOAA) Advanced Very High Resolution Radiometer
(AVHRR, Cracknell, 1997). LAI products retrieved from dif-
ferent satellite missions and sensors provide spatially and
temporally varying LAI fields on a routine basis at regional
and global scales, including the MODIS LAI (Myneni et
al., 2002), the Global Land Surface Satellite (GLASS) LAI
(Xiao et al., 2013), and the GLOBMAP LAI dataset (Liu et
al., 2012), among others. Satellite-derived LAI products have
been found to be affected by uncertainties due to the limita-
tion of retrieval algorithms and vegetation type sampling is-
sues (Cohen and Justice, 1999; Privette et al., 2002; Tian et
al., 2002; Morisette et al., 2002).

A method to combine the inherently incorrect estimates
from satellite observations and model simulations is data as-
similation (DA). One of the most common DA systems – the
ensemble Kalman filter (EnKF; Evensen, 2003) – dynami-
cally updates the model error covariance information by pro-
ducing an ensemble of model predictions, which are individ-
ual model realizations perturbed by the assumed model error
(Reichle et al., 2007). The ensemble approach is widely used
in hydrology because of its flexibility with respect to the type
of model error (Crow and Wood, 2003) and is well suited
to the nonlinear nature of land surface processes (Reichle et
al., 2002a, b; Andreadis and Lettenmaier, 2006; Durand and
Margulis, 2008; Kumar et al., 2008; Pan and Wood, 2006;
Pauwels and De Lannoy, 2006; Zhou et al., 2006). However,
the use of an EnKF for the assimilation of LAI in LSMs
has not been thoroughly investigated in the past. Pauwels et
al. (2007) proposed an observing system simulation exper-
iment (OSSE) to evaluate the performance of assimilating
LAI in a hydrology–crop growth model with an EnKF algo-
rithm. Other studies have also tested simplified 1D-Var and
extended Kalman filter methods for LAI assimilation (e.g.,
Sabater et al., 2008; Barbu et al., 2011; Fairbairn et al., 2017).
Recently, Kumar et al. (2019) assimilated GLASS LAI in a
land surface model with an EnKF across the continental US.
Some water budget variables were improved through the as-
similation procedure, particularly in agricultural areas where
the assimilation added harvesting information to the model.
Ling et al. (2019) assimilated global LAI information with an
ensemble adjust Kalman filter (EAKF) algorithm and found
that the assimilation is more effective during the growing sea-
son. LAI assimilation also had a positive impact on gross pri-
mary production (GPP) and ET in low-latitude regions.

Nevertheless, most of the aforementioned studies mainly
focused on the impact of LAI assimilation on the simulated
LAI or vegetation biomass. Only a few studies discussed the
influences of LAI assimilation on the estimation of water
variables such as soil moisture or streamflow (Pauwels et al.,
2007; Sabater et al., 2008) and most of them focused on lim-
ited regions. Most recently, Albergel et al. (2017) conducted
a study on a much larger domain – Europe and the Mediter-

ranean Basin – and showed improvement in soil moisture at
various depths thanks to LAI assimilation.

This work leverages upon these studies but aims to as-
sess the extent to which a land surface model, especially
the simulation of water-related variables, can be optimized
through the assimilation of LAI observations at the global
scale. As this study serves as a feasibility test to quantify
the impact of LAI assimilation on water cycle variables, an
OSSE is chosen to investigate the model’s behavior. This
guarantees that reference variables (often referred to as the
“truth”), which are synthetically produced, are available to
quantify the performance of the proposed framework. Specif-
ically, two OSSEs that apply an EnKF algorithm to the Noah
LSM with multi-parameterization options (Noah-MP, Niu et
al., 2011; Yang et al., 2011) are performed to evaluate the ef-
ficiency of assimilating LAI observations for estimating ET,
canopy-interception evaporation (CIE), canopy water storage
(CWS), surface soil moisture (SSM), and terrestrial water
storage (TWS).

2 Methods and materials

2.1 Land surface model (Noah-MP)

The Noah-MP 3.6 LSM (Niu et al., 2011; Yang et al., 2011)
is adopted in this study. Noah-MP contains a separate veg-
etation canopy defined by a canopy top and bottom, crown
radius, and leaves with defined dimensions, orientation, den-
sity, and radiometric properties (Niu et al., 2011). Multiple
options are available for surface water infiltration, runoff, and
groundwater transfer and storage, including water table depth
to an unconfined aquifer (Niu et al., 2007), dynamic veg-
etation, canopy resistance, and frozen soil physics. Specif-
ically, the prognostic vegetation growth combines a Ball–
Berry photosynthesis-based stomatal resistance (Ball et al.,
1987) with a dynamic vegetation model (Dickinson et al.,
1998). The dynamic vegetation model calculates the carbon
storage in various parts of the vegetation (leaf, stem, wood,
and root) and the soil carbon pools.

The Noah-MP 3.6 LSM has been implemented into the
National Aeronautics and Space Administration (NASA)
Land Information System (LIS; Peters-Lidard et al., 2007;
Kumar et al., 2006). LIS is a software that provides an in-
teragency test bed for land surface modeling and data as-
similation which allows customized systems to be built, as-
sembled, and reconfigured easily, using shared plugins and
standard interfaces. All of the experiments in this study are
set up through LIS. The Modern-Era Retrospective analysis
for Research and Applications Version 2 (MERRA-2; Gelaro
et al., 2017) dataset serves as the meteorological forcings
of Noah-MP. MERRA-2 is the latest atmospheric reanaly-
sis produced by the NASA Global Modeling and Assimila-
tion Office (GMAO) and includes updates from the Goddard
Earth Observing System (GEOS). The meteorological vari-
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ables selected from MERRA-2 include surface pressure, sur-
face air temperature, surface specific humidity, incident radi-
ations, wind speed, and precipitation rate.

Five model output variables that describe terrestrial water
fluxes and storages are investigated in this work: ET, which is
defined as the sum of evaporation and the plant transpiration
(kg m−2 s−1); CIE, which is defined as the evaporation of the
canopy-intercepted water (kg m−2 s−1); CWS, which is de-
fined as the amount of canopy-intercepted water in both the
liquid and ice phases (kg m−2); SSM, which is defined as the
water content in the top 10 cm of the soil column (m3 m−3);
and TWS, which is defined as the sum of all water storage on
the land surface and in the subsurface (mm).

2.2 Experimental design

An OSSE is designed to understand the efficiency of as-
similating LAI within Noah-MP version 3.6 using a one-
dimensional EnKF algorithm (Reichle et al., 2010), when the
precipitation forcing data are strongly biased. As it is the ma-
jor driving force of the hydrological cycle, the quality of in-
put precipitation is critical for the accuracy of land surface
model outputs. However, global precipitation datasets are far
from being perfect and are often affected by large regional bi-
ases. For example, the MERRA-2 precipitation dataset shows
a widespread relative bias greater than 100 % in South Asia
(Ghatak et al., 2018). Although an EnKF is optimal only un-
der the assumption of unbiasedness (which is not met in the
proposed experimental setup), here we want to investigate
the extent to which the EnKF LAI assimilation (even if sub-
optimal) can improve water storages and fluxes under two
extreme conditions, i.e., a very dry and a very wet precip-
itation bias, knowing that such biases are very plausible in
the real world and are often unknown (and therefore difficult
to remove). The proposed framework is evaluated through a
global experiment (Antarctica excluded) at the 0.625◦×0.5◦

spatial resolution of the MERRA-2 forcing dataset (Fig. 1).
Figure 2 shows a schematic diagram of the experiments.

First, the Noah-MP model is spun up for a 10-year period
(2001–2010) to ensure a physically realistic state of equilib-
rium. Second, the model is run for a 29-month period (Jan-
uary 2011–May 2013) to conduct the nature run (NR) with
the same configuration as the spin-up run. By definition, an
OSSE is a controlled experiment that does not assimilate any
real observation. Instead, it treats all of the model outputs
from the NR as the “true” condition (denoted as the “syn-
thetic truth”). The “true” LAI (i.e., the LAI output from NR)
is then perturbed via a simple additive error model to pro-
duce the synthetic observations to be assimilated into the
DA runs. The spin-up run and the NR are forced by the
original MERRA-2 precipitation data. Third, two open loop
(OL) runs (no DA) are conducted for the same 29-month pe-
riod under two conditions: (i) “extremely dry” (the model is
forced by halving the MERRA-2 precipitation data; OL-dry),
and (ii) “extremely wet” (the model is forced by doubling the

MERRA-2 precipitation; OL-wet). The biased forcing pre-
cipitation data in OL mimic typical precipitation biases in
current precipitation reanalysis and satellite products (e.g.,
Ghatak et al., 2018; Yoon et al., 2019).

The two DA runs are then conducted under the two same
conditions (DA-dry and DA-wet) using a one-dimensional
EnKF assimilation algorithm, which is a built-in DA method
in LIS. The EnKF DA algorithm is suitable for nonlinear and
intermittent land surface processes (Reichle et al., 2002a, b).
Details of the algorithm can be found in numerous previous
studies (Reichle et al., 2010; De Lannoy et al., 2012; Liu et
al., 2015; Kumar et al., 2019a).

The model ensemble is generated by perturbing a set of
meteorological forcing. To select the optimal ensemble size,
a sensitivity test is performed for ensemble sizes spanning
from 2 to 24 members (not shown here). The number of en-
semble members has a strong impact on the model results at
small sizes, while the model performance tends to become
steady when more than 20 ensemble members are consid-
ered. Thus, all the DA simulations are run for 20 members.

The synthetic LAI observations are obtained from the NR
and assimilated into the DA system every 8 d. The synthetic
LAI observation has the same temporal resolution as the
MODIS LAI product but with full coverage over the study
domain. In real case studies, satellite LAI products contain a
substantial amount of missing data, mainly due to the cloud
obscuration gaps. Based on the vegetation type in the model,
the leaf mass fields are also updated. Random perturbations
of MERRA-2 meteorological forcings and synthetic LAI ob-
servations are applied to create an ensemble of land surface
conditions that represent the uncertainties in the LSM.

Similar to previous work (Kumar et al., 2014, 2019a, b),
the MERRA-2 forcing inputs such as shortwave and long-
wave radiation and precipitation are perturbed hourly. Multi-
plicative perturbations are applied to the shortwave radiation
and precipitation with a mean of 1 and standard deviations
of 0.3 and 0.5, respectively. The longwave radiation is per-
turbed via an additive perturbation with a standard deviation
of 50 W m−2. The perturbations of the three meteorological
forcing variables also include cross correlations: the cross
correlation between shortwave radiation and precipitation is
−0.8, the cross correlation between longwave radiation and
precipitation is 0.5; and the cross correlation between short-
wave and longwave radiations is −0.5. The synthetic LAI
observations are perturbed via an additive model with a stan-
dard deviation of 0.1.

2.3 Evaluation and error metrics

Output variables from the OL and DA runs are evaluated
against the “truth” from the NR at daily, monthly, and sea-
sonal temporal scales. Besides LAI, five more water fluxes
and storages are evaluated in the results section: ET, CIE,
CWS, SSM, and TWS.
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Figure 1. Study domain and land cover types (Hansen et al., 2000).

Figure 2. Schematic diagram of the OSSE design.

The initial condition for the OL and DA runs is generated
by a spin-up run that uses the original MERRA-2 precipita-
tion as input. However, the OL and DA runs are forced by
either doubled or halved precipitation, which is not consis-
tent with the spin-up run, and the model needs some time
to stabilize. Therefore, the first 5-month model outputs are
eliminated from the evaluation to avoid the model systematic
instability at the beginning of the OL and DA simulations;
hence, the evaluation only focused on model outputs from
1 June 2011 to 31 May 2013. Results are discussed using
maps and time series of global averaged values and anoma-
lies. Each of the anomaly time series is computed relative to
the mean of its respective model run. Moreover, two error
metrics are employed to quantify the difference between OL
(and DA) with respect to the reference variables (from the
NR). The first error metric is the normalized and centered
root mean square error (NCRMSE), which is defined as fol-
lows:

E =

{
1
N

∑N
i=1[(Xi −mean(X))− (Oi −mean(O))]2

} 1
2

mean(O)
, (1)

where E is the NCRMSE, O is the NR output variable, and
X is the output variable from the OL runs or DA runs. N

is the total number of X values, and i represents the index
of each X value. Second, to investigate the improvement (or
degradation) due to the DA of LAI observations, we adopt
the normalized information contribution (NIC, similar to the
NIC in Kumar et al., 2016) index based on the NCRMSE and
defined as follows:

C =
EDA−EOL

0−EOL
, (2)

where C represents the NIC index, and E is the NCRMSE
for OL or DA runs. An NIC equal to 1 means that DA re-
alizes the maximum possible improvement over the OL; an
NIC equal to zero means that DA and OL show the same per-
formance skills; and a negative NIC indicates a model degra-
dation through DA.

3 Results and discussion

3.1 LAI

Figures 3a and 4a show time series of the global averaged
LAI values and the corresponding anomalies, respectively.
As expected, LAI values are largely impacted by the ex-
treme precipitation conditions. The wet condition introduces
more vegetation, whereas the dry condition limits the veg-
etation growth throughout the 2-year period. The DA pro-
cedure effectively corrects the LAI errors caused by the bi-
ased precipitation input. The seasonality of LAI anomalies
is evident, showing larger variations in DJF (December–
January–February) and JJA (June–July–August) than dur-
ing the transition periods (MAM, March–April–May, and
SON, September–October–November). The OL-wet condi-
tion simulation shows larger LAI anomalies than the NR
reference, whereas the OL-dry condition has smaller LAI
anomalies than NR. The LAI anomalies obtained from DA
runs under both wet and dry conditions are closer to the ref-
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erence anomalies than the corresponding OL runs. In gen-
eral, DA performs better in the wet condition experiment
than in the dry case. Moreover, the DA runs show lower
NCRMSE values than the corresponding OL runs across the
globe (Fig. 5a), especially over shrubland and grassland (re-
fer to Fig. 1 for land covers).

In order to illustrate how LAI assimilation performs for
different seasons, Figs. 6a and 7a show monthly averages of
NCRMSE for LAI across the Northern and Southern hemi-
spheres, respectively. In the Northern Hemisphere (Fig. 6a),
the NCRMSE time series follow clear seasonal patterns.
First, the NCRMSE is higher in DJF and MAM and is lower
in JJA and SON for both extreme precipitation conditions.
The highest NCRMSE values are in March and April, and
the lowest values are in July, August, and September. The
differences in the NCRMSE between OL and the correspond-
ing DA runs tend to be much larger in MAM than in any
other seasons, which means that LAI assimilation is more ef-
fective during the vegetation growth period. Moreover, the
NCRMSE is constantly higher in the dry condition runs than
in the wet runs, which is due to the fact that the growth of
vegetation is sensitive to the lack of water. Differences be-
tween wet and dry conditions are much smaller in JJA than
in other seasons. In JJA, leaves in the Northern Hemisphere
are fully developed and the plants can use stomatal closure to
preserve water under water-limited conditions (the dry con-
dition). Thus, the NCRMSE of the dry condition becomes
smaller and does not show much difference from the wet
condition. The Southern Hemisphere (Fig. 7a), which does
not have a strong climate seasonality, shows more modest
seasonal NCRMSE patterns than the Northern Hemisphere
regions. In general, the NCRMSE values in the Southern
Hemisphere are smaller than those in the Northern Hemi-
sphere all year around. Specifically, NCRMSE values in the
Southern Hemisphere are slightly higher in October, Novem-
ber, and December, when the differences between the OL and
DA runs are also larger.

3.2 Water fluxes and storages

As mentioned in Sect. 2.3, we focus on five water-related
variables from the Noah-MP output to evaluate the impact
of LAI assimilation on simulating the water cycle (ET, CIE,
CWS, SSM, and TWS). Daily time series of global averaged
values and corresponding anomalies of the five water vari-
ables are shown in Figs. 3b–f and 4b–f, respectively. The
model shows good simulation performance with respect to
the seasonality of all of the water fluxes/storages considered
here. The OL runs reveal that global average values of all
five variables are impacted by the highly biased precipitation
conditions. The variations of anomalies for ET, CIE, CWS,
and TWS tend to be amplified by the wet condition and tend
to be dampened by the dry condition. On the contrary, the
anomalies of the SSM become larger under dry conditions
and become smaller under wet conditions, which is proba-

bly due to the limited soil water capacity. The surface soil is
more likely to become saturated under wet conditions when
the precipitation doubles the original amount, but the SSM
cannot become larger once the soil is saturated, even if there
is more precipitation added to the system. Thus, the range
of the SSM anomalies in the wet experiment is limited and
narrower than in the dry experiment. The green and yellow
shaded areas in Figs. 3 and 4 represent the ensemble of the
DA runs. The anomaly ensembles of the five water variables
show slight improvements through DA when precipitation is
severely positively biased (wet condition). However, none of
these variables show improvement when the precipitation is
severely negatively biased (dry condition) – the anomalies
either have no change through the LAI DA (ET, CIE, and
CWS) or worsen the OL-dry run (SSM and TWS).

To further investigate the efficiency of assimilating LAI
in Noah-MP, time series of monthly NCRMSE averages are
shown in Figs. 6b–f and 7b–f for all five water variables. The
five variables can be divided into two main groups based on
their performances: ET, CIE, and CWS, and SSM and TWS.
For the wet bias experiment, DA improves the NCRMSE for
all variables. However, LAI assimilation is not able to cor-
rect the model when the input precipitation is negatively bi-
ased (dry condition). A dry precipitation bias means that the
system (erroneously) has less water than in reality (NR in
the synthetic experiment). As no water is otherwise added to
the system, LAI DA cannot fully correct water-related model
states (such as soil moisture). The NCRMSE values of DA
runs are either the same as in the OL runs (ET, CIE, and
CWS) or worse (SSM and TWS). Specifically, ET, CIE, and
CWS have larger NCRMSE values in the Northern Hemi-
sphere and much smaller NCRMSE values in the South-
ern Hemisphere, but SSM and TWS do not show large dif-
ferences between the Northern and Southern hemispheres.
Moreover, ET, CIE, and CWS in the Northern Hemisphere
follow a seasonal pattern: NCRMSE values are lower in the
warm season (JJA) and higher in the colder season (DJF and
March). In the Southern Hemisphere, the three variables also
have relative higher NCRMSE values in the colder season
(JJA). On the contrary, SSM and TWS show a different sea-
sonal pattern with larger NCRMSE values in the warmer sea-
son (April, May, and June) over the Northern Hemisphere. In
the Southern Hemisphere, TWS also has larger NCRMSE
values in the warmer season (October to April), but the SSM
shows higher NCRMSE values in the colder season (similar
to the ET, CIE, and CWS group).

The improvements in the model water fluxes and storages
through LAI DA are also quantified by the NIC index (de-
fined in Eq. 2). Figure 8 presents comparisons among NIC
indices for each water variable analyzed in this study across
areas with four different land cover types: forest and wood-
land, grassland, shrubland, and cropland. In general, LAI DA
improves the NIC indices with positively biased input precip-
itation (DA-wet) but worsens the NIC when negatively bi-
ased input precipitation (DA-dry) is considered. Specifically,
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Figure 3. Global averaged daily values of LAI and five water variables (1 June 2011–31 May 2013).

Figure 4. Global averaged daily anomalies of LAI and five water variables (1 June 2011–31 May 2013).
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Figure 5. Maps of the LAI NCRMSE for the OL and DA runs.

Figure 6. Monthly averaged NCRMSE for LAI and five water variables over the Northern Hemisphere.
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Figure 7. Same as in Fig. 6 but for the Southern Hemisphere.

in the wet condition experiment, ET, CIE, and CWS have
higher variability over areas with different land cover types,
whereas SSM and TWS have similar NIC values across dif-
ferent land covers. Shrubland and cropland tend to perform
better under wet conditions except for TWS. Under dry con-
ditions, the NIC values of ET, CIE, and TWS have higher
variability than those of CWS and SSM. SSM and TWS show
very low NIC values in the dry condition for almost all land
covers. Overall, the NIC values of ET, CIE, and CWS are bet-
ter than those of SSM and TWS for all land cover types, al-
though the NIC values of ET and CIE over forest and wood-
land perform very poorly.

Therefore, the effectiveness of LAI DA varies across the
Northern and Southern hemispheres, different land cover
types, and different input precipitation biases. To further in-
vestigate the influence of LAI assimilation, Figs. 8 and 9
present NIC values for each hemisphere, each season, and
each of the input precipitation conditions – wet and dry, re-
spectively. For the wet case (Fig. 9), the NIC is positive in
most cases, which means that the five water variables benefit

from the LAI assimilation in all seasons and in both hemi-
spheres. The only exception is CWS which has negative NIC
values in the Southern Hemisphere over grassland (in MAM)
and over forest and woodland (in all seasons). In fact, the for-
est and woodland land cover regions tends to show the least
improvement through the LAI assimilation among all land
cover types. This is probably because forests and woodlands
have a large water-holding capacity; thus, the change in the
water amount caused by LAI DA is not enough to improve
the water-related variables. In other words, forest and wood-
land regions tend to have lower sensitivity in response to the
change in precipitation conditions because of their large root-
ing depth. On the contrary, cropland is very sensitive to pre-
cipitation, and it benefits the most from the assimilation of
LAI for most of the variables. Moreover, the NIC values of
ET, CIE, and CWS tend to be smaller than the NIC values
of SSM and TWS. There is no clear seasonality in the NIC
values, although they have a weak tendency to be lower in
warm seasons.

Hydrol. Earth Syst. Sci., 24, 3775–3788, 2020 https://doi.org/10.5194/hess-24-3775-2020
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Figure 8. The NIC for different variables and different land cover types for the two DA runs.

For the dry condition case (Fig. 10), the NIC values are
much lower than in the wet bias case. Nearly half of the NIC
values for the five water-related variables are negative, mean-
ing that DA degrades the OL estimates. Nevertheless, the for-
est and woodland regions tend to perform better than other
land covers under dry conditions for SSM and TWS. This
is due to the large soil reservoir of forests and woodlands,
which keeps the model water storage more stable when the
input precipitation is affected by large negative biases.

3.3 Discussion

As a key factor in land surface processes, precipitation
greatly affects surface water fluxes and states and, con-
sequently, affects vegetation development. Furthermore,
changes in vegetation also have considerable impact on
the surface water condition. Section 3.1 and 3.2 quantified
changes in five water variables (ET, CIE, CWS, SSM, and

TWS) due to the LAI assimilation in Noah-MP. Among the
five variables, CIE and CWS are directly related to LAI,
while the relationships between LAI and ET, SSM, and TWS
are more complex (and indirect) and involve several other
factors. For example, ET counts the water losses via both
vegetation and soil; SSM is impacted by factors such as pre-
cipitation, temperature, and soil characteristics; and TWS
considers all of the water storage in the land surface and sub-
surface, including CWS and SSM.

The performance of the proposed LAI assimilation largely
varies depending on the modeled variable, land cover type,
errors in the model input (e.g., wet or dry bias in the forc-
ing precipitation), and season. This is due to the complex
relationships between vegetation and land water condition.
Specifically, results from this study indicate that assimilat-
ing LAI in Noah-MP improves the model estimates of water
fluxes and storages under positively biased precipitation in-
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Figure 9. The NIC of five water variables under wet precipitation
conditions over Northern and Southern hemispheres (NH and SH,
respectively) during the different seasons (MAM, JJA, SON, and
DJF).

put but does not benefit most of the selected water variables
when the precipitation input is characterized by a negative
bias.

In the dry condition runs, Noah-MP is fed by only half of
the original MERRA-2 precipitation used in the NR. Con-
sidering that the amount of water in Noah-MP is conserva-

Figure 10. Same as in Fig. 9 but for the dry precipitation experi-
ment.

tive (as it is based on a water balance equation), the model
has no additional water source in the system, even though
the LAI assimilation pushes the model towards more vegeta-
tion (which should result in more water). As a matter of fact,
introducing more vegetation in the system results in more
ET and more root water uptake from the soil, which is most
likely the cause of the poor performance of most water fluxes
and storages in the DA-dry experiment.
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Conversely, the LAI assimilation is found to improve the
original OL runs when the input precipitation is positively
biased. This is because LAI assimilation is able to help con-
strain the partitioning of model water storage when there is
abundant water in the system, thereby improving the perfor-
mance of water-related variables. In summary, although the
EnKF is run in a suboptimal mode here (not satisfying the
unbiasedness assumption), the assimilation of LAI is shown
to have a positive impact on multiple variables and in several
regions of the world.

Overall the improvement of water variables through LAI
assimilation is not remarkable enough to compensate for the
model degradation caused by the biased precipitation forc-
ing data. Previous studies (Pauwels et al., 2007; Sabater et
al., 2008; Barbu et al., 2011; Fairbairn et al., 2017; Albergel
et al., 2017) have tested the performance of the joint as-
similation of LAI and soil moisture over regional domains
and have shown promising results. However, no experiments
have been performed at the global scale. Future work could
investigate a multivariate data assimilation system that con-
currently merges both LAI and soil moisture (or TWS) ob-
servations globally.

4 Conclusions

This study evaluates the efficiency of assimilating vegetation
information (i.e., LAI synthetic observations) within a land
surface model (Noah-MP 3.6) when the precipitation forcing
data are strongly biased (either positively or negatively). Two
OSSEs that use an EnKF algorithm for LAI assimilation are
performed at a global scale for the period from June 2011
to May 2013. The experiments use MERRA-2 as meteo-
rological forcing data. The OL and DA runs are evaluated
against a synthetic “truth” from a nature run, in which the
MERRA-2 precipitation is neither perturbed nor biased. The
performance of the proposed framework is evaluated for sev-
eral model output variables, including LAI estimates and five
water-related variables (ET, CIE, CWS, SSM, and TWS).

Overall, the EnKF LAI assimilation procedure effectively
reduces the LAI error under positively (wet case) and nega-
tively (dry case) biased precipitation conditions. For the five
selected water flux or storage variables, LAI DA improves
the model estimates when the model input precipitation is
positively biased, but it tends to worsen the OL estimates for
some of those variables when the input precipitation is neg-
atively biased. Specifically, SSM and TWS estimates are de-
graded in the DA-dry run with respect to the OL-dry run,
whereas ET, CIE, and CWS do not present large changes
when LAI is assimilated in the dry bias run. The poor perfor-
mance of LAI DA under dry condition is mainly attributed to
the fact that the amount of water in Noah-MP is conservative.
The LAI assimilation in the dry condition experiment intro-
duces more vegetation, which requires more water in the sys-
tem to replenish the soil water supply. However, the model

has no additional source of water, as the input precipitation
is negatively biased.

Although a blind bias case (e.g., unknown biases in the
precipitation forcing dataset) is presented here in which the
EnKF is run in a suboptimal mode, the assimilation of LAI
observations is proven useful to improve several model out-
put variables. Future research should focus on alternative
DA methods, such as updating other related model states
while assimilating LAI observations, perturbing the model
initial condition and model parameters, and/or assimilat-
ing actual satellite-based LAI observations (e.g., MODIS,
GLASS) at the global scale to verify the efficiency of the pro-
posed vegetation DA framework. This may be particularly
useful in agricultural areas, where the vegetation conditions
are largely impacted by cropping schedules (Kumar et al.,
2019b). Moreover, future work could investigate multivari-
ate DA techniques that combine the assimilation of several
variables (such as LAI, soil moisture, and TWS) at the global
scale.
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