Articles | Volume 22, issue 1
Hydrol. Earth Syst. Sci., 22, 727–756, 2018
https://doi.org/10.5194/hess-22-727-2018
Hydrol. Earth Syst. Sci., 22, 727–756, 2018
https://doi.org/10.5194/hess-22-727-2018

Research article 26 Jan 2018

Research article | 26 Jan 2018

Censored rainfall modelling for estimation of fine-scale extremes

David Cross et al.

Related authors

Evaluating the efficacy of bivariate extreme modelling approaches for multi-hazard scenarios
Aloïs Tilloy, Bruce D. Malamud, Hugo Winter, and Amélie Joly-Laugel
Nat. Hazards Earth Syst. Sci., 20, 2091–2117, https://doi.org/10.5194/nhess-20-2091-2020,https://doi.org/10.5194/nhess-20-2091-2020, 2020
Short summary
Modelling rainfall with a Bartlett–Lewis process: new developments
Christian Onof and Li-Pen Wang
Hydrol. Earth Syst. Sci., 24, 2791–2815, https://doi.org/10.5194/hess-24-2791-2020,https://doi.org/10.5194/hess-24-2791-2020, 2020
Short summary
Assessing the characteristics and drivers of compound flooding events around the UK coast
Alistair Hendry, Ivan D. Haigh, Robert J. Nicholls, Hugo Winter, Robert Neal, Thomas Wahl, Amélie Joly-Laugel, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019,https://doi.org/10.5194/hess-23-3117-2019, 2019
Short summary
A hybrid stochastic rainfall model that reproduces some important rainfall characteristics at hourly to yearly timescales
Jeongha Park, Christian Onof, and Dongkyun Kim
Hydrol. Earth Syst. Sci., 23, 989–1014, https://doi.org/10.5194/hess-23-989-2019,https://doi.org/10.5194/hess-23-989-2019, 2019
Short summary
Homogenous regions based on extremogram for regional frequency analysis of extreme skew storm surges
Marc Andreewsky, Samuel Griolet, Yasser Hamdi, Pietro Bernardara, and Roberto Frau
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2016-378,https://doi.org/10.5194/nhess-2016-378, 2017
Preprint withdrawn
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Compound flood potential from storm surge and heavy precipitation in coastal China: dependence, drivers, and impacts
Jiayi Fang, Thomas Wahl, Jian Fang, Xun Sun, Feng Kong, and Min Liu
Hydrol. Earth Syst. Sci., 25, 4403–4416, https://doi.org/10.5194/hess-25-4403-2021,https://doi.org/10.5194/hess-25-4403-2021, 2021
Short summary
Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the Amazon basin
Jamie Towner, Andrea Ficchí, Hannah L. Cloke, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 25, 3875–3895, https://doi.org/10.5194/hess-25-3875-2021,https://doi.org/10.5194/hess-25-3875-2021, 2021
Short summary
Conditional simulation of spatial rainfall fields using random mixing: a study that implements full control over the stochastic process
Jieru Yan, Fei Li, András Bárdossy, and Tao Tao
Hydrol. Earth Syst. Sci., 25, 3819–3835, https://doi.org/10.5194/hess-25-3819-2021,https://doi.org/10.5194/hess-25-3819-2021, 2021
Short summary
Comparison of statistical downscaling methods for climate change impact analysis on precipitation-driven drought
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021,https://doi.org/10.5194/hess-25-3493-2021, 2021
Technical Note: Temporal disaggregation of spatial rainfall fields with generative adversarial networks
Sebastian Scher and Stefanie Peßenteiner
Hydrol. Earth Syst. Sci., 25, 3207–3225, https://doi.org/10.5194/hess-25-3207-2021,https://doi.org/10.5194/hess-25-3207-2021, 2021
Short summary

Cited articles

Bacchi, B., Becciu, G., and Kottegoda, N. T.: Bivariate exponential model applied to intensities and durations of extreme rainfall, J. Hydrol., 155, 225–236, 1994.
Beven, K. and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, 1992.
Cameron, D., Beven, K., and Tawn, J.: An evaluation of three stochastic rainfall models, J. Hydrol., 228, 130–149, 2000a.
Cameron, D., Beven, K., and Tawn, J.: Modelling extreme rainfalls using a modified random pulse Bartlett–Lewis stochastic rainfall model (with uncertainty), Adv. Water Resour., 24, 203–211, 2000b.
Chandler, R.: A spectral method for estimating parameters in rainfall models, Bernoulli, 3, 301–322, 1997.
Download
Short summary
Extreme rainfall is one of the most significant natural hazards. However, estimating very large events is highly uncertain. We present a new approach to construct intense rainfall using the structure of rainfall generation in clouds. The method is particularly effective at estimating short-duration extremes, which can be the most damaging. This is expected to have immediate impact for the estimation of very rare downpours, with the potential to improve climate resilience and hazard preparedness.