Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 22, issue 1
Hydrol. Earth Syst. Sci., 22, 789–817, 2018
https://doi.org/10.5194/hess-22-789-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 22, 789–817, 2018
https://doi.org/10.5194/hess-22-789-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Jan 2018

Research article | 29 Jan 2018

A global hydrological simulation to specify the sources of water used by humans

Naota Hanasaki et al.

Related authors

MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020,https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Enhancement and validation of the state-of-the-art global hydrological model H08 (v.bio1) to simulate second-generation herbaceous bioenergy crop yield
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-179,https://doi.org/10.5194/gmd-2020-179, 2020
Revised manuscript accepted for GMD
Short summary
Global scenarios of irrigation water use for bioenergy production: a systematic review
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-338,https://doi.org/10.5194/hess-2020-338, 2020
Revised manuscript under review for HESS
Short summary
Uncertainty of simulated groundwater recharge at different global warming levels: A global-scale multi-model ensemble study
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Lauren Seaby, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-235,https://doi.org/10.5194/hess-2020-235, 2020
Revised manuscript under review for HESS
Short summary
Enhancement and validation of a state-of-the-art global hydrological model H08 (v.bio1) to simulate second-generation herbaceous bioenergy crop yield
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-277,https://doi.org/10.5194/gmd-2019-277, 2019
Revised manuscript not accepted
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Assessing global water mass transfers from continents to oceans over the period 1948–2016
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020,https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Weak sensitivity of the terrestrial water budget to global soil texture maps in the ORCHIDEE land surface model
Salma Tafasca, Agnès Ducharne, and Christian Valentin
Hydrol. Earth Syst. Sci., 24, 3753–3774, https://doi.org/10.5194/hess-24-3753-2020,https://doi.org/10.5194/hess-24-3753-2020, 2020
Short summary
The influence of assimilating leaf area index in a land surface model on global water fluxes and storages
Xinxuan Zhang, Viviana Maggioni, Azbina Rahman, Paul Houser, Yuan Xue, Timothy Sauer, Sujay Kumar, and David Mocko
Hydrol. Earth Syst. Sci., 24, 3775–3788, https://doi.org/10.5194/hess-24-3775-2020,https://doi.org/10.5194/hess-24-3775-2020, 2020
Short summary
The role of household adaptation measures to reduce vulnerability to flooding: a coupled agent-based and flood modelling approach
Yared Abayneh Abebe, Amineh Ghorbani, Igor Nikolic, Natasa Manojlovic, Angelika Gruhn, and Zoran Vojinovic
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-272,https://doi.org/10.5194/hess-2020-272, 2020
Revised manuscript accepted for HESS
Comparison of generalized non-data-driven lake and reservoir routing models for global-scale hydrologic forecasting of reservoir outflow at diurnal time steps
Joseph L. Gutenson, Ahmad A. Tavakoly, Mark D. Wahl, and Michael L. Follum
Hydrol. Earth Syst. Sci., 24, 2711–2729, https://doi.org/10.5194/hess-24-2711-2020,https://doi.org/10.5194/hess-24-2711-2020, 2020
Short summary

Cited articles

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, https://doi.org/10.1623/hysj.48.3.317.45290, 2003.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, National Geophysical Data Center, NOAA, NOAA Technical Memorandum NESDIS NGDC-24, 19, Boulder, CO, USA, 2009.
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke, J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge and irrigation water supply during the 20th century, Water Resour. Res., 47, W03509, https://doi.org/10.1029/2009wr008929, 2011.
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water Resour. Res., 51, 4923–4947, https://doi.org/10.1002/2015WR017173, 2015.
Brown, J., Ferrians, O., Heginbottom, J. A., and Melnikov, E.: Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2, National Snow and Ice Data Center, Boulder, Colorado USA, 2002.
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Six schemes were added to the H08 global hydrological model (GHM) to represent human water abstraction more accurately and ensure that all water fluxes and storage are traceable in each grid cell at a daily interval. The schemes of local reservoirs, aqueduct water transfer, and seawater desalination were incorporated into GHMs for the first time, to the best of our knowledge. H08 has become one of the most detailed GHMs for attributing water sources available to humanity.
Six schemes were added to the H08 global hydrological model (GHM) to represent human water...
Citation