Research article
13 May 2020
Research article
| 13 May 2020
Sensitivity of hydrologic and geologic parameters on recharge processes in a highly heterogeneous, semi-confined aquifer system
Stephen R. Maples et al.
Related authors
No articles found.
Marina R. L. Mautner, Laura Foglia, and Jonathan D. Herman
Hydrol. Earth Syst. Sci., 26, 1319–1340, https://doi.org/10.5194/hess-26-1319-2022, https://doi.org/10.5194/hess-26-1319-2022, 2022
Short summary
Short summary
Sensitivity analysis can be harnessed to evaluate effects of model uncertainties on planning outcomes. This study explores how observation and parameter uncertainty propagate through a hydrogeologic model to influence the ranking of decision alternatives. Using global sensitivity analysis and evaluation of aquifer management objectives, we evaluate how physical properties of the model and choice of observations for calibration can lead to variations in decision-relevant model outputs.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Didier Voisin, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Jean-Gabriel Valay, and Reed Maxwell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-639, https://doi.org/10.5194/hess-2021-639, 2022
Preprint under review for HESS
Short summary
Short summary
Patchy snow cover is a common phenomenon in mountain landscapes. It leads to a longer period of snowmelt contribution to streams. Our study shows that surface variability of snow cover leads to differences in streamflow, evapotranspiration and snowmelt responses. We have used up-to-date hydrological tools strongly constrained with data collected from field and satellite images. The study finding will be helpful for the mountain hydrology community in the proper estimation of water resources.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Mary M. F. O'Neill, Danielle T. Tijerina, Laura E. Condon, and Reed M. Maxwell
Geosci. Model Dev., 14, 7223–7254, https://doi.org/10.5194/gmd-14-7223-2021, https://doi.org/10.5194/gmd-14-7223-2021, 2021
Short summary
Short summary
Modeling the hydrologic cycle at high resolution and at large spatial scales is an incredible opportunity and challenge for hydrologists. In this paper, we present the results of a high-resolution hydrologic simulation configured over the contiguous United States. We discuss simulated water fluxes through groundwater, soil, plants, and over land, and we compare model results to in situ observations and satellite products in order to build confidence and guide future model development.
Jun Zhang, Laura E. Condon, Hoang Tran, and Reed M. Maxwell
Earth Syst. Sci. Data, 13, 3263–3279, https://doi.org/10.5194/essd-13-3263-2021, https://doi.org/10.5194/essd-13-3263-2021, 2021
Short summary
Short summary
Existing national topographic datasets for the US may not be compatible with gridded hydrologic models. A national topographic dataset developed to support physically based hydrologic models at 1 km and 250 m over the contiguous US is provided. We used a Priority Flood algorithm to ensure hydrologically consistent drainage networks and evaluated the performance with an integrated hydrologic model. Datasets and scripts are available for direct data usage or modification of processing as desired.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Benjamin N. O. Kuffour, Nicholas B. Engdahl, Carol S. Woodward, Laura E. Condon, Stefan Kollet, and Reed M. Maxwell
Geosci. Model Dev., 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020, https://doi.org/10.5194/gmd-13-1373-2020, 2020
Short summary
Short summary
Integrated hydrologic models (IHMs) were developed in order to allow for more accurate simulations of real-world ecohydrologic conditions. Many IHMs exist, and the literature can be dense, so it is often difficult to understand what a specific model can and cannot do. We provide a review of the current core capabilities, solution techniques, communication structure with other models, some limitations, and potential future improvements of one such open-source integrated model called ParFlow.
Robert Reinecke, Laura Foglia, Steffen Mehl, Jonathan D. Herman, Alexander Wachholz, Tim Trautmann, and Petra Döll
Hydrol. Earth Syst. Sci., 23, 4561–4582, https://doi.org/10.5194/hess-23-4561-2019, https://doi.org/10.5194/hess-23-4561-2019, 2019
Short summary
Short summary
Recently, the first global groundwater models were developed to better understand surface-water–groundwater interactions and human water use impacts. However, the reliability of model outputs is limited by a lack of data as well as model assumptions required due to the necessarily coarse spatial resolution. In this study we present the first global maps of model sensitivity according to their parameterization and build a foundation to improve datasets, model design, and model understanding.
Robert Reinecke, Laura Foglia, Steffen Mehl, Tim Trautmann, Denise Cáceres, and Petra Döll
Geosci. Model Dev., 12, 2401–2418, https://doi.org/10.5194/gmd-12-2401-2019, https://doi.org/10.5194/gmd-12-2401-2019, 2019
Short summary
Short summary
G³M is a new global groundwater model (http://globalgroundwatermodel.org) that simulates lateral and vertical flows as well as exchanges with surface water bodies like rivers, lakes, and wetlands for the whole globe except Antarctica and Greenland. The newly developed model framework enables an efficient integration into established global hydrological models. This paper presents the G³M concept and specific model design decisions together with first results under a naturalized equilibrium.
Annette Hein, Laura Condon, and Reed Maxwell
Hydrol. Earth Syst. Sci., 23, 1931–1950, https://doi.org/10.5194/hess-23-1931-2019, https://doi.org/10.5194/hess-23-1931-2019, 2019
Short summary
Short summary
Drought is a natural disaster that can result from changes to temperature, precipitation and/or vegetation. Here we apply a
high-resolution computer model to explore the relative importance of each factor on the North American High Plains, one of the most important agricultural regions of the USA. Decreased precipitation caused larger changes in hydrologic variables (evapotranspiration, soil moisture, stream flow and water table levels) than increased temperature or disturbed vegetation did.
Laura E. Condon and Reed M. Maxwell
Hydrol. Earth Syst. Sci., 21, 1117–1135, https://doi.org/10.5194/hess-21-1117-2017, https://doi.org/10.5194/hess-21-1117-2017, 2017
Short summary
Short summary
We evaluate the impact of groundwater–surface water exchanges on the fraction of precipitation that leaves a watershed as either surface runoff or evapotranspiration. Results show that groundwater storage can systematically influence watershed behavior at the land surface. This is an important finding because most studies of tradeoffs between runoff and evapotranspiration assume that watersheds are in a steady-state condition where there are no net exchanges between the surface and subsurface.
James M. Gilbert and Reed M. Maxwell
Hydrol. Earth Syst. Sci., 21, 923–947, https://doi.org/10.5194/hess-21-923-2017, https://doi.org/10.5194/hess-21-923-2017, 2017
Short summary
Short summary
Understanding how groundwater and streamflow interact over large areas is a challenge. In this study we use a computer simulation that calculates water movement and storage at the land surface and in the subsurface within California's San Joaquin River basin to analyze different parts of the watershed. Results show that the mountains may be an important source of groundwater to the Central Valley while differences in relative speed of groundwater and river flow affect their connection patterns.
Wolfgang Kurtz, Guowei He, Stefan J. Kollet, Reed M. Maxwell, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 9, 1341–1360, https://doi.org/10.5194/gmd-9-1341-2016, https://doi.org/10.5194/gmd-9-1341-2016, 2016
Short summary
Short summary
This paper describes the development of a modular data assimilation (DA) system for the integrated Earth system model TerrSysMP with the help of the PDAF data assimilation library.
Currently, pressure and soil moisture data can be used to update model states and parameters in the subsurface compartment of TerrSysMP.
Results from an idealized twin experiment show that the developed DA system provides a good parallel performance and is also applicable for high-resolution modelling problems.
R. M. Maxwell, L. E. Condon, and S. J. Kollet
Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, https://doi.org/10.5194/gmd-8-923-2015, 2015
Short summary
Short summary
A model that simulates groundwater and surface water flow has been developed for the major river basins of the continental United States. Fundamental data sets provide input to the model resulting in a natural organization of stream networks and groundwater flow that is compared to observations of surface water and groundwater. Model results show relationships between flow and area that are moderated by aridity and represent an important step toward integrated hydrological prediction.
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Karst spring discharge modeling based on deep learning using spatially distributed input data
HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling”
Spatiotemporal variations in water sources and mixing spots in a riparian zone
Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data
Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Improved understanding of regional groundwater drought development through time series modelling: the 2018–2019 drought in the Netherlands
Simulation of long-term spatiotemporal variations in regional-scale groundwater recharge: contributions of a water budget approach in cold and humid climates
Experimental study of non-Darcian flow characteristics in permeable stones
Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields
Exploring river–aquifer interactions and hydrological system response using baseflow separation, impulse response modelling and time series analysis in three temperate lowland catchments
Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment
Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach
Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape
Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe
Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data
Early hypogenic carbonic acid speleogenesis in unconfined limestone aquifers by upwelling deep-seated waters with high CO2 concentration: a modelling approach
Impacts of climate change on groundwater flooding and ecohydrology in lowland karst
How daily groundwater table drawdown affects the diel rhythm of hyporheic exchange
Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX)
Groundwater and baseflow drought responses to synthetic recharge stress tests
Determination of vadose zone and saturated zone nitrate lag times using long-term groundwater monitoring data and statistical machine learning
Modelling the hydrological interactions between a fissured granite aquifer and a valley mire in the Massif Central, France
A new criterion for determining the representative elementary volume of translucent porous media and inner contaminant
Physics-inspired integrated space–time artificial neural networks for regional groundwater flow modeling
Hydraulic and geochemical impact of occasional saltwater intrusions through a submarine spring in a karst and thermal aquifer (Balaruc peninsula near Montpellier, France)
Calibration of a lumped karst system model and application to the Qachqouch karst spring (Lebanon) under climate change conditions
Basin-scale multi-objective simulation-optimization modeling for conjunctive use of surface water and groundwater in northwest China
Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 °C global warming in a mesoscale central German basin
Groundwater mean residence times of a subtropical barrier sand island
On the conceptual complexity of non-point source management: impact of spatial variability
The millennium-old hydrogeology textbook The Extraction of Hidden Waters by the Persian mathematician and engineer Abubakr Mohammad Karaji (953 CE–1029 CE)
Modeling groundwater responses to climate change in the Prairie Pothole Region
A multi-environmental tracer study to determine groundwater residence times and recharge in a structurally complex multi-aquifer system
A three-dimensional palaeohydrogeological reconstruction of the groundwater salinity distribution in the Nile Delta Aquifer
Modelling of the shallow water table at high spatial resolution using random forests
An extended trajectory-mechanics approach for calculating the path of a pressure transient: travel-time tomography
Global sensitivity analysis and adaptive stochastic sampling of a subsurface-flow model using active subspaces
A comprehensive quasi-3-D model for regional-scale unsaturated–saturated water flow
Decomposition technique for contributions to groundwater heads from inside and outside of an arbitrary boundary: application to Guantao County, North China Plain
High-resolution paleovalley classification from airborne electromagnetic imaging and deep neural network training using digital elevation model data
A partially coupled hydro-mechanical analysis of the Bengal Aquifer System under hydrological loading
Reactive transport with wellbore storages in a single-well push–pull test
Dynamics of wormhole formation in fractured limestones
A general analytical model for head response to oscillatory pumping in unconfined aquifers: effects of delayed gravity drainage and initial condition
Faulting patterns in the Lower Yarmouk Gorge potentially influence groundwater flow paths
Stochastic modeling of flow and conservative transport in three-dimensional discrete fracture networks
Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross sections
Application of an improved global-scale groundwater model for water table estimation across New Zealand
Managed aquifer recharge with reverse-osmosis desalinated seawater: modeling the spreading in groundwater using stable water isotopes
Numerical modeling of flow and transport in the Bari industrial area by means of rough walled parallel plate and random walk models
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
Short summary
Modeling complex karst water resources is difficult enough, but often there are no or too few climate stations available within or close to the catchment to deliver input data for modeling purposes. We apply image recognition algorithms to time-distributed, spatially gridded meteorological data to simulate karst spring discharge. Our models can also learn the approximate catchment location of a spring independently.
Brian Berkowitz
Hydrol. Earth Syst. Sci., 26, 2161–2180, https://doi.org/10.5194/hess-26-2161-2022, https://doi.org/10.5194/hess-26-2161-2022, 2022
Short summary
Short summary
Extensive efforts have focused on quantifying conservative chemical transport in geological formations. We assert that an explicit accounting of temporal information, under uncertainty, in addition to spatial information, is fundamental to an effective modeling formulation. We further assert that efforts to apply chemical transport equations at large length scales, based on measurements and model parameter values relevant to significantly smaller length scales, are an unattainable
holy grail.
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022, https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
Short summary
In near-stream aquifers, mixing between stream water and ambient groundwater can lead to dilution and the removal of substances that can be harmful to the water ecosystem at high concentrations. We used a numerical model to track the spatiotemporal evolution of different water sources and their mixing around a stream, which are rather difficult in the field. Results show that mixing mainly develops as narrow spots, varying In time and space, and is affected by magnitudes of discharge events.
Jacques Bodin, Gilles Porel, Benoît Nauleau, and Denis Paquet
Hydrol. Earth Syst. Sci., 26, 1713–1726, https://doi.org/10.5194/hess-26-1713-2022, https://doi.org/10.5194/hess-26-1713-2022, 2022
Short summary
Short summary
Assessment of the karst network geometry is an important challenge in the accurate modeling of karst aquifers. In this study, we propose an approach for the identification of effective three-dimensional discrete karst conduit networks conditioned on tracer tests and geophysical data. The applicability of the proposed approach is illustrated through a case study at the Hydrogeological Experimental Site in Poitiers, France.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Esther Brakkee, Marjolein H. J. van Huijgevoort, and Ruud P. Bartholomeus
Hydrol. Earth Syst. Sci., 26, 551–569, https://doi.org/10.5194/hess-26-551-2022, https://doi.org/10.5194/hess-26-551-2022, 2022
Short summary
Short summary
Periods of drought often lead to groundwater shortages in large regions, which cause damage to nature and the economy. To take measures, we need a good understanding of where and when groundwater shortage occurs. In this study, we have tested a method that can combine large amounts of groundwater measurements in an automated way and provide detailed maps of how groundwater shortages develop during a drought period. This information can help water managers to limit future groundwater shortages.
Emmanuel Dubois, Marie Larocque, Sylvain Gagné, and Guillaume Meyzonnat
Hydrol. Earth Syst. Sci., 25, 6567–6589, https://doi.org/10.5194/hess-25-6567-2021, https://doi.org/10.5194/hess-25-6567-2021, 2021
Short summary
Short summary
This work demonstrates the relevance of using a water budget model to understand long-term transient and regional-scale groundwater recharge (GWR) in cold and humid climates where groundwater observations are scarce. Monthly GWR is simulated for 57 years on 500 m x 500 m cells in Canada (36 000 km2 area) with limited uncertainty due to a robust automatic calibration method. The increases in precipitation and temperature since the 1960s have not yet produced significant changes in annual GWR.
Zhongxia Li, Junwei Wan, Tao Xiong, Hongbin Zhan, Linqing He, and Kun Huang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-588, https://doi.org/10.5194/hess-2021-588, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
Although many scholars have carried out a lot of research work on homogeneous and heterogeneous porous media, the essence of the water passing capacity of porous media is pore sizes. Thus, exploring the distribution of pores in porous media is the basis of studying flow dynamics of Darcian and non-Darcian flows. The study provides experimental evidence for Forchheimer flow and quantitatively analyzes the influence of pore size on different flow regimes, which will be interesting to the readers.
Yaniv Edery, Martin Stolar, Giovanni Porta, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 5905–5915, https://doi.org/10.5194/hess-25-5905-2021, https://doi.org/10.5194/hess-25-5905-2021, 2021
Short summary
Short summary
The interplay between dissolution, precipitation and transport is widely encountered in porous media, from CO2 storage to cave formation in carbonate rocks. We show that dissolution occurs along preferential flow paths with high hydraulic conductivity, while precipitation occurs at locations close to yet separated from these flow paths, thus further funneling the flow and changing the probability density function of the transport, as measured on the altered conductivity field at various times.
Min Lu, Bart Rogiers, Koen Beerten, Matej Gedeon, and Marijke Huysmans
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-422, https://doi.org/10.5194/hess-2021-422, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
This research not only provides insights into the river-aquifer interactions over the past 30 years but also serves as a benchmark study for predicting their interactions under future climate scenarios. The results show that the lowland catchments are groundwater-dominated and the lowland hydrological system from precipitation impulse to baseflow response is a very fast response system. This study also provides an option to assess baseflow from the groundwater flow (level) persepctive.
Karina Y. Gutierrez-Jurado, Daniel Partington, and Margaret Shanafield
Hydrol. Earth Syst. Sci., 25, 4299–4317, https://doi.org/10.5194/hess-25-4299-2021, https://doi.org/10.5194/hess-25-4299-2021, 2021
Short summary
Short summary
Understanding the hydrologic cycle in semi-arid landscapes includes knowing the physical processes that govern where and why rivers flow and dry within a given catchment. To gain this understanding, we put together a conceptual model of what processes we think are important and then tested that model with numerical analysis. The results broadly confirmed our hypothesis that there are three distinct regions in our study catchment that contribute to streamflow generation in quite different ways.
Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler
Hydrol. Earth Syst. Sci., 25, 4041–4059, https://doi.org/10.5194/hess-25-4041-2021, https://doi.org/10.5194/hess-25-4041-2021, 2021
Short summary
Short summary
We compare two approaches for coupling a 2D groundwater model with multiple 1D models for the unsaturated zone. One is non-iterative and very fast. The other one is iterative and involves a new way of treating the specific yield, which is crucial for obtaining a consistent solution in both model compartments. Tested on different scenarios, this new method turns out to be slower than the non-iterative approach but more accurate and still very efficient compared to fully integrated 3D model runs.
Vince P. Kaandorp, Hans Peter Broers, Ype van der Velde, Joachim Rozemeijer, and Perry G. B. de Louw
Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021, https://doi.org/10.5194/hess-25-3691-2021, 2021
Short summary
Short summary
We reconstructed historical and present-day tritium, chloride, and nitrate concentrations in stream water of a catchment using
land-use-based input curves and calculated travel times of groundwater. Parameters such as the unsaturated zone thickness, mean travel time, and input patterns determine time lags between inputs and in-stream concentrations. The timescale of the breakthrough of pollutants in streams is dependent on the location of pollution in a catchment.
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021, https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Short summary
This study utilized spatiotemporally continuous precipitation anomaly (pra) and water table depth anomaly (wtda) data from integrated hydrologic simulation results over Europe in combination with Long Short-Term Memory (LSTM) networks to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain reliable models to estimate wtda at the individual pixel level.
Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk
Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, https://doi.org/10.5194/hess-25-2931-2021, 2021
Short summary
Short summary
This study explores the use of nonlinear transfer function noise (TFN) models to simulate groundwater levels and estimate groundwater recharge from observed groundwater levels. A nonlinear recharge model is implemented in a TFN model to compute the recharge. The estimated recharge rates are shown to be in good agreement with the recharge observed with a lysimeter present at the case study site in Austria. The method can be used to obtain groundwater recharge rates at
sub-yearly timescales.
Franci Gabrovšek and Wolfgang Dreybrodt
Hydrol. Earth Syst. Sci., 25, 2895–2913, https://doi.org/10.5194/hess-25-2895-2021, https://doi.org/10.5194/hess-25-2895-2021, 2021
Short summary
Short summary
The evolution of karst aquifers is often governed by solutions gaining their aggressiveness in depth. Although the principles of
hypogene speleogenesisare known, modelling studies based on reactive flow in fracture networks are missing. We present a model where dissolution at depth is triggered by the mixing of waters of different origin and chemistry. We show how the initial position of the mixing zone and flow instabilities therein determine the position and shape of the final conduits.
Patrick Morrissey, Paul Nolan, Ted McCormack, Paul Johnston, Owen Naughton, Saheba Bhatnagar, and Laurence Gill
Hydrol. Earth Syst. Sci., 25, 1923–1941, https://doi.org/10.5194/hess-25-1923-2021, https://doi.org/10.5194/hess-25-1923-2021, 2021
Short summary
Short summary
Lowland karst aquifers provide important wetland habitat resulting from seasonal flooding on the land surface. This flooding is controlled by surcharging of the karst system, which is very sensitive to changes in rainfall. This study investigates the predicted impacts of climate change on a lowland karst catchment in Ireland and highlights the relative vulnerability to future changing climate conditions of karst systems and any associated wetland habitats.
Liwen Wu, Jesus D. Gomez-Velez, Stefan Krause, Anders Wörman, Tanu Singh, Gunnar Nützmann, and Jörg Lewandowski
Hydrol. Earth Syst. Sci., 25, 1905–1921, https://doi.org/10.5194/hess-25-1905-2021, https://doi.org/10.5194/hess-25-1905-2021, 2021
Short summary
Short summary
With a physically based model that couples flow and heat transport in hyporheic zones, the present study provides the first insights into the dynamics of hyporheic responses to the impacts of daily groundwater withdrawal and river temperature fluctuations, allowing for a better understanding of transient hyporheic exchange processes and hence an improved pumping operational scheme.
Andreas Wunsch, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, https://doi.org/10.5194/hess-25-1671-2021, 2021
Jost Hellwig, Michael Stoelzle, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 1053–1068, https://doi.org/10.5194/hess-25-1053-2021, https://doi.org/10.5194/hess-25-1053-2021, 2021
Short summary
Short summary
Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to altered recharge conditions. With three generic scenarios, we found different sensitivities across Germany driven by hydrogeology. While changes in drought hazard due to seasonal recharge shifts will be rather low, a lengthening of dry spells could cause stronger responses in regions with slow groundwater response to precipitation, urging local water management to prepare for more severe droughts.
Martin J. Wells, Troy E. Gilmore, Natalie Nelson, Aaron Mittelstet, and John K. Böhlke
Hydrol. Earth Syst. Sci., 25, 811–829, https://doi.org/10.5194/hess-25-811-2021, https://doi.org/10.5194/hess-25-811-2021, 2021
Short summary
Short summary
Groundwater in many agricultural areas contains high levels of nitrate, which is a concern for drinking water supplies. The rate at which nitrate moves through the subsurface is a critical piece of information for predicting how quickly groundwater nitrate levels may improve after agricultural producers change their approach to managing crop water and fertilizers. In this study, we explored a new statistical modeling approach to determine rates at which nitrate moves into and through an aquifer.
Arnaud Duranel, Julian R. Thompson, Helene Burningham, Philippe Durepaire, Stéphane Garambois, Robert Wyns, and Hervé Cubizolle
Hydrol. Earth Syst. Sci., 25, 291–319, https://doi.org/10.5194/hess-25-291-2021, https://doi.org/10.5194/hess-25-291-2021, 2021
Short summary
Short summary
Peat-forming wetlands (mires) provide multiple ecosystem services, which depend on peat remaining waterlogged. Using hydrological modelling, we show that, contrary to a common assumption, groundwater inflow can be a quantitatively important and functionally critical element of the water balance of mires in hard-rock upland and mountain areas. This influence is such that patterns of groundwater upwelling and seepage explain the spatial distribution of mires in the landscape.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 24, 5903–5917, https://doi.org/10.5194/hess-24-5903-2020, https://doi.org/10.5194/hess-24-5903-2020, 2020
Short summary
Short summary
A new criterion (χi) is proposed to estimate representative elementary volume (REV) of a translucent material based on light transmission techniques. This study is essential for quantitative investigation of the scale effect of porous media and contaminant transformation. The fluid and contaminant migration and transform in porous media can be simulated accurately according to the REV estimation results using the light transmission technique and the appropriate criterion χi.
Ali Ghaseminejad and Venkatesh Uddameri
Hydrol. Earth Syst. Sci., 24, 5759–5779, https://doi.org/10.5194/hess-24-5759-2020, https://doi.org/10.5194/hess-24-5759-2020, 2020
Short summary
Short summary
While artificial neural networks (ANNs) have been used to forecast groundwater levels at single wells, they have not been constructed to forecast hydraulic heads in both space and time. This seminal study presents a modeling framework, guided by the governing physical laws, for building an integrated space–time ANN (IST–ANN) model for regional groundwater level predictions. IST–ANN shows promise for parsimoniously modeling regional-scale groundwater levels using available surrogate information.
Marie-Amélie Pétré, Bernard Ladouche, Jean-Luc Seidel, Romain Hemelsdaël, Véronique de Montety, Christelle Batiot-Guilhe, and Claudine Lamotte
Hydrol. Earth Syst. Sci., 24, 5655–5672, https://doi.org/10.5194/hess-24-5655-2020, https://doi.org/10.5194/hess-24-5655-2020, 2020
Short summary
Short summary
We studied the impact of occasional saltwater intrusions into the karst aquifer of the Balaruc peninsula (France). Using hydrogeological and geochemical data, this study shows that the hydraulic impact on the aquifer is rapid and of regional extent, whereas the geochemical impact is observed at the local scale and is temporally persistent. This research supports groundwater management by providing a better understanding of the hydrodynamics and recovery of the aquifer after saltwater intrusions.
Emmanuel Dubois, Joanna Doummar, Séverin Pistre, and Marie Larocque
Hydrol. Earth Syst. Sci., 24, 4275–4290, https://doi.org/10.5194/hess-24-4275-2020, https://doi.org/10.5194/hess-24-4275-2020, 2020
Short summary
Short summary
The simulation of flow in a karst aquifer in a Mediterranean region using a semi-distributed linear reservoir model (geometry and parameterization) is calibrated and validated based on the analysis of high-resolution time series. The model is used to predict the effect of climatic variation. Although the spring is highly sensitive to rainfall variations, it is also resilient to warming temperature. Finally, this integrated conceptual method is reproducible for karst in semiarid regions.
Jian Song, Yun Yang, Xiaomin Sun, Jin Lin, Ming Wu, Jianfeng Wu, and Jichun Wu
Hydrol. Earth Syst. Sci., 24, 2323–2341, https://doi.org/10.5194/hess-24-2323-2020, https://doi.org/10.5194/hess-24-2323-2020, 2020
Short summary
Short summary
We proposed a novel many-objective simulation-optimization framework for conjunctive use of surface water and groundwater in Yanqi Basin, northwest China. The management model involving socioeconomic and environmental objectives was constructed to explore optimal water-use schemes. Three runoff scenarios were then specified to quantify the effect of runoff reduction related to climate change on water management. Results provide Pareto-optimal solutions for basin-scale water management.
Miao Jing, Rohini Kumar, Falk Heße, Stephan Thober, Oldrich Rakovec, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020, https://doi.org/10.5194/hess-24-1511-2020, 2020
Short summary
Short summary
This study investigates the response of regional groundwater system to the climate change under three global warming levels (1.5, 2, and 3 °C) in a central German basin. A comprehensive uncertainty analysis is also presented. This study indicates that the variability of responses increases with the amount of global warming, which might affect the cost of managing the groundwater system.
Harald Hofmann, Dean Newborn, Ian Cartwright, Dioni I. Cendón, and Matthias Raiber
Hydrol. Earth Syst. Sci., 24, 1293–1318, https://doi.org/10.5194/hess-24-1293-2020, https://doi.org/10.5194/hess-24-1293-2020, 2020
Short summary
Short summary
Fresh groundwater (GW) on barrier islands is affected by GW use and precipitation variability. Mean residence times (MRTs) of GW on a sand barrier island were determined. They ranged from 37 years to more than 150 years for tritium and had a much larger range (modern to 5000 years) for carbon-14. Perched aquifer systems in the unsaturated zone and peat formations around wetlands are the most likely cause of longer MRTs, as they have a significant impact on regional recharge and flow diversion.
Christopher Vincent Henri, Thomas Harter, and Efstathios Diamantopoulos
Hydrol. Earth Syst. Sci., 24, 1189–1209, https://doi.org/10.5194/hess-24-1189-2020, https://doi.org/10.5194/hess-24-1189-2020, 2020
Short summary
Short summary
Non-point source contaminations of aquifers are complex to model, predict and manage. This study uses numerical and stochastic methods to address the importance of key sources of spatial variability. We show that heterogeneity in recharge and contaminant loading does not significantly impact management metrics and could be simplified. Also, homogenizing physical properties has more impact on predictions, but can provide useful information on concentration statistics in a regional analysis.
Behzad Ataie-Ashtiani and Craig T. Simmons
Hydrol. Earth Syst. Sci., 24, 761–769, https://doi.org/10.5194/hess-24-761-2020, https://doi.org/10.5194/hess-24-761-2020, 2020
Short summary
Short summary
We revisit and shed light on the textbook The Extraction of Hidden Waters by the Persian mathematician and engineer Abubakr Mohammad Karaji. Ground-breaking ideas and descriptions of hydrological and hydrogeological perceptions such as components of the hydrological cycle, groundwater quality and driving factors for groundwater flow were presented in the book. We speculate that Karaji's book is the first of its kind to provide a construction and maintenance manual for an engineering project.
Zhe Zhang, Yanping Li, Michael Barlage, Fei Chen, Gonzalo Miguez-Macho, Andrew Ireson, and Zhenhua Li
Hydrol. Earth Syst. Sci., 24, 655–672, https://doi.org/10.5194/hess-24-655-2020, https://doi.org/10.5194/hess-24-655-2020, 2020
Short summary
Short summary
The groundwater regime in cold regions is strongly impacted by the soil freeze–thaw processes and semiarid climatic conditions. In this paper, we incorporate groundwater dynamics in the Noah-MP land surface model to simulate the water exchange between the unsaturated soil zone and an unconfined aquifer in the Prairie Pothole Region. The water table dynamics are reasonably simulated. The water budget of groundwater aquifer under current and future climate are also investigated.
Cornelia Wilske, Axel Suckow, Ulf Mallast, Christiane Meier, Silke Merchel, Broder Merkel, Stefan Pavetich, Tino Rödiger, Georg Rugel, Agnes Sachse, Stephan M. Weise, and Christian Siebert
Hydrol. Earth Syst. Sci., 24, 249–267, https://doi.org/10.5194/hess-24-249-2020, https://doi.org/10.5194/hess-24-249-2020, 2020
Short summary
Short summary
Despite feeding several million people, the flow system and inter-aquifer communication within one of the major aquifer systems in Israel and the West Bank is still poorly understood. Applying a combination of inorganic elements, anthropogenic organic trace substances and classical environmental age-dating tracers like 3H, CFCs, SF6 and 36Cl / Cl, groundwater flow patterns, mixing end-members, transport times and recharge estimates have been obtained despite very limited data.
Joeri van Engelen, Jarno Verkaik, Jude King, Eman R. Nofal, Marc F. P. Bierkens, and Gualbert H. P. Oude Essink
Hydrol. Earth Syst. Sci., 23, 5175–5198, https://doi.org/10.5194/hess-23-5175-2019, https://doi.org/10.5194/hess-23-5175-2019, 2019
Short summary
Short summary
The Nile Delta is an important agricultural area with a fast-growing population, relying increasingly on groundwater. However, saline groundwater extends far land-inward, rendering groundwater close to the coastal zone useless for consumption or agriculture. It normally is assumed that this is caused by mixing due to velocity differences, but here we show that it might also be caused by the coastline being located more land-inward 8000 years ago.
Julian Koch, Helen Berger, Hans Jørgen Henriksen, and Torben Obel Sonnenborg
Hydrol. Earth Syst. Sci., 23, 4603–4619, https://doi.org/10.5194/hess-23-4603-2019, https://doi.org/10.5194/hess-23-4603-2019, 2019
Short summary
Short summary
This study explores novel modelling avenues using machine learning in combination with process-based models to predict the shallow water table at high spatial resolution. Due to climate change and anthropogenic impacts, the shallow groundwater is rising in many parts of the world. In order to adapt to risks induced by groundwater flooding, new modelling tools need to emerge. In this study, we found that machine learning is capable of reaching the required accuracy and resolution.
Donald W. Vasco, Joseph Doetsch, and Ralf Brauchler
Hydrol. Earth Syst. Sci., 23, 4541–4560, https://doi.org/10.5194/hess-23-4541-2019, https://doi.org/10.5194/hess-23-4541-2019, 2019
Short summary
Short summary
This paper presents the application of a new approach for calculating the path of a pressure transient in a heterogeneous porous medium containing a slightly compressible fluid. Unlike previous asymptotic approaches, the expressions for the path and travel time are valid in the presence of rapid variations in material properties. The technique is applied to both synthetic transient pressure variations from a test example and actual field data from a field experiment in Widen, Switzerland.
Daniel Erdal and Olaf A. Cirpka
Hydrol. Earth Syst. Sci., 23, 3787–3805, https://doi.org/10.5194/hess-23-3787-2019, https://doi.org/10.5194/hess-23-3787-2019, 2019
Short summary
Short summary
Assessing how sensitive uncertain model parameters are to observed data can be done by analyzing an ensemble of model simulations in which the parameters are varied. In subsurface modeling, this involves running heavy models. To reduce time wasted simulating models which show poor behavior, we use a fast polynomial model based on a simple parameter decomposition to approximate the behavior prior to
full-model simulation. This largely reduces the cost for the global sensitivity analysis.
Wei Mao, Yan Zhu, Heng Dai, Ming Ye, Jinzhong Yang, and Jingwei Wu
Hydrol. Earth Syst. Sci., 23, 3481–3502, https://doi.org/10.5194/hess-23-3481-2019, https://doi.org/10.5194/hess-23-3481-2019, 2019
Short summary
Short summary
A new quasi-3-D model was developed by coupling a soil water balance model with MODFLOW iteratively for regional-scale water flow modeling. The model was tested to be effective and efficient with well-maintained mass balance. A modeling framework was developed to organize the coupling scheme and to handle the pre- and post-processing information. The model is then used to evaluate groundwater recharge in a real-world application, which shows the model practicability in regional-scale problems.
Ning Li, Wolfgang Kinzelbach, Haitao Li, Wenpeng Li, and Fei Chen
Hydrol. Earth Syst. Sci., 23, 2823–2840, https://doi.org/10.5194/hess-23-2823-2019, https://doi.org/10.5194/hess-23-2823-2019, 2019
Short summary
Short summary
Groundwater heads within an administrative unit are influenced not only by inside drivers, but also by outside drivers. To assess the efficiency of groundwater management of the administrative unit, we propose the decomposition of groundwater heads within the unit into inside and outside contributions by using three numerical groundwater models. The method is successfully demonstrated using Guantao County, China.
Zhenjiao Jiang, Dirk Mallants, Luk Peeters, Lei Gao, Camilla Soerensen, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 23, 2561–2580, https://doi.org/10.5194/hess-23-2561-2019, https://doi.org/10.5194/hess-23-2561-2019, 2019
Short summary
Short summary
Paleovalleys often form productive aquifers in the semiarid and arid areas. A methodology based on deep learning is introduced to automatically generate high-resolution 3-D paleovalley maps from low-resolution electrical conductivity data derived from airborne geophysical surveys. It is validated by borehole logs and the surface valley indices that the proposed method in this study provides an effective tool for regional-scale paleovalley mapping and groundwater exploration.
Nicholas D. Woodman, William G. Burgess, Kazi Matin Ahmed, and Anwar Zahid
Hydrol. Earth Syst. Sci., 23, 2461–2479, https://doi.org/10.5194/hess-23-2461-2019, https://doi.org/10.5194/hess-23-2461-2019, 2019
Short summary
Short summary
We show that a conventional hydraulic understanding of groundwater level fluctuation is too simplistic for the extensive floodplains of Bangladesh and West Bengal. This is crucial because 150 million people of the region rely on groundwater for drinking and irrigation. We describe a more complex situation: the coupled hydro-mechanical action of surface water coming and going as the seasons change. Our model results will assist sustainable management of groundwater resources across the region.
Quanrong Wang and Hongbin Zhan
Hydrol. Earth Syst. Sci., 23, 2207–2223, https://doi.org/10.5194/hess-23-2207-2019, https://doi.org/10.5194/hess-23-2207-2019, 2019
Short summary
Short summary
New multi-species reactive models of the four-phase SWPP test were presented considering the wellbore storages for both groundwater flow and solute transport and a finite-aquifer hydraulic diffusivity, which were ignored in previous studies. The models of the wellbore storage for solute transport were proposed based on the mass balance, and the sensitivity analysis and uniqueness analysis were employed to investigate the assumptions used in previous studies on the parameter estimation.
Wolfgang Dreybrodt and Franci Gabrovšek
Hydrol. Earth Syst. Sci., 23, 1995–2014, https://doi.org/10.5194/hess-23-1995-2019, https://doi.org/10.5194/hess-23-1995-2019, 2019
Short summary
Short summary
Numerical models of wormhole formation in fractured porous media provide basic insights on the evolution of complex conduit systems in karst aquifers. In this work we use a time-propagating reactive flow model to explore the evolution of wormholes in a 2-D grid of fractures. We demonstrate physically meaningful mechanisms leading to the formation of individual wormholes and the competition between a set of evolving wormholes.
Ching-Sheng Huang, Ya-Hsin Tsai, Hund-Der Yeh, and Tao Yang
Hydrol. Earth Syst. Sci., 23, 1323–1337, https://doi.org/10.5194/hess-23-1323-2019, https://doi.org/10.5194/hess-23-1323-2019, 2019
Short summary
Short summary
The study develops a new model describing head fluctuation induced by oscillatory pumping test (OPT) in an unconfined aquifer with effects of delayed gravity drainage (DGD) and initial condition regarding the hydraulic head prior to OPT. The DGD reduces to instantaneous gravity drainage when a dimensionless parameter exceeds 500. A pseudo-steady-state model excluding initial condition causes a time-shift from the actual transient model in predicting simple harmonic motion of head fluctuation.
Nimrod Inbar, Eliahu Rosenthal, Fabien Magri, Marwan Alraggad, Peter Möller, Akiva Flexer, Joseph Guttman, and Christian Siebert
Hydrol. Earth Syst. Sci., 23, 763–771, https://doi.org/10.5194/hess-23-763-2019, https://doi.org/10.5194/hess-23-763-2019, 2019
Short summary
Short summary
In areas of enigmatic hydrology, water scarcity, and transboundary water resources, management strategies should rely on comprehensive modeling which must be based on realistic geometry, including all relevant structural features. Based on available geophysical and geological data, a new faulting pattern in the Lower Yarmouk Gorge is suggested as a basis for hydrogeological modeling. Furthermore, unexpected pull-apart basin rim fault evolution is discussed in the context of tectonic collision.
I-Hsien Lee, Chuen-Fa Ni, Fang-Pang Lin, Chi-Ping Lin, and Chien-Chung Ke
Hydrol. Earth Syst. Sci., 23, 19–34, https://doi.org/10.5194/hess-23-19-2019, https://doi.org/10.5194/hess-23-19-2019, 2019
Short summary
Short summary
Few studies focused on the direct solution of the ADE for 3-D DFNs. The study is the first to solve the ADE and focus on assessing the velocity uncertainty in 3-D DFNs. The velocity uncertainty shows a limited range of influence close to the mean diameter of a fracture. The information is useful for engineering designs at sites with fractured rocks. We quantified that the tracer test in wells might lead to the overestimation of mean concentration and induce high uncertainty in fractured media.
Qiyu Chen, Gregoire Mariethoz, Gang Liu, Alessandro Comunian, and Xiaogang Ma
Hydrol. Earth Syst. Sci., 22, 6547–6566, https://doi.org/10.5194/hess-22-6547-2018, https://doi.org/10.5194/hess-22-6547-2018, 2018
Short summary
Short summary
One of the critical issues in MPS simulation is the difficulty in obtaining a credible 3-D training image. We propose an MPS-based 3-D reconstruction method on the basis of 2-D cross sections, making 3-D training images unnecessary. The main advantages of this approach are the high computational efficiency and a relaxation of the stationarity assumption. The results, in comparison with previous MPS methods, show better performance in portraying anisotropy characteristics and in CPU cost.
Rogier Westerhoff, Paul White, and Gonzalo Miguez-Macho
Hydrol. Earth Syst. Sci., 22, 6449–6472, https://doi.org/10.5194/hess-22-6449-2018, https://doi.org/10.5194/hess-22-6449-2018, 2018
Short summary
Short summary
Our study improved a global-scale groundwater model to build the first nationwide estimate of the water table surface in New Zealand. By identifying the main alluvial aquifers with high spatial detail, we showed that this model can help better delineate aquifer boundaries. In catchment studies we demonstrated excellent correlation with ground observations and provided water table estimates where data were sparse and across regions, which could help solve trans-boundary issues between catchments.
Yonatan Ganot, Ran Holtzman, Noam Weisbrod, Anat Bernstein, Hagar Siebner, Yoram Katz, and Daniel Kurtzman
Hydrol. Earth Syst. Sci., 22, 6323–6333, https://doi.org/10.5194/hess-22-6323-2018, https://doi.org/10.5194/hess-22-6323-2018, 2018
Short summary
Short summary
In recent years, surpluses of desalinated seawater (DSW) are stored in the Israeli coastal aquifer. We monitor DSW spread in the aquifer using the difference between isotope composition of reverse-osmosis DSW and natural fresh water, which simplifies the system to two distinct end-members. A hydrogeological flow and transport model is used to demonstrate the robustness of this simplification, predict the future spread of DSW in the aquifer and mixing in wells, and estimate DSW recovery efficacy.
Claudia Cherubini, Nicola Pastore, Dimitra Rapti, and Concetta I. Giasi
Hydrol. Earth Syst. Sci., 22, 5211–5225, https://doi.org/10.5194/hess-22-5211-2018, https://doi.org/10.5194/hess-22-5211-2018, 2018
Short summary
Short summary
The present study investigates the hotspots of groundwater contamination in the industrial area of Modugno (Bari – southern Italy) where the limestone aquifer has a fractured and karstic nature. The characterization of the dynamics of fluid flow and solute transport in fractured aquifers is of broad concern worldwide, especially when considered in relation to water resource exploitation, because fractured aquifers serve as the primary source of drinking water for many areas of the world.
Cited articles
Adham, M., Jahan, C., Mazumder, Q., Hossain, M., and Haque, A.-M.: Study on
groundwater recharge potentiality of Barind tract, Rajshahi district,
Bangladesh using GIS and remote sensing technique, J. Geol. Soc. India, 75, 432–438, https://doi.org/10.1007/s12594-010-0039-3, 2010. a
Asano, T.: Artificial recharge of groundwater, Elsevier, Boston, Massachusetts, USA, 2016. a
Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng., 124, 145–159, https://doi.org/10.13182/NSE96-A24230, 1996. a
Assouline, S. and Or, D.: Anisotropy factor of saturated and unsaturated soils, Water Resour. Res., 42, W12403, https://doi.org/10.1029/2006WR005001, 2006. a
Auken, E., Foged, N., Larsen, J. J., Lassen, K. V. T., Maurya, P. K., Dath, S. M., and Eiskjær, T. T.: tTEM – A towed transient electromagnetic
system for detailed 3D imaging of the top 70 m of the subsurface, Geophysics, 84, E13–E22, https://doi.org/10.1190/geo2018-0355.1, 2018. a
Beganskas, S. and Fisher, A. T.: Coupling distributed stormwater collection and managed aquifer recharge: Field application and implications, J. Environ. Manage., 200, 366–379, https://doi.org/10.1016/j.jenvman.2017.05.058, 2017. a
Behroozmand, A. A., Auken, E., and Knight, R.: Assessment of Managed Aquifer
Recharge Sites Using a New Geophysical Imaging Method, Vadose Zone J., 18, 180184, https://doi.org/10.2136/vzj2018.10.0184, 2019. a, b
Botros, F. E., Harter, T., Onsoy, Y. S., Tuli, A., and Hopmans, J. W.: Spatial variability of hydraulic properties and sediment characteristics in a deep alluvial unsaturated zone, Vadose Zone J., 8, 276–289,
https://doi.org/10.2136/vzj2008.0087, 2009. a, b, c
Bouwer, H.: Artificial recharge of groundwater: hydrogeology and engineering,
Hydrogeol. J., 10, 121–142, https://doi.org/10.1007/s10040-001-0182-4, 2002. a
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design
for sensitivity analysis of large models, Environ. Model. Softw., 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007. a
Carle, S. F.: T-PROGS: Transition probability geostatistical software, University of California, Davis, CA, USA, 1999. a
Carle, S. F. and Fogg, G. E.: Transition probability-based indicator
geostatistics, Math. Geol., 28, 453–476, https://doi.org/10.1007/BF02083656, 1996. a, b
Carle, S. F. and Fogg, G. E.: Modeling spatial variability with one and
multidimensional continuous-lag Markov chains, Math. Geol., 29, 891–918, https://doi.org/10.1023/A:1022303706942, 1997. a
De Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., and
Violette, S.: Dealing with spatial heterogeneity, Hydrogeol. J., 13, 161–183, https://doi.org/10.1007/s10040-004-0432-3, 2005. a
Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., and Cayan, D. R.:
Atmospheric rivers, floods and the water resources of California, Water, 3,
445–478, https://doi.org/10.3390/w3020445, 2011. a
Engdahl, N. B., Vogler, E. T., and Weissmann, G. S.: Evaluation of aquifer
heterogeneity effects on river flow loss using a transition probability
framework, Water Resour. Res., 46, W01506, https://doi.org/10.1029/2009WR007903, 2010. a
Famiglietti, J., Lo, M., Ho, S., Bethune, J., Anderson, K., Syed, T., Swenson, S., De Linage, C., and Rodell, M.: Satellites measure recent rates of groundwater depletion in California's Central Valley, Geophys. Res. Lett., 38, LO3403, https://doi.org/10.1029/2010GL046442, 2011. a
Faunt, C. C., Hanson, R., and Belitz, K.: Groundwater availability of the
Central Valley aquifer, California, US Geological Survey Reston, VA, 2009. a
Fisher, H.: Coachella Valley Investigation, Tech. Rep. Bulletin 108, California Department of Water Resources, Sacramento, California, USA, 1964. a
Fleckenstein, J. H. and Fogg, G. E.: Efficient upscaling of hydraulic
conductivity in heterogeneous alluvial aquifers, Hydrogeol. J., 16, 1239, https://doi.org/10.1007/s10040-008-0312-3, 2008. a
Fleckenstein, J. H., Niswonger, R. G., and Fogg, G. E.: River-aquifer
interactions, geologic heterogeneity, and low-flow management, Groundwater, 44, 837–852, https://doi.org/10.1111/j.1745-6584.2006.00190.x, 2006. a, b, c
Fogg, G. E.: Groundwater flow and sand body interconnectedness in a thick,
multiple-aquifer system, Water Resour. Res., 22, 679–694,
https://doi.org/10.1029/WR022i005p00679, 1986. a, b, c, d
Fogg, G. E., Noyes, C. D., and Carle, S. F.: Geologically based model of
heterogeneous hydraulic conductivity in an alluvial setting, Hydrogeol. J., 6, 131–143, https://doi.org/10.1007/s100400050139, 1998. a
Foglia, L., Hill, M. C., Mehl, S. W., and Burlando, P.: Sensitivity analysis,
calibration, and testing of a distributed hydrological model using error-based weighting and one objective function, Water Resour. Res., 45, W06427, https://doi.org/10.1029/2008WR007255, 2009. a
Foster, L. M. and Maxwell, R. M.: Sensitivity analysis of hydraulic
conductivity and Manning's n parameters lead to new method to scale effective hydraulic conductivity across model resolutions, Hydrol. Process., 33, 332–349, https://doi.org/10.1002/hyp.13327, 2019. a, b
Freeze, R. A. and Cherry, J. A.: Groundwater, Englewood Cliffs, New Jersey,
1979. a
Frei, S., Fleckenstein, J., Kollet, S., and Maxwell, R.: Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model, J. Hydrol., 375, 383–393, https://doi.org/10.1016/j.jhydrol.2009.06.038, 2009. a, b, c
Gailey, R. M.: Approaches for Groundwater Management in Times of Depletion and Regulatory Change, PhD thesis, University of California, Davis, 2018. a
Gelhar, L. W., Welty, C., and Rehfeldt, K. R.: A critical review of data on
field-scale dispersion in aquifers, Water Resour. Res., 28, 1955–1974,
https://doi.org/10.1029/92WR00607, 1992. a, b
Ghayoumian, J., Saravi, M. M., Feiznia, S., Nouri, B., and Malekian, A.:
Application of GIS techniques to determine areas most suitable for artificial
groundwater recharge in a coastal aquifer in southern Iran, J. Asian Earth Sci., 30, 364–374, https://doi.org/10.1016/j.jseaes.2006.11.002, 2007. a
Gilbert, J. M., Jefferson, J. L., Constantine, P. G., and Maxwell, R. M.:
Global spatial sensitivity of runoff to subsurface permeability using the
active subspace method, Adv. Water Resour., 92, 30–42,
https://doi.org/10.1016/j.advwatres.2016.03.020, 2016. a, b
Harter, T.: Finite-size scaling analysis of percolation in three-dimensional
correlated binary Markov chain random fields, Phys. Rev. E, 72, 026120, https://doi.org/10.1103/PhysRevE.72.026120, 2005. a
Hartmann, A., Gleeson, T., Wada, Y., and Wagener, T.: Enhanced groundwater
recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity, P. Natl. Acad. Sci. USA, 114, 2842–2847, https://doi.org/10.1073/pnas.1614941114, 2017. a
Hartog, N. and Stuyfzand, P. J.: Water quality considerations on the rise as
the use of managed aquifer recharge systems widens, Water, 9, 808, https://doi.org/10.3390/w9100808, 2017. a
Heilweil, V. M., Benoit, J., and Healy, R. W.: Variably saturated groundwater
modelling for optimizing managed aquifer recharge using trench infiltration,
Hydrol. Process., 29, 3010–3019, https://doi.org/10.1002/hyp.10413, 2015. a
Herman, J. and Usher, W.: SALib: an open-source python library for sensitivity analysis, J. Open Source Softw., 2, 97, https://doi.org/10.21105/joss.00097, 2017. a
Herman, J., Kollet, J., Reed, P., and Wagener, T.: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models, Hydrol. Earth Syst. Sci., 17, 2893–2903, https://doi.org/10.5194/hess-17-2893-2013, 2013. a
Jones, J. E. and Woodward, C. S.: Newton–Krylov-multigrid solvers for
large-scale, highly heterogeneous, variably saturated flow problems, Adv. Water Resour., 24, 763–774, https://doi.org/10.1016/S0309-1708(00)00075-0, 2001. a
Kern Water Bank Authority: Water Bank Frequently Asked Questions, available at: http://www.kwb.org/index.cfm/fuseaction/Pages.Page/id/352, last access: 5 September 2018. a
Kiparsky, M., Owen, D., Green Nylen, N., Doremus, H., Christian-Smith, J.,
Cosens, B., Fisher, A., and Milman, A.: Designing effective groundwater
sustainability agencies: criteria for evaluation of local governance options,
Wheeler Water Institute, Center for Law, Energy, and the Environment, University of California, Berkeley, School of Law, Berkeley, California, USA, 2016. a
Knight, R., Smith, R., Asch, T., Abraham, J., Cannia, J., Viezzoli, A., and
Fogg, G.: Mapping aquifer systems with airborne electromagnetics in the Central Valley of California, Groundwater, 56, 893–908,
https://doi.org/10.1111/gwat.12656, 2018. a, b
Kocis, T. N. and Dahlke, H. E.: Availability of high-magnitude streamflow for
groundwater banking in the Central Valley, California, Environ. Res. Lett., 12, 084009, https://doi.org/10.1088/1748-9326/aa7b1b, 2017. a
Kollet, S. J. and Maxwell, R. M.: Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel
groundwater flow model, Adv. Water Resour., 29, 945–958,
https://doi.org/10.1016/j.advwatres.2005.08.006, 2006. a
Koltermann, C. E. and Gorelick, S. M.: Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches, Water Resour. Res., 32, 2617–2658, https://doi.org/10.1029/96WR00025, 1996. a, b
Lee, S.-Y.: Heterogeneity and Transport: Geostatistical Modeling, Non-Fickian
Transport, and Efficiency of Remediation Methods, University of California,
Davis, 2004. a
Maples, S. R.: Parflow_HESS, available at: https://github.com/stephenmaples/Parflow_HESS, last access: 10 May 2020. a
McCallum, J., Crosbie, R., Walker, G., and Dawes, W.: Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge, Hydrogeol. J., 18, 1625–1638, https://doi.org/10.1007/s10040-010-0624-y, 2010. a
Morris, M. D.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33, 161–174, https://doi.org/10.1080/00401706.1991.10484804, 1991. a
Mualem, Y.: Anisotropy of Unsaturated Soils 1, Soil Sci. Soc. Am. J., 48, 505–509, 1984. a
Nadler, C., Allander, K., Pohll, G., Morway, E., Naranjo, R., and Huntington,
J.: Evaluation of bias associated with capture maps derived from nonlinear
groundwater flow models, Groundwater, 56, 458–469, https://doi.org/10.1111/gwat.12597,
2018. a
Neuman, S. P. and Di Federico, V.: Multifaceted nature of hydrogeologic scaling and its interpretation, Rev. Geophys., 41, 1014, https://doi.org/10.1029/2003RG000130, 2003. a
Niswonger, R. G. and Fogg, G. E.: Influence of perched groundwater on base
flow, Water Resour. Res., 44, W03405, https://doi.org/10.1029/2007WR006160, 2008. a, b, c, d
Niswonger, R. G., Morway, E. D., Triana, E., and Huntington, J. L.: Managed
aquifer recharge through off-season irrigation in agricultural regions, Water
Resour. Res., 53, 6970–6992, https://doi.org/10.1002/2017WR020458, 2017. a
O'Geen, A., Saal, M., Dahlke, H., Doll, D., Elkins, R., Fulton, A., Fogg, G.,
Harter, T., Hopmans, J., Ingels, C., et al.: Soil suitability index identifies potential areas for groundwater banking on agricultural lands,
California Agricult., 69, 75–84, https://doi.org/10.3733/ca.v069n02p75, 2015. a
Pardo-Iguzquiza, E. and Dowd, P.: CONNEC3D: a computer program for connectivity analysis of 3D random set models, Comput. Geosci., 29, 775–785,
2003. a
Phillips, S. P. and Belitz, K.: Calibration of a Texture-Based Model of a
Ground-Water Flow System, Western San Joaquin Valley, California a, Groundwater, 29, 702–715, https://doi.org/10.1111/j.1745-6584.1991.tb00562.x, 1991. a, b
Rahman, M. A., Rusteberg, B., Uddin, M. S., Lutz, A., Saada, M. A., and Sauter, M.: An integrated study of spatial multicriteria analysis and mathematical modelling for managed aquifer recharge site suitability mapping and site ranking at Northern Gaza coastal aquifer, J. Environ. Manage., 124, 25–39, https://doi.org/10.1016/j.jenvman.2013.03.023, 2013. a
Reilly, T. E., Franke, O. L., and Bennett, G. D.: The principle of
superposition and its application in ground-water hydraulics, Tech. rep., US Geological Survey, Reston, Virginia, USA, 1984. a
Renard, P. and De Marsily, G.: Calculating equivalent permeability: a review,
Adv. Water Resour., 20, 253–278, 1997. a
Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.: Sensitivity analysis in practice: a guide to assessing scientific models, John Wiley & Sons, Chichester, England, 2004. a
Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M.,
McGuire, V. L., and McMahon, P. B.: Groundwater depletion and sustainability
of irrigation in the US High Plains and Central Valley, P. Natl. Acad. Sci. USA, 109, 9320–9325, https://doi.org/10.1073/pnas.1200311109, 2012. a
Shlemon, R.: Landform-soil relationships in northern Sacramento County,
California, PhD thesis, University of California, Berkeley, 1967. a
Sobol, I. M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55, 271–280, 2001. a
Sudicky, E. A.: A natural gradient experiment on solute transport in a sand
aquifer: Spatial variability of hydraulic conductivity and its role in the
dispersion process, Water Resour. Res., 22, 2069–2082, https://doi.org/10.1029/WR022i013p02069, 1986. a
Sudicky, E. A. and Huyakorn, P.: Contaminant migration in imperfectly known heterogeneous groundwater systems, Rev. Geophys., 29, 240–253, https://doi.org/10.1002/rog.1991.29.s1.240, 1991. a, b
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J., Edmunds, M., Konikow, L., Green, T., Chen, J., Taniguchi, M., Bierkens, M., MacDonald, A., Fan, Y., Maxwell, R., Yechieli, Y., Gurdak, J., Allen, D., Shamsudduha, M., Hiscock, K., Yeh, P., Holman, I., and Treidel, H.: Ground water and climate change, Nat. Clim. Change, 3, 322–329, https://doi.org/10.1038/NCLIMATE1744, 2013. a
Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils 1, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
a
Wada, Y., Van Beek, L., and Bierkens, M. F.: Modelling global water stress of
the recent past: on the relative importance of trends in water demand and
climate variability, Hydrol. Earth Syst. Sci., 15, 3785–3805,
https://doi.org/10.5194/hess-15-3785-2011, 2011. a
Weissmann, G. S. and Fogg, G. E.: Multi-scale alluvial fan heterogeneity
modeled with transition probability geostatistics in a sequence stratigraphic
framework, J. Hydrol., 226, 48–65, https://doi.org/10.1016/S0022-1694(99)00160-2, 1999. a, b
Weissmann, G. S., Carle, S. F., and Fogg, G. E.: Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics, Water Resour. Res., 35, 1761–1770, https://doi.org/10.1029/1999WR900048, 1999. a
Weissmann, G. S., Zhang, Y., Fogg, G. E., and Mount, J. F.: Influence of
incised-valley-fill deposits on hydrogeology of a stream-dominated alluvial
fan, Aquifer Characterization, Spec. Publ. Soc. Sediment. Geol., 107, 15–28, 2004. a
Wösten, J., Pachepsky, Y. A., and Rawls, W.: Pedotransfer functions:
bridging the gap between available basic soil data and missing soil hydraulic
characteristics, J. Hydrol., 251, 123–150, 2001. a
Yeh, T.-C. J., Gelhar, L. W., and Gutjahr, A. L.: Stochastic analysis of
unsaturated flow in heterogeneous soils: 1. Statistically isotropic media,
Water Resour. Res., 21, 447–456, https://doi.org/10.1029/WR021i004p00447, 1985a. a
Yeh, T.-C. J., Gelhar, L. W., and Gutjahr, A. L.: Stochastic analysis of
unsaturated flow in heterogeneous soils: 3. Observations and applications,
Water Resour. Res., 21, 465–471, https://doi.org/10.1029/WR021i004p00465, 1985b. a
Short summary
In this study, we use a combination of local- and global-sensitivity analyses to evaluate the relative importance of (1) the configuration of subsurface alluvial geology and (2) the hydraulic properties of geologic facies on recharge processes. Results show that there is a large variation of recharge rates possible in a typical alluvial aquifer system and that the configuration proportion of sand and gravel deposits in the subsurface have a large impact on recharge rates.
In this study, we use a combination of local- and global-sensitivity analyses to evaluate the...